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Abstract: Rollover crashes are among the most prevalent types of accidents in developing
countries. Various factors may contribute to the occurrence of rollover crashes. However,
limited studies have simultaneously investigated both traffic stream and road-related
variables. For instance, the effects of T-intersection density, U-turns, roadside parking
lots, the entry and exit ramps of side roads, as well as traffic stream characteristics (e.g.,
standard deviation of vehicle speeds, speed violations, presence or absence of speed
cameras, and road surface deterioration) have not been thoroughly explored in previous
research. Additionally, the simultaneous modeling of crash frequency and intensity remains
underexplored. This study examines single-vehicle rollover crashes in Yazd Province,
located in central Iran, as a case study and simultaneously evaluates all the variables. A
dataset comprising three years of crash data (2015–2017) was collected and analyzed. A
crash index was developed based on the weight of crash intensity, road type, road length (as
dependent variables), and road infrastructure and traffic stream properties (as independent
variables). Initially, the dataset was refined to determine the significance of explanatory
variables on the crash index. Correlation analysis was conducted to assess the linear
independence between variable pairs using the variance inflation factor (VIF). Subsequently,
various models were compared based on goodness of fit (GOF) indicators and odds ratio
(OR) calculations. The results indicated that among ten crash modeling techniques, namely,
Poisson, negative binomial (NB), zero-truncated Poisson (ZTP), zero-truncated negative
binomial (ZTNB), zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB),
fixed-effect Poisson (FEP), fixed-effect negative binomial (FENB), random-effect Poisson
(REP), and random-effect negative binomial (RENB), the FENB model outperformed the
others. The Akaike information criterion (AIC) and Bayesian information criterion (BIC)
values for the FENB model were 1305.7 and 1393.6, respectively, demonstrating its superior
performance. The findings revealed a declining trend in the frequency and severity of
rollover crashes.

Keywords: rollover crashes; crash index; crash modeling; traffic stream characteristics

1. Introduction
Providing safe and sustainable mobility is one of the most important goals of govern-

ments. In this regard, transportation experts are constantly trying to investigate the most
important factors involved by using different approaches to crash analysis. This issue has
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become even more important since the number of casualties due to traffic crashes increased
in 2020 in some countries. In the United States, for example, despite a decline in travel
during the COVID-19 pandemic, the number of fatalities due to traffic crashes has increased
by 7.2% compared to the same period in 2019 [1]. A rollover crash is a type of crash in
which the driver loses control of the vehicle due to high speed, fatigue, drowsiness, alcohol
consumption, etc., and rolls over after leaving the road. Research has shown that one-third
of the total number of crashes falls under the rollover type [2]. This percentage varied
among different countries, such as the United States, where the share of rollover crashes
reported in 2020 was 25%, indicating a 9% increase compared to 2019 [3]. A study of crashes
from 2000 to 2007 in three Australian states also found that rollover crashes accounted for
35% of all fatalities [4]. As a result of a rollover crash, the vehicle’s roof rotates by 90◦. This
rollover can be repeated during a crash and might result in serious injuries to the driver
and occupants. As reviewed in previous studies [5], risk factors affecting the mitigation or
aggravation of injuries or death of the driver and occupants due to rollover may include at
least one of the following: occupants being thrown out, not wearing a seat belt, the number
of rotations due to rollover, sitting place in the car, damage to the roof, type of vehicle, and
demographic characteristics of drivers (e.g., age, gender, and alcohol consumption) [6–10].
The results of a study on a 12.5 cm plate load test showed that the risk of a fatal crash
or serious injury is reduced by 24% for every unit of a car roof’s strength-to-weight ratio
(SWR) [11].

Iran is a developing country with a high number of yearly traffic fatalities. For instance,
in 2016, 15,932 people died in traffic accidents [12]. Many factors are involved in Iran’s
traffic accidents. The two most underlying reasons behind traffic fatalities in Iran are
the inability to control the vehicle and the lack of proper attention to the front vehicles.
Rollover crashes are among the most common types of road traffic fatalities in Iran. This
phenomenon occurs due to the lack of proper control of the vehicle, which is caused by
speeding or driver fatigue. The present study aims to investigate single-vehicle rollover
crashes by investigating proper variables, including both traffic stream and road-related
variables of rollover crashes. In this regard, Yazd province, located in the center of Iran,
was selected as the case study, and associated traffic accidents were investigated. Since
about 54% of Yazd traffic accidents are rollover crashes, it was possible to gather both road
and traffic stream variables. Thus, Yazd traffic accidents and associated variables were
selected for further study.

This paper aims, initially, to model rollover crashes and find a superior model among
all competing models. Next, it investigates how much each variable might affect rollover
crashes. The remainder of this paper is organized as follows: Section 2 examines previous
studies and identifies research gaps; Section 3 describes the research method, including data
collection, data refinement, and modeling through monitoring Iran’s crash data; Section 4
deals with the research findings and presents a discussion of the results; finally, Section 5
summarizes the results.

2. Literature Review
So far, various review studies have been published on variables affecting rollover

crashes. For example, a study on rollover crashes on mountain roads showed that adverse
weather and topographic conditions could be dangerous. Variables used in this study
include speed limit, road median condition, type of road surface (asphalt or not), crash
season, working day or holiday at the time of the crash, being day or night, road surface
weather conditions, and driver characteristics (e.g., high speed and driver age group).
This study compared three types of models, including conventional logit, a non-correlated
random parameter logit model, and a correlated random parameter logit model. Previous
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studies have shown that the correlated random parameter logit model is superior to other
models. Therefore, the correlation between the variables was examined by incorporating
all variables into the relationship using this model. Also, the above study did not study
variables such as roadside slope and other road characteristics [13]. Crashes on mountain
arch roads in Wyoming were investigated in a similar study with the same variables. The
collected data were modeled using the combined logit model method. Studies showed
that weather conditions, road surface conditions, and speed are among the most important
variables. In this research, the types of road classifications and other road characteristics
were not studied due to the difficulty of data collection [14]. The effect of vehicle type
and road geometric design on the occurrence of rollover crashes on mountain roads was
investigated. For this purpose, various weight conditions and technical characteristics
of heavy vehicles, as well as the road geometric design properties (e.g., the slope of the
crash site, being in the superelevation limit, arc angle, and radius in the event of rollover
crashes), were investigated using multiple logit models. Studies showed that the speed
limit in different road areas should be selected according to the road’s geometric design
conditions and vehicle type [15]. Exploring the effect of strong winds on rollover crashes
on Wyoming roads reveals that wind speed with an angle of 120◦ relative to the vehicle’s
direction has the greatest effect on the occurrence of crashes [16].

In a research study, the variables effective in the occurrence of a rollover crash at
different intensity levels were investigated. These variables included crash intensity (i.e.,
property damage only, minor damage, and fatality), light vehicle flow logarithm, heavy
vehicle flow logarithm, allowable speed, paved road width, unpaved road width, curvature,
number of intersections along the road, type of land use, side road friction, roadside
conditions (e.g., a ditch, excavation, and embankment), time of the crash, being day or
night, gender, age, education of the driver, use of seat belt while driving, the type of
vehicle used, and the defect of the vehicle tire. Data modeling was performed using the
random-effects generalized ordered probit model, which was superior to the mixed logit
method [17]. Different intensities of crashes of heavy vehicles were investigated using
a random parameter ordered logit model. The variables used in this study include the
intensity of crashes, driver reaction, driver age group, driver’s condition during the crash,
driver distraction during the crash, visual impairments in the area of the crash, lack of
ability to see road components during the crash properly, number of vehicles involved,
road surface conditions, road surface slope, weather conditions, and lighting conditions
of the area during the crash [18]. The effects of weather conditions (rainy and snowy),
angle of deviation and vehicle rotation, road roughness, longitudinal slope, acceleration,
deceleration rate, lateral friction coefficient, and the allowed speed limit were investigated
in another study [19].

Various degrees of rollover crash might drastically change crash intensity. Using a
support vector machine (SVM) model with explanatory variables including road light-
ing conditions, weather conditions, slope and curvature of the road, number of vehicles
involved in the crash, road surface friction, the intensity of damage to the vehicle, time
and location of the crash, driver’s driving license, road surface conditions, traffic control
method, number of lanes, type of vehicle, type of vehicle maneuver at the time of the
crash, gender, driver age, and education showed that the SVM model can adequately
predict various crash intensities. Moreover, the polynomial kernel function performed
better than the Gaussian RBF [20]. The intensity of crashes was predicted using Logistic
regression modeling with independent variables, including driver variables and vehicle
and crash conditions. The variables were examined using the odds ratio (OR) measure for
each variable. Studies have proved that using safe vehicles can properly reduce rollover
crashes. In this respect, for cars where seat belts are annoying to the driver or the design
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is inappropriate, the probability of the driver’s injury intensity due to a rollover crash is
10 times higher [21].

Another study examined the characteristics of the driver and the driving environment
in the occurrence of rollover crashes of passenger cars and light trucks. In this study, driver
age and gender, road geometric design, road surface conditions, and weather conditions
showed that light trucks have twice the risk of rollover crashes [22]. The intensity of crashes
in rural thoroughfares was modeled considering the effect of unobserved heterogeneity
and the driver’s age. In this study, using a mixed logit model, heterogeneity was examined
for three age groups, including 16–24 years, 25–65 years, and more than 65 years. In this
research, variables including driver age group, driver gender, driving pattern, driving
restrictions, number of passengers, vehicle type, road type, number of lanes, type, width
of left shoulder, type and width of right shoulder, median type, median width, area
topography, posted speed limit, road geometry, road longitudinal profile, section length,
AADT, weather conditions, and road lighting conditions were considered in the analyses.
The results showed that although the important variables in the occurrence of rollover
crashes were different for these three age groups, restraint devices and horizontal curves
were important for all age groups [23].

One study investigated the levels of different intensities of rollover crashes in the
developing country of Iran. In this study, driver age, education, type of rollover crash,
vehicle weight, ABS braking conditions, vehicle technical defect, road type classification,
road conditions, road surface geometric design conditions, number of lanes, road posted
speed limit, the season of the crash, and road lighting conditions at the time of the crash
were examined. To this end, a random threshold random parameter hierarchical ordered
probit model was employed to analyze the variables. The results showed that driver
education, vehicle braking system (ABS), arches in the traffic lanes, and the allowed speed
were the most important variables controlling this phenomenon [24]. Examining factors
influencing the incidence of crashes in the United States with variables indeed encompasses
vehicle passenger ejection, allowed speed, type of passing traffic, time of the crash, use of
seat belts, road geometric design, traffic speed, road slope, towing, road lighting conditions,
tire defects, road surface conditions, rollover crash location, vehicle age, being urban
or rural crash, driver age, driver crash history, violation of previous driver speed, car
airbag conditions, road surface type, day of the week, driver gender, driving history being
poisoned, crash area, number of lanes, weather conditions, alcohol and drug use, and
driver distraction. The results of generalized ordered logit modeling showed that vehicle
passenger ejection, non-use of seat belt, speeding, exceeding the allowed speed, rolling
over in the median and roadside, wavy road, the surface being black, and rural location are
important variables in this modeling [25].

A study on 3-year rollover crash data in Namibia using mixed logit mode showed
that weekends, open roadways, and minibuses were contributing factors that significantly
increased rollover crash severity [26]. A study on single-vehicle run-off-road crashes
of passenger cars, sports vehicles, and pickups found that seatbelt usage was the most
important factor in dealing with these crashes. Also, it was concluded that passenger cars
with a higher speed selection approach were in greater danger than other vehicles [27].
Factors affecting injury severity of single-vehicle rollover crashes were investigated to
illustrate the heterogeneous impact, temporal stability, and aggregate shift using a random
parameter logit model. The results showed an instability in model interpretation in time-
space [28].

Many factors might be involved in rollover crash occurrences. As mentioned in previ-
ous studies, different variables in the occurrence of rollover crashes have been investigated.
However, none of the studies examined the density of intersections by type of intersection,
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U-turns, roadside parking lots, entry and exit ramps, and traffic stream characteristics in
high detail (e.g., standard deviation variables of vehicle speed violations, the presence or
absence of speed cameras, and the steps of performing speed control cameras, and road
surface deterioration levels). Moreover, the number of crashes at different intensity levels
is not considered.

The present study tries to address this research gap and introduces a crash index,
which is the composition of both crash intensity and frequencies.

3. Research Method
The research method employed in this paper is presented in Figure 1. As can be

seen, the rollover crash hot spots were first identified based on mapping crash coordinates.
Then, each of the studied paths was divided into homogeneous parts. Then, the number of
crashes at different intensity levels and other independent variables and characteristics,
including traffic stream and road characteristics, were collected. Then, the data were refined.
After that, correlation analysis between each pair of variables was examined, and finally,
rollover crash modeling was performed; important variables were identified, and their
corresponding effects were evaluated.
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3.1. Study Area

In this article, rural rollover crashes in Yazd province were studied. Notably, rollover
crashes in Yazd province have a 54% share of total rural crashes. Figure 2 shows a diagram
of the distribution of crashes in Yazd province. As can be seen, the crashes are concentrated
on arterial roads, which are investigated in the following sections.
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3.2. Data Collection

Due to the low number of crash frequencies of segments per day, week, and month, this
study selected a seasonal data scale to investigate the effect of variables properly. Another
important factor to consider when constructing the dependent variable is the intensity
of crashes. In this study, the crash index (P) was defined to consider both frequency
and intensity. Defined and approved by the Road Safety Commission of the Ministry of
Roads and Urban Development of Iran, this index is also used to determine crash hotspots.
Equation (1) shows the crash index (P):

P = 2.74
(

I
A × T

)
(1)

where P refers to the calculated index rounded to two decimal places; I represents the
intensity factor (calculated by Equation (2)) in the period T in terms of years; and coefficient
A indicates the performance coefficient of the desired segment. Here, A is 8 for the highway,
6 for the main arterial, 4 for the intra-arterial road, and 2 for the secondary roads.

I = x + 3y + 9z (2)

where x is the number of property damage-only crashes; y is the number of injury crashes;
and z is the number of seriously injured and fatal crashes.
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In this study, candidate roads (Figure 2) were initially divided into homogeneous
sections, and the corresponding explanatory variables for each section were collected.
Notably, almost all sections were highways, with their A parameter in Equation (2) being 8,
and some others were rural roads with an A parameter of 6, which is for the main roads.
Their P index is calculated to be ready for crash modeling.

Traffic stream variables are extracted using the traffic counters (in the form of conduc-
tive loops along the roads). A traffic counter performance greater than 70% was used to find
invalid data and remove them from the analysis. Road traffic experts at traffic centers report
this threshold. In this paper, seasonal average daily traffic (SADT) stream variables were
collected and involved in the study. Variables are 8-fold, namely, the logarithm of average
daily traffic equivalent of a seasonal, percentage of heavy vehicles in traffic composition, the
average speed of vehicles, the standard deviation of vehicle speed, the average percentage
of vehicle violation, the standard deviation of vehicle violation percentage, the average
percentage of violation of longitudinal distance, and standard deviation of percentage of
longitudinal distance violation. To date, no research has considered the eight variables
simultaneously.

Road infrastructure contributing factors are important to consider due to their effect
on traffic stream characteristics by influencing vehicle maneuvers and the probability of
vehicles colliding. In this regard, road geometry variables (i.e., shoulder width, road pave-
ment width, and road pavement surface conditions) were field surveyed and collected by
the Deputy of Highways of the General Directorate of Highways and Road Transportation.

In this paper, road surface quality was also taken into account. The pavement condition
index (PCI) and international roughness index (IRI) are two factors explaining show road
quality status significantly. Also, some studies employ statistics obtained from the friction
of asphalt road surfaces using repetitive tests in the form of British pendulum number
(BPN) [29]. However, this research aimed to expand the deterioration rate based on expert
opinions in a 5-level structure, which is a well-known and acceptable approach not only
in Iran but also in some other road transportation agencies; for instance, the deterioration
rate methodology used in Ontario, Canada [30]. Table 1 shows these deterioration levels
along with the desired deterioration density based on the road surface quality in terms of
damage development. Data were obtained using field surveying yearly by the experts of
the Deputy of Highways of the General Directorate of Highways and Road Transport of
Yazd Province.

Table 1. Definition of deteriorations at different intensity levels and their corresponding densities.

Road Distress Based on Quality
Index

Distress Intensity (Si)
Very Low Low Mediocre High Very High

Distress Density (Di)
Road Distress Based on Quantity

Index
Low Mediocre Significant Failure Destructed

Percentage Distress Developed <10 10–20 20–50 50–80 >80

Another class of the variables were assessed using Google Earth maps. These variables
include the density of entry and exit ramps, un-channelized and channelized T-intersections,
intersections or squares, interchanges, entry and exit roundabouts, and roadside parking.
The above variables are of continuous numerical nature. Also, the modeling structure
classified service areas along road segments as a binary variable (zeroes and ones). In this
respect, speed cameras play a crucial role in affecting traffic stream characteristics through
law enforcement, which affects driver behavior. Thus, speed camera data was collected
from Iran’s Ministry of Roads and Urban Development. Three different camera statuses
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were collected and considered as follows: (1) no camera or poles is installed in the desired
segment; (2) the pole of the desired camera is installed, but the camera is not installed
and is not turned on; and (3) camera pole is installed, and the camera is on. Each of these
situations is classified as 1, 2, and 3. Table 2 tabulates the studied variables as well as
their statistics.

Table 2. Studied variables involved in the study.

Variable Abbreviation Unit
Rollover crash index RolooverCI Number

Logarithm of seasonal
average daily traffic LSADT Logarithm (number)

Heavy vehicle percentage
in the traffic HV %

Left shoulder width LeftShoulder Meter
Pavement width PavementWidth Meter

Right shoulder width RightShoulder Meter
Pavement quality

Very low = 1
Low = 2

Mean = 3
High = 4

Very high = 5

PaveQual Categorical variable

Speed camera
Not installed = 1

Only pole installed = 2
Speed camera installed = 3

SpeedCamera Categorical variable

Rest area
Without rest area = 0

With rest area = 1
RestArea Categorical variable

Wxit ramp density ExitRamp Number per kilometer
Wntry ramp density EntryRamp Number per kilometer

Un-channelized T
intersection density UnChanalizedT Number per kilometer

Channelized T intersection
density ChanalizedT Number per kilometer

4-leg
intersection/roundabout

density
IntersectionRandabout Number per kilometer

Exit U-turn density ExitUTurn Number per kilometer
Entry U-turn density EntryUTurn Number per kilometer

Interchange Interchange Number per kilometer
Roadside parking density RoadSideParking Number per kilometer

Mean speed MeanSpeed kph
Standard deviation of

speed STDSpeed kph

Mean speed violation
percentage MeanSpeedVio %

Standard deviation of
speed violation percentage STDSpeedVio %

Mean headway violation
percentage MeanDistanceVio %

Standard deviation of
headway violation

percentage
STDDistanceVio %

Section ID sectionid -
Time quarter timequa -
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It is worth mentioning that road infrastructure variables were all constant for the study
period but varied among the studied segments. In contrast, traffic stream variables were
yearly based and varied both in time and space.

3.3. Investigating the Correlation of Independent Variables

This study conducted a correlation analysis between each variable and other studied
variables to deal with the problem of linear dependency. The variance inflation factor
(VIF), known as the great index, is estimated for each variable. In statistics, the VIF is
the ratio (quotient) of the variance of a parameter estimate when fitting a full model that
includes other parameters to the variance of the parameter estimate if the model is fit with
only the parameter on its own [31]. The correlation between variables is considered high,
and the corresponding model would be unreliable when the estimated VIF is greater than
10 [32]. Table 3 shows the value of the VIF index calculated for the independent variables
of the research.

Table 3. VIF index calculated by independent research variables.

Variable VIF 1/VIF
Lsadt 10.16 0.098424

Hv 3.44 0.290798
Leftshoulder 7.86 0.127251

Pavementwidth 7.97 0.125530
Rightshoulderwidth 2.24 0.445516

Pavequal
2 4.65 0.215136
3 5.97 0.167565
4 3.49 0.286820

Speedcamera
2 1.97 0.506331
3 1.71 0.585262

L. RestArea 4.61 0.217083
Exitramp 124.50 0.008032

Entryramp 123.73 0.008082
UnchanalizedT 3.71 0.269448

Chanalizedt 1.61 0.622009
Intersection 4.81 0.208041
Exituturn 8.92 0.112112

Entryuturn 11.49 0.087010
Interchange 3.90 0.256301

Roadsideparking 3.12 0.320127
Meanspeed 4.88 0.204933

Meanspeedvio 5.43 0.184038
Meandistanvio 2.03 0.491606

Stdspeed 2.13 0.468553
Stdspeedvio 2.45 0.408484

Stddistancvio 1.44 0.695103
Mean VIF 13.78

It can be inferred from Table 4 that average flow logarithm, entry ramp density, exit
ramp density, and entry U-turn density have high VIF values. The average VIF value of the
independent variables is also above 10.

As mentioned earlier, the entry and exit ramps were very close to each other in terms
of descriptive statistics. For this purpose, the first question is whether these two variables
have a significant linear mutual independence. Due to the similar conditions of the two
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variables of entry and exit U-turns, the same process was performed. Tables 4 and 5 show
the results of calculated VIF indices between the mentioned variables.

Table 4. VIF index calculations between two variables of entry and exit ramps density.

Variable VIF SQRT VIF Tolerance R-Squared
Exitramp 44.31 6.66 0.0226 0.9774

Entryramp 44.31 6.66 0.0226 0.9774
Mean VIF 44.31

Table 5. VIF index calculations between the two variables of entry and exit U-turns density.

Variable VIF SQRT VIF Tolerance R-Squared
Exituturn 4.81 2.19 0.2080 0.7920

Entryuturn 4.81 2.19 0.2080 0.7920
Mean VIF 4.81

Based on the significant relationship between the two variables depicted in Tables 4 and 5,
two suggestions might be useful to address the correlation issue: (1) to delete variables
with a high VIF value; and (2) to make compound variables [33]. In this study, due to
having a better description of variable effects, their integration was formed by multiplying
them (Table 6). This approach was taken due to similar descriptive statistics of each pair
of variables. On the other hand, the variables entryramp and exitramp had the same
descriptive statistics. This issue also holds for the variables entryuturn and exituturn. The
major feature of this integration is that after the final analysis and measuring odds ratio,
their interpretation would be rather simple since they have the same statistical patterns.
Furthermore, if the compound variable has a unit amount of effect on a dependent variable,
each non-compound variable will have

√
a impact.

Table 6. Integrated independent variables (for variables with high VIF value).

Number Old Variables New Compound
Variables

New Variable
Abbreviation

1 exitramp,
entryramp exitramp × entryramp exitentryramp

2 exituturn,
entryuturn exitutrun × entryuturn exitentryuturn

Now, the value of the VIF index is calculated based on the newly compounded vari-
ables and the previous independent variables. According to the results of Table 7, it is
observed that both the VIF of all independent variables and the averaged VIF value are
less than 10. Thus, the variables in Table 7 are used to construct and evaluate subse-
quent models.

After addressing the correlation problem, outliers were removed before analysis.
In this regard, data that were in the range of 95% of the values of each variable were
included in the calculations. Table 8 shows the descriptive values of the variables after
refining and deleting outliers. It is worth mentioning that the dependent variable was
found to be the overdispersion phenomenon, indicating that studied sections had varied
numbers of rollover crashes from very low frequency to high frequency. This was also
true for independent variables based on mean and STD parameters. For example, the
variables HV, ExitEntryRamp, UnchanalizedT, and ChanalizedT were greatly different for
the studied sections.
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Table 7. Estimated VIF values of variables (considering new variables are involved).

Variable VIF 1/VIF
Lsadt 8.59 0.116391

Hv 3.40 0.294088
Leftshoulder 5.06 0.197522

Pavementwidth 6.30 0.158700
Rightshoulderwidth 2.07 0.483303

Pavequal
2 4.28 0.233601
3 5.93 0.168572
4 2.92 0.342367

Speedcamera
2 1.99 0.501978
3 1.63 0.613948

L. RestArea 3.99 0.250553
Exitentryramp 3.65 0.273622
UnchanalizedT 3.55 0.281992

Chanalizedt 1.63 0.614226
Intersection 2.93 0.341746

Exitentryuturn 4.81 0.207853
Interchange 3.52 0.284079

Roadsideparking 2.59 0.386471
Meanspeed 4.11 0.243014

Meanspeedvio 4.49 0.222481
Meandistanvio 1.94 0.514634

Stdspeed 2.11 0.473212
Stdspeedvio 2.46 0.406674

Stddistancvio 1.44 0.696405
Mean VIF 3.56

Table 8. Descriptive statistics of variables after removing outliers.

Variable Obs Mean Dev. Std Min Max
rolooverci 261 10.77333 11.75208 0 59.26

LSADT 261 3.584538 0.3941255 2.8456 4.21075
HV 261 41.44977 14.19489 11.85 67.87

LeftShoulder 261 1.418506 0.5574679 0 2.25
PavementWidth 261 7.049809 1.046004 3.65 8

RightSoulder 261 1.742337 0.227737 1.15 2.15
Pavequal

2 261 0.1494253 0.3571921 0 1
3 261 0.7049808 0.4569276 0 1
4 261 0.0766284 0.2665119 0 1

Speedcamera
2 261 0.1494253 0.3571921 0 1
3 261 0.2988506 0.4586337 0 1

L. RestArea 261 0.137931 0.3454901 0 1
ExitEntryRamp 261 0.1037173 0.2139524 0.000356 0.9384766
UnchanalizedT 261 0.249513 0.2178584 0.030303 0.8043478

ChanalizedT 261 0.0157404 0.0217447 0 0.0869565
Inter~Randabout 261 0.024356 0.027621 0 0.09375
ExitEntryUTurn 261 0.0288343 0.032202 0 0.1171875

Interchange 261 0.0324525 0.0543085 0 0.1818182
RoadsideParking 261 0.0703401 0.584383 0 0.2727273
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Table 8. Cont.

Variable Obs Mean Dev. Std Min Max
MeanSpeed 261 85.29318 6.266493 67.71 94.48

MeanSpeedVio 261 15.83398 9.101875 1.71 40.74
MeanDistanceVio 261 6.645249 3.000259 1.9 15.95

STDSpeed 261 3.241954 1.86318 0.92 9.86
STDSpeedVio 261 4.024061 2.389754 0.69 16.58

STDDistanceVio 261 2.425019 1.394873 0.44 6.52

3.4. Modeling Crashes and Calculating Marginal Effects

Safety expert practitioners employ many modeling techniques to create a relationship
between dependent and independent variables [34–40]. The present study used the 10 most
common types, including Poisson, negative binomial (NB), zero-truncated Poisson (ZTP),
zero-truncated negative binomial (ZTNB), zero-inflated Poisson (ZIP), zero-inflated neg-
ative binomial (ZINB), fixed-effect Poisson (FEP), fixed-effect negative binomial (FENB),
random-effect Poisson (REP), and random-effect negative binomial (RENB). In this paper,
STATA release 15 was used to model crash data [41]. Table 9 shows the coefficients of
variables extracted by different models. As can be noticed, regardless of constructive
models, the negative binomial-based models outperformed Poisson-based ones in terms of
AIC and BIC values as a measure of goodness of fit (GOF). Also, there seems that model
formulation greatly affect positive or negative impact of independent variables on the
dependent variable as there are contrasting effects of explanatory variables on dependent
variable in terms of measure of effectiveness (i.e., regression coefficient) and also in terms
of positive and variable sign. It can also be found that the FENB model outperformed other
competing models. Since the GOF values of the FENB model were significantly lower than
other competing models, it was selected for further study.

Table 9. The result of crash modeling based on different methods.

Regression Coefficients

Poisson NB2 ZTP ZTNB ZIP ZINB REPoisson RENB FEPoisson FENB
Specific

condition for y* no no no no If y = 0 If y > 0 If y = 0 If y > 0 no no no no

LSADT 0.4194 0.6944 0.2973 −0.1659 −0.299 −3.7305 −0.16 4.7531 −0.5165 0.8945 1.0349 0.2848
HV −0.0065 −0.0081 −0.0155 −0.0146 −0.0155 −0.0681 −0.0136 −0.0868 −0.0057 0.0129 −0.00666 0.0151

LeftShoulder −0.0541 −0.1859 −0.0678 −0.1562 −0.0685 3.2304 −0.1848 4.7193 0.0137 −0.1102 −59.525 0.2289
PavementWidth 0.0112 0.0279 0.1906 0.2333 0.1925 −0.4843 0.2684 −0.487 0.0227 −0.1613 7.14151 −0.1432

RightSoulder 0.1205 −0.3188 −0.0021 −0.195 −0.0025 −3.8444 −0.2088 −5.6225 −0.8394 0.508 −49.7167 1.711
Pavequal

2 −0.8112 −0.9584 −1.0337 −1.18 −1.034 19.490 −1.1849 18.142 −0.7158 −0.2761 −0.70788 −0.3549
3 −0.7470 −1.1369 −0.7102 −0.8177 −0.711 20.577 −0.861 19.333 −0.9448 −0.6472 −0.96244 −0.8155
4 −0.5144 −0.7655 −0.6808 −0.7332 −0.6795 18.238 −0.7165 16.834 −0.3919 −0.1121 −0.55832 −0.4768

SpeedCamera
2 0.2960 0.1994 0.1887 0.1028 0.1882 −1.2509 0.0677 −2.6434 0.3238 0.3747 0.329141 0.3687
3 0.0207 0.1465 −0.0269 −0.1082 −0.0273 −0.6809 −0.1098 −0.9602 0.1089 −0.0575 0.119412 −0.0479

RestArea −0.0617 −0.0226 −0.1626 −0.1629 −0.2881 −0.1362 −0.2245 −0.0997 0.0971 −0.03292 0.1851
ExitEntryRamp 0.4956 0.3124 0.4569 −0.1484 0.459 −8.8442 0.4004 −4.1508 0.0542 0.0162 0.20918 0.1611
UnchanalizedT −0.5355 −0.562 −0.7726 0.3158 −0.7715 0.5865 −0.7984 2.3934 −0.7419 0.2912 0.000 0.8415

ChanalizedT 0.9486 3.7107 −0.6115 −0.8272 −0.6208 −37.203 0.1653 −47.665 −3.8965 3.3269 0.000 −4.4702
Inter~Randabout −5.4289 −6.313 −1.5593 0.2699 −1.5467 5.8912 0.7872 2.9129 −2.204 −9.0754 0.000 −16.004
ExitEntryUTurn 8.5641 14.132 −0.7234 0.0911 −0.7377 −33.657 −0.379 −76.876 11.387 19.5266 9.139741 15.505

Interchange 1.1166 −0.3857 0.8952 0.3441 0.8966 −25.04 −0.0809 −25.789 4.9418 2.472 0.000 7.8181
RoadsideParking −3.5804 −4.4694 −2.7945 −0.2171 −2.7895 30.514 −3.4199 39.103 0.0821 −4.4145 0.000 −8.6664

MeanSpeed 0.0178 0.0314 0.0138 −3.4991 0.0138 −0.085 0.017 −0.152 0.0126 0.0247 0.007048 0.0054
MeanSpeedVio −0.0212 −0.0323 −0.0172 0.0176 −0.0172 0.0965 −0.0178 0.1528 −0.0076 −0.0298 −0.00309 −0.0218
MeanDistanceVio −0.0291 −0.0329 −0.0063 −0.0177 −0.0064 0.0689 −0.0032 0.0513 −0.0346 −0.0487 −0.02582 −0.0395

STDSpeed −0.0191 −0.0052 −0.0661 0.001 −0.0671 −0.322 −0.0719 −0.7212 −0.0324 −0.0005 −0.03567 −0.0179
STDSpeedVio 0.0984 0.1085 0.0789 −0.0512 0.0794 −0.0855 0.0858 0.0778 0.0925 0.089 0.09662 0.0999

STDDistanceVio −0.0817 −0.0711 −0.014 0.0733 −0.014 0.3175 −0.0272 0.4082 −0.0142 −0.0348 −0.01301 −0.0027
Constant 0.4949 −0.4508 3.275 −0.0277 3.2668 5.8412 2.5794 17.121 5.1996 −4.8917 - −3.4417
alpha (α) - 1.4708 - −0.3956 - 0.3954 0.8260 - - -

AIC 3421.0 1752.2 2029.9 1381.4 2252.4 1592.9 2733.4 1661.9 2343.7 1305.7
BIC 3510.1 1844.8 2111.2 1466.0 2430.6 1774.7 2826.1 1758.2 2410.5 1393.6

Note that y* hear is the dependent variable.
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This research measured the effect of 23 independent variables on the rollover crash
index as a dependent variable using partial derivative calculations. The partial derivative
of the dependent variable relative to the desired independent variable is calculated, and
the amount of change in output (dependent variable) is obtained per unit change in the
desired variable, given that all other variables are set to their mean values. The obtained
results are called the marginal effect. For instance, the variable HV shows that one unit
increase in heavy vehicle percentage in the traffic stream would change the rollover crash
index by 0.015, with all other variables fixed on their average. Table 10 presents the results
of partial derivative calculations.

Table 10. Results of partial derivative calculations of the effects of independent variables on the
dependent variable (rollover crash index).

dy/dx std. Err p > |z|
LSADT 0.285 0.713 0.689

HV 0.015 0.010 0.138
LeftShoulder 0.223 0.466 0.623

PavementWidth −0.143 0.234 0.540
RightSoulder 1.711 0.785 0.029

Pavequal
2 −0.355 0.394 0.368
3 −0.815 0.431 −1.058
4 −0.477 0.482 −0.323

Speedcamera
2 0.369 0.239 0.123
3 −0.048 0.181 0.791

RestArea 0.185 0.320 0.563
ExitEntryRamp 0.161 0.596 0.787
UnchanalizedT 0.841 0.960 0.381

ChanalizedT −4.470 7.209 0.535
Inter~Randabout −16.003 8.342 0.055
ExitEntryUTurn 15.505 5.666 0.006

Interchange 7.818 3.604 0.030
RoadsideParking −8.666 3.265 0.008

MeanSpeed 0.005 0.025 0.833
MeanSpeedVio −0.022 0.018 0.220

MeanDistanceVio −0.039 0.032 0.214
STDSpeed −0.018 0.045 0.690

STDSpeedVio 0.099 0.038 0.008
STDDistanceVio −0.003 0.054 0.960

4. Discussion
In this section, the results of marginal effects are discussed for some of the important

variables from Table 10. The result showed that a 1 unit increase in the LSADT variable
increases the percentage of rollover crash risk by 0.285. In other words, if the average
seasonal daily traffic increases by 10%, the risk of rollover crashes increases by 0.11%.

Studying the effect of the percentage of heavy vehicles indicates that with each 1%
increase in heavy vehicle traffic, the risk of rollover crashes increases by an average of
0.14%. Based on Table 8, one can realize that crossing vehicles were mostly passenger cars
since truck share in traffic streams was, on average, 42% of total vehicles. Therefore, if
heavy vehicles are encountered, they will be unable to control them, leading to rolling
over them.

The study’s results on the effect of speed cameras showed the consistent effect of
turning on speed cameras in reducing the risk of rollover crashes. Therefore, a portion of
the rollover crashes is reduced through vehicle speed management. The standard deviation
of vehicle speed was determined, and it was found that increasing it by 1 unit will reduce
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the risk of rollover crashes by 0.17%. Since speed cameras reduced the risk of rollover
crashes and the average traffic stream speeds were close to each other, it is possible to
increase the standard speed deviation by 1 unit at low-medium speeds. These conditions
lead to lower traffic stream speeds, thereby lowering the risk of vehicle rollover.

Based on the obtained results, a 1% increase in vehicle speed violations reduces the
risk of a rollover crash by 0.2%, considering the high traffic flow on rural thoroughfares.
The probability of fatigue and drowsiness is lower when the speed of the vehicles increases
and, therefore, the probability of rollover decreases. In addition, a 1-unit increase in the
standard deviation of the percentage of vehicle speed violations causes an increase of
approximately 0.93% in the rollover crash risk index. The underlying reason is that the
percentage of vehicle violations indicates the number of vehicles relative to the total number
of vehicles at speeds above the speed limit. Hence, an increase in the standard deviation
in the percentage of vehicle violations means that a percentage of vehicles are traveling
much faster than the posted speed limit, which can be dangerous and cause rollover. With
a 1% increase in the percentage of gap violations, the index of the risk of rollover crashes
decreases by 0.37%. Increasing the percentage of gap violations means that vehicles are
close to each other in traffic, reducing the possibility of vehicle rollover. The standard
deviation of gap violence depicts that with a 1 unit increase in the standard deviation, the
possibility of rollover crash risk index decreases by 0.03%. In other words, the standard
deviation of the percentage of violation of the vehicle gaps seems to have a small effect on
the rollover crash index risk.

Research has shown that since installing speed cameras does not have a psychological
effect, it does not change the driver’s behavior to reduce rollover crashes, although it
increased by 3.42% for some reason. In contrast, turning on the speed cameras can reduce
the risk of rollover crashes by 0.44%.

Increasing each unit of left shoulder width by average increases the risk of a rollover
crash by 2.13%. This increment is because an increase in road shoulder width might increase
road level; as a result, drivers try to select a higher speed while driving, which directly
increases the chance of studied crashes. Also, every 1 unit increase in the width of the road
pavement reduces the risk index of rollover crashes by an average of 1.33%. Increasing the
width of the right paved shoulder causes an average of a 15.89% increase in the rollover
risk index.

It can also be inferred from the results that reducing the quality level of the road
surface from the high-quality level relative to the low deterioration causes an average
reduction of 3.3% in the risk of rollover crashes. In addition, more road surface damage
reduces the average risk of rollover crashes by an average of 7.57% (average deterioration
level compared to low deterioration level). However, since further road breakdowns will
be inversely related to the risk of rollover crashes, Level 4 deterioration compared to Level
3 increases the chance of rollover crashes by 3.14%. This result indicates that from one
level of deterioration (in this study, Level 3 road surface deterioration), more road surface
deterioration increases the risk of rollover crashes compared to the previous level.

According to the studies performed, it is observed that through binary (0 and 1)
classification of the road segments without service areas (coded zero) and with a service
area (code 1), segments without service areas had, on average, about 1.72% less rollover
crash risk index. However, the main causes of rollover crashes are driver fatigue and
drowsiness, which are other factors that may play a role in the rollover of vehicles. Secondly,
better options, such as the construction of roadside parking lots, can be used and might be
a better option in dealing with the problem of taking short-term rest.

Increasing the density of the entry and exit ramps by their average (which is more
likely than increasing the density by 1 unit) increases the risk of rollover crashes by 0.16%.
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Descriptive studies showed that the mean values of the standard deviation of the entry
and exit ramps are close to each other, but their minimum and maximum values are the
same. This implies that the density of the entry and exit ramps is the same at the level of
the main and highway arterial road network. Therefore, to describe their importance, each
of the entry and exit ramps variable can be defined as D = x/l, in which x is the number of
non-normalized entry and exit ramps (not divided by the length of the axis). According to
this definition, 1 unit increase in the density of entry and exit ramps (corresponding to D2)
is equivalent to a 1.5% increase in the average rollover risk index. Thus, a 1 unit increase in
the density of each variable means a 1.22% increase in the rollover crash risk index. In a
more realistic view, the average increase in the density of each entry and exit access ramp
corresponds to a 0.32% increase in the risk of rollover crashes.

A 1-unit increase in the density of un-channelized access roads can increase rollover
crash risk by 7.81%. In contrast, the results show that channelizing the access roads reduces
the risk of rollover crashes. Accordingly, channelizing the flow regulates the flow of traffic
and reduces the possibility of a diversion of direct flow and thus reduces its rollover,
especially at the entrances of cities.

If the field density increases within the allowable range, the index of rollover crashes
will increase by 148.59%. This issue is attributed to the calming of the passageway because
of the implementation of these intersections and the prevention of rollover crashes.

Examining U-turns at intersections indicates that the higher their density, the higher
the index of rollover crashes. Similarly, for entry and exit ramps, given that the average
values and the minimum and maximum densities of entry and exit U-turns are close
to each other, they can be considered close to each other. As a result, increasing the
density of U-turns in the road network will increase the rollover crash index by 143.96%.
Considering that the average values of the entry and exit U-turns are equal to 0.150 and
0.156, respectively, it can be concluded that the entry and exit U-turns have an average
effect of 1.80 and 1.87, respectively. Since there will be a percentage increase in the crash
risk index, care should be taken when choosing the number of U-turns and their location in
the road network.

Increasing the density of interchanges relative to their average value increases the risk
of rollover crashes by 2.35%. Further field studies showed that the main reason for this
increase is the carelessness of drivers while crossing the above intersections.

Roadside parking lots were important in reducing rollover crashes. Considering the
average density of these parking lots (equal to 0.0703), it can be concluded that roadside
parking lots have led to a 5.66% reduction in the risk of rolling-over crashes.

Thus, the novelty of this study lies in its simultaneous investigation of traffic stream
and road-related variables influencing single-vehicle rollover crashes, including under-
explored factors such as T-intersection density, U-turns, roadside parking lots, and road
surface deterioration. By introducing a crash index that combines crash frequency and
intensity and employing advanced modeling techniques like the fixed-effect negative bi-
nomial (FENB) model, this study identifies key predictors and highlights the nuanced
impacts of speed variation and road conditions. These findings offer valuable insights and
a comprehensive framework for addressing rollover crashes in developing regions.

5. Conclusions
This paper aimed to study rollover crashes on rural roads. To achieve this, the ru-

ral roads in the study area were divided into homogeneous segments with similar road
and traffic stream characteristics. Data for these segments were collected through field
observations and extracted from the database, which included independent variables and
three years of statistics on the number and severity of rollover crashes. To simultaneously
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analyze the frequency and intensity of crashes, a crash index was introduced and used
as the dependent variable. To mitigate the correlation effects among independent vari-
ables, the variance inflation factor (VIF) technique was applied. Different crash modeling
techniques were then evaluated and compared using goodness of fit (GOF) indicators,
including the Akaike information criterion (AIC) and Bayesian information criterion (BIC).
The findings revealed that the fixed-effect negative binomial (FENB) model outperformed
the other models. The analysis identified the most significant variables influencing rollover
crashes. These included the density of entry and exit U-turns, the density of channelized
T-intersections, the density of roadside parking lots, and the width of the right shoulder of
the road, which exhibited the highest rates of change per unit variation of the rollover crash
index. Additionally, the standard deviation of mean speed and speed violations were found
to have a greater impact than their absolute values. Interestingly, the results suggested that
minor road surface deterioration slightly reduces the likelihood of vehicle rollovers com-
pared to normal road conditions, likely due to altered driver behavior. However, as road
surface deterioration becomes more severe, the probability of vehicle rollovers increases.
Overall, these findings can assist traffic safety practitioners in designing effective strategies
to mitigate rollover crashes. The primary limitation of this study was the availability of
only one set of traffic counters for each studied segment. Future research should employ
more sophisticated models and interpret variables in greater detail to address issues of
temporal and spatial instability.
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