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Abstract: The study evaluated the effect of elapsed time after mixing on the strength properties of lime
and iron ore tailings (IOT) treated black cotton soil (BCS) (an expansive tropical black clay) as road
construction material. BCS was treated with 0, 2, 4, 6, and 8% lime and 0, 2, 4, 6, 8, and 10% IOT content
by dry weight of soil. Tests carried out include Atterberg limits, compaction, unconfined compressive
strength (UCS), California bearing ratio (CBR) (unsoaked condition), and microstructure of specimens.
Statistical analysis was done using MINI-TAB software. Results show that the liquid limit (LL) of
BCS–lime–IOT mixtures decreased with increase in lime and IOT content. The LL values of all the
treated BCS increased between 0 and 1 h elapsed time after mixing. On the other hand, the plastic limit
(PL) of BCS decreased with increase in lime and IOT content while the plasticity index (PI) decreased
from 27.7 to 22.9% for 0% lime/0% IOT content and from 30.6 to 26.6% for 0% lime/10% IOT content.
Maximum dry density (MDD) of BCS increased while optimum moisture content (OMC) decreased
with higher IOT content. The natural BCS recorded OMC value of 25.6% decreased to 15.2% for 8%
lime/10% IOT treatment. The strength (i.e., UCS and CBR values) increased with increase in lime/IOT
contents between 0 and 2 h elapsed time after mixing. Peak values were recorded for 8% lime/8% IOT
treatment for all lime content considered. Regression analysis shows a strong relationship between
the strength properties and the soil parameters. An optimal 8% lime/8% IOT treatment of BCS for
elapsed time after mixing not exceeding 2 h was established and is recommended as sub-base material
for low-trafficked roads.

Keywords: California bearing ratio; compaction; elapsed time after mixing; iron ore tailings; lime;
road construction material; unconfined compressive strength

1. Introduction

Civil engineering construction works are sometime subjected to construction delays that might
be caused by several factors such as human error, machine breakdown, or environmental factors.
Construction delays most times include elapsed time after mixing/placing because of any of the
following reasons: sudden rain; breakdown of compaction equipment after mixing; insufficient
workers; poor transportation, and so forth. Thus elapsed time after mixing before compaction might
affect workability and the density/strength properties of the compacted soil in the field. The need to
study the impact of such delays is essential to achieve desired results in the field. Several studies on
the effect of elapsed time after mixing are reported in the literatures [1–6]. Apart from delays during
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construction, some soils such as black cotton soils, which are expansive in nature, are not suitable in
their natural state for use for some construction purposes and need to be improved. The necessity for
improving black cotton soils is based on the predominance of the soil in the northeast region of the
country and other parts of the world. Removal of the soil prior to road construction is not economically
viable, hence the need for the improvement.

Black cotton soils (BCS) occupy an estimated 104,000 km2 in the northeast region of Nigeria [7].
They are a product of disintegrating shale and argillaceous deposits as well as volcanic rocks. They have
more of montmorillonite which exhibits expansion and contraction behavior, with adjustment in water
content. The shrink–swell nature of the soil when in contact with water could result in pavement
failure manifesting as displacement, cracks, and depressions. Construction of roads on expansive soil is
problematic since there is the possibility of expansion and contraction with adjustment in water, due to
the presence of montmorillonite [7–10]. Improvement of such soil is a cheaper alternative to replacing
it in the field, hence the need for the use of various additives such as cement, lime, and industrial and
agricultural waste with pozzolanic potential prior to field application.

Researchers [11–14] reported improved plasticity, workability, and stability characteristics of
fine-grained soil with the addition of small quantities of lime. The engineering characteristics of BCS
were improved with lime, cement, and other admixtures [15]. These methods have been successfully
used in road, railroad, and airport works to enhance subgrades and sub-bases. Usually inclusion of
lime and cement for the improvement of weak soils is needed but costly [7,16–19]. Lime has been
confirmed to be a supplement that beneficially enhances the engineering characteristics of nongranular
soils. It has also been confirmed that the extent of dispersed double layers is reduced with inclusion of
lime due to increase in the combining power of transposable ion or the electrolyte cluster [15,20–22].

Industrial and agricultural wastes cause air and water pollution and they occupy usable space;
therefore, management of waste such as tailings is beneficial, not just for pollution control but also for
the preservation of the environment. Tailings are stockpiled and they form embankments which can
be eroded, cut down, or completely breached [15,18,21,23,24]. Iron ore tailings (IOTs) are the wastes
obtained from the beneficiation of mined iron ore. In Nigeria, about 3072 tons/day are mined at Itakpe
mines [25]. The total world production of iron ore in 2014 was 3.22 billion tons and for each ton of
beneficiated iron ore, it is estimated that about 40% of tailings are produced [26]. Tailings have been
used as supplementary materials for concrete works [27]. Mine tailings (e.g., iron ore tailings, IOTs)
can be beneficially used in civil engineering construction works, thereby reducing the disposal issues
and environmental threats associated with them [19,28]. The index characteristics of BCS have been
improved with mine tailings [15,21].

Studies have been carried out using IOTs alone [29,30] and as admixture [31] in lime or cement
improvement of BCS. However, little attention has been given to the study of the allowable delay
between mixing of the soil with the additives and subsequent placement as well as compaction.
Wastes from the mining industry have to be managed by finding cost-effective and economic ways to
beneficially reuse them, thereby reducing problems associated with waste disposal. This study was
focused on the improvement of BCS with lime using IOTs as admixture for elapsed time after mixing
of up to 3 h. The objective was to determine the effect of elapsed time after mixing for an optimal
formulation for road construction material (or equivalent).

2. Materials and Methods

2.1. Materials

Soil: The BCS used was obtained from Deba, Gombe State, Nigeria, located between latitude
10◦13′ and 10◦2′ north and longitude 11◦23′ and 11◦38′ east.

Lime: Lime was obtained as a commercial product from an open market in Kaduna, Kaduna
state, Nigeria.
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Iron ore tailings: The IOTs were collected from the premises of the National Ore Mining Company,
Itakpe in Kogi state, Nigeria. Only IOTs that passed through a 75 µm sieve were used in this study.

2.2. Methods

Index properties: All tests were done in accordance with procedures outlined in BS 1377 [32] and
BS 1377 [33] for the natural soil and modified soil, respectively. Lime was used at stepped concentration
of 0, 2, 4, 6, and 8% for 0, 2, 4, 6, 8, and 10% IOT, by dry weight of the soil sample at 0–2 and 3 h elapsed
time after mixing. Sample size of 120 was used for the statistical analysis (i.e., regression) for varying
proportion of additives and elapsed time considered.

Plasticity properties: The Atterberg limits tests (i.e., liquid limits, plastic limits, and plasticity
index) were carried out on the natural and treated soil in accordance with the procedures outlined in
BS 1377 [32].

Compaction: The natural and treated soils were compacted with British Standard light (BSL)
energy (also called proctor energy) in accordance with BS 1377 [32]. The soil sample was thoroughly
mixed before compaction with 596 kN/m3 proctor energy in 3 layers with 27 blows using 2.5 kg rammer
dropping from a height of 300 mm for each of the layers in a 1000 cm3 mold. The compacted soil was
extruded from the mold into the large wide tray and crushed again before adding more water content
and the procedure was repeated until the weight of the compacted soil reduced. For the consideration
of elapsed time after mixing, the natural and treated soil, the lime, and the IOT were added in the
concentrations stated above and water content was added. Each treated soil sample was placed in a
polythene bag, sealed, and left for 0–2 and 3 h before the compaction test. The moisture content was
determined and result plotted on graphs. The plotted graphs gave the maximum dry density (MDD)
and the corresponding optimum moisture content (OMC).

Unconfined compressive strength: The unconfined compressive strength (UCS) tests were carried
out on the natural and treated soil samples compacted at their OMCs using BSL energy as described
above in accordance with BS 1377 [32]. Cylindrical specimens with a diameter of 38 mm and a length
of 76 mm were cored from the extruded compacted soil and each cured for seven days. After curing,
specimens were tested on a UCS strain-controlled compression testing machine. The axial deformations
and forces at regular intervals before failure were taken and recorded. The recorded data were plotted
on the stress–strain curve and the UCS was determined as the point of failure. The UCS was calculated
using Equations (1) and (2):

σ =
R×Cr × (100− ε%) × 1000kN/m2

100×A0
(1)

where:
ε% =

v
L0

(2)

ε% is the strain percent, v is the amount of deformation at any stage (mm), R is the load ring reading at
strain ε, Cr is the mean calibration of load ring, Lo is the original length of specimen (mm), Ao is the
original cross-sectional area (mm2), and σ is the compressive stress at strain ε (kN/m2).

California bearing ratio: The California bearing ratio (CBR) was carried out on the natural and
lime/IOT-treated BCS according to procedures outlined in BS 1377 [32] and BS 1377 [33] respectively.
Soil samples were blended with lime/IOT at their OMC, placed in polythene bags, and left for 0–2 and
3 h before compaction in 2350 cm3 molds in three (3) layers applying 62 blows to each layer from a
2.5 kg rammer. The molds were then immersed in water for a period of 24 h prior to testing as specified
by Nigerian General Specifications [34] Equation (3) was used to compute the CBR values.

CBR (%) =
Measured Load
Standard Load

× 100 (3)

Standard load: 13.24 kN at 2.5 mm after penetration and 19.96 kN at 5.0 mm after penetration.
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3. Results and Discussion

3.1. Index Properties

The preliminary tests conducted on the natural BCS in accordance with BS 1377 [32] indicated
that the soil was fine-grained with a moisture content of 11.9%. The soil had liquid limit of 60.3%,
plastic limit of 32.6%, and plasticity index of 27.7%. The soil was classified as CH [35] or A-7-6(14) [36].
Previous reports by similar authors (i.e., [15] and [37] showed that montmorillonite was the dominant
clay mineral in the soil while specific gravity of 2.29 fell close to the previously reported values.
The properties are summarized in Table 1, while the oxide composition of the additives (i.e., lime and
IOT) are given in Table 2.

Table 1. Properties of the natural black cotton soil.

Property Quantity

Percentage passing sieve No. 200 (0.075 mm) (%) Natural moisture content (%) 67.9
11.9

Liquid limit (%) 60.3
Plastic limit (%) 32.6

Plasticity index (%) 27.7
Specific gravity 2.29

AASHTO classification A-7-6 (14)
USCS CH

Maximum dry density (Mg/m3) 1.47
Optimum moisture content (%) 25.6

Unconfined compressive strength (kN/m2) 163.31
California bearing ratio (unsoaked) (%) 3

Color Dark grey
Dominant clay mineral Montmorillonite

Table 2. Chemical properties of iron ore tailings.

Oxide Percentage * Lime By Mass
** Iron Ore Tailings

Silica (SiO2) 0.35 45.64
Iron Oxide (Fe2O3) 0.14 47.7
Allumina (Al2O3) 0.6 3.36

Lime (CaO) 54.92 0.607
Magnesium Oxide (MgO) - 0.393
Manganese Oxide (MnO) 0.09 0.067

Nickel Oxide (NiO2) -
Tin Oxide (TiO2) 0.24

Copper Oxide (CuO) -
Barium Oxide (BaO) -

Cadmium Oxide (CdO) -
Alkali (Na2O) 0.02 0.405
Alkali (K2O) 0.04 0.607

Yttrium Oxide (Y2O3) -
Sulphur Oxide (SO3) 0.06 -

Vanadium Oxide (V2O5) 0.05 -
Loss on Ignition 43.67

* [38] Bernard (2011) ** [29] Ishola (2014).
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3.2. Atterberg Limits

3.2.1. Liquid Limit

Effect of admixtures on liquid limit.
The variation of LL of BCS–lime mixtures with IOT content is presented in Figure 1a–d. The LL

of BCS–lime–IOT mixtures decreased with an increase in the lime and IOT contents. This may be
attributed to the decrease in the silt and clay fractions because of agglomeration and flocculation of the
particles. This could be linked to cation exchange reactions whereby Ca2+ in IOT and lime reacted with
lower valence ions present in the clay structure [15,21,37]. The addition of lime and IOT introduced Ca2+

needed for strength which triggered a decrease in the repulsive force of the soil mixture, thus requiring
additional water for the soil to reach its dynamic shear strength [39]. In other words, calcium ions
(Ca2+) and hydroxides (OH-) produced by the addition of lime to the soil water system combined
with silica (Si) and alumina (Al) in the clay fraction to form calcium silicate hydrates and calcium
aluminate hydrates [13]. The experimental studies reported in the literature [40–43] generally showed
that inclusion of lime to clay soils reduces the LL. A similar trend was reported by Phani Kumar and
Sharma [44].
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Effect of elapsed time after mixing on liquid limit.
The effect of elapsed time after mixing on the liquid limit of BCS–lime–IOT mixtures for the

optimally treated soil (i.e., BCS–8% lime and up to 10% IOT) is shown in Figure 2a,b. The LL of
specimens increased between 0 and 1 h elapsed time after mixing. However, for BCS–0% lime mixed
with up to 10% IOT, the LL values increased for delays up to 2 h before decreasing. In the case of optimal
BCS–8% lime mixed with up to 10% IOT, LL decreased after 1 h delay. The recorded decrease may
be associated with the creation of coarser aggregate and additional flocculated particle arrangement
associated with increasing calcium for strength with elapsed time and consequent requirement for
water to bring the soil to its dynamic strength [39].
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3.2.2. Plastic Limit

Effect of admixtures on plastic limit.
The variation of plastic limit (PL) of BCS–lime–IOT mixtures at 0–3 h elapsed time after mixing is

shown in Figure 3a–d. Generally, the PL of BCS decreased with an increase in lime and IOT content.
The PL of BCS–8% lime–10% IOT mixture decreased from 32.6% to 16.4%; from 38% to 19.9%; from 37.8%
to 19.1%; and from 38.6% to 20.2% for 0–2 and 3 h elapsed time after mixing, respectively. A similar
trend was reported by researchers [15,21,37,39,45,46]. The decrease in PL might not be unconnected
with the cation exchange reaction along with flocculation–agglomeration of clay particles from the
addition of the additives.
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Effect of elapsed time after mixing on plastic limit.
The variation of PL with elapsed time for BCS–0% lime–up to 10% IOT mixtures and optimal

BCS–8% lime–up to 10% IOT mixtures is shown in Figure 4a,b. There was a general increase in PL
for up to 3 h elapsed time after mixing for 0% lime–up to 10% IOT treatment while for the optimal
8% lime–up to 10% IOT treatment, a decrease was observed after 1 h. PL values of 32.6, 38.0, 37.8,
and 38.6 were obtained for 0–2 and 3 h, respectively, for 0% IOT/0% lime. In the case of 0% IOT/8%
lime treatment, PL values of 26.7, 34.4, 29.6, and 33.3 were recorded for the period of 0–2 and 3 h,
respectively. Similar trends were observed for the remaining percentages of lime and IOT for both
cases. The decrease in PL of the sample treated with lime (see Figure 4b) could be attributed to the
continuous effect of lime (i.e., flocculation and agglomeration) on the BCS–IOT mixtures. The initial
trend of increase in PL might be a result of the increased curing period that could have triggered the
cation exchange, flocculation–agglomeration, and carbonation reactions to take place from lime and
IOT. A similar trend was reported by other researchers [47–50].
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(a) 0% lime–up to 10% IOT, (b) 8% lime–up to 10% IOT.

3.2.3. Plasticity Index

Effect of admixtures on plasticity index.
Plasticity index (PI) of BCS increased with an increase in IOT and decreased with an increase

in lime content for varying delay periods (see Figure 5a–d). This reduction in PI with increase in
lime content could be a result of replacement of the finer soil particles by the lime–IOT mixtures.
The decrease in PI is in agreement with findings reported by Nwadiogbu [50] and Yisa [51] that indicate
the improvement of the natural soil. Increase in PI with increase in IOT content is in agreement with
the findings reported by Osinubi et al. [37].
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Figure 5. Variation of plasticity index of BCS–lime mixtures with IOT for different elapsed times after
mixing: (a) 0 h, (b) 1 h, (c) 2 h, (d) 3 h.

Effect of elapsed time after mixing on plasticity index.
The variation of PI of BCS with elapsed time after mixing for 0% lime–up to 10% IOT and optimal

8% lime–up to 10% IOT treatment is shown in Figure 6a,b. Generally, p value decreased with an
increase in elapsed time after mixing up to 3 h. The p values decreased from 27.7 to 22.9% for 0%
lime/0% IOT and 30.6 to 26.6% for 0% lime/10% IOT treatment. Similar trends with lower values were
observed for specimens treated with 8% lime–up to 10% IOT (see Figure 6b) and were consistent with
the findings reported by Nwadiogbu [50] and Yisa [51]. The reduction in p value with elapsed time
after mixing could be associated with the reduction in the hydration reaction of the lime when water
was added to the soil [6,52].
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Figure 6. Variation of plasticity index of BCS with elapsed time after mixing for different treatments:
(a) 0% lime–up to 10% IOT, (b) 8% lime–up to 10% IOT.

3.3. Compaction Characteristics

3.3.1. Maximum Dry Density

Effect of admixtures.
The variation of maximum dry density (MDD) of BCS–lime mixtures with IOT content for 0–3 h

elapsed time after mixing is presented in Figure 7a–d. MDD value increased to a peak value at 8% IOT
content and thereafter decreased at 10% IOT content. However, it was observed that MDD decreased
with higher lime content. MDD values increased from 1.47 to 1.52 Mg/m3, 1.50 to 1.55 Mg/m3, 1.49 to
1.54 Mg/m3, 1.48 to 1.55 Mg/m3, and 1.44 to 1.49 Mg/m3 for 0% lime–up to 8% IOT, 2% lime–up to 8%
IOT, 4% lime–up to 8% IOT, 6% lime–up to 8% IOT, and 8% lime–up to 8% IOT treatment, respectively,
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for 0 h elapsed time after mixing. A similar trend was noticed for 1, 2, and 3 h elapsed time after
mixing. The increase in MDD recorded may be due to the possible agglomeration and flocculation of
clay particles mainly caused by cation exchange and also filling of voids in the soil skeleton by the
admixtures which resulted in better packing and denser material [15,53,54]. Also, IOT with specific
gravity (3.35) substituting the soil with lesser specific gravity (2.29) contributed to the development of
a mixture with greater specific gravity and hence higher MDD [29,55].
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Effect of elapsed time after mixing on MDD.
The variation of MDD of BCS with elapsed time after mixing for 0% lime–up to 10% IOT and

optimal 8% lime–up to 10% IOT treatment is shown in Figure 8a–d. Generally, the MDD value increased
for up to 2 h elapsed time after mixing for all the lime and IOT treatments considered before decreasing
at 3 h elapsed time after mixing. A similar trend was reported by Abdullahi [48] and Nwadiogbu [50].
The MDD increased from 1.47 to 1.54 Mg/m3 for 0% lime/0% IOT and 1.5 to 1.57 Mg/m3 for 0% lime/10%
IOT treatment. A similar trend was observed for 8% lime–up to 10% IOT treatment. The increase
in MDD recorded with elapsed time after mixing may be due to the increase in the hydration and
cation exchange reactions and the creation of cementations compounds of calcium silicate hydrate and
calcium aluminate which probably resulted in an increase in MDD. Similar findings are reported in the
literature [2–6].
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3.3.2. Optimum Moisture Content

Effect of admixtures.
The variation of OMC of BCS–lime mixtures with IOT content for 0–3 h elapsed time after mixing

is presented in Figure 9a–d. Generally, the OMC of BCS mixtures decreased with an increase in IOT
content. OMC value for natural soil decreased from 25.62% to 15.20% at 8% lime/10% IOT treatment.
A similar trend was recorded for other lime/IOT treatments. The decrease in OMC may be linked to
enhanced cation exchange reaction due to the combination of free lime products and the IOT that
resulted in decreased thickness of the double layer causing flocculation.

As the clay flocculated, water separated from the particles became concentrated in the voids
between the bonded particles, thus decreasing the OMC [49]. Also, the observed reduction in OMC
may not be unconnected to self-desiccation, whereby water was used up, thus causing low hydration.
When there was no water movement to or from the soil–lime–IOT matrix, the available moisture was
used up in the hydration reaction, until too little was left to saturate the solid faces and therefore the
relative humidity inside the paste decreased [2,56,57].
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Effect of elapsed time after mixing.
The variation of OMC with elapsed time after mixing for 0% lime–up to 10% IOT and optimal 8%

lime–up to 10% IOT treatment is shown in Figure 10a,b. Generally, OMC decreased with increased
elapsed time after mixing for all the lime and IOT treatments considered. The OMC values decreased
from 25.62 to 21.83% for 0% lime/0% IOT and 22.63 to 18.46% for 0% lime/10% IOT. A similar trend
was observed for 8% lime–up to 10% IOT treatment. The reduction in OMC with elapsed time after
mixing could be attributed to the increase in the hydration products formed with time that resulted in
a decrease in OMC. Also, self-desiccation where the water was used up in the hydration process could
be responsible for the decrease in OMC with elapsed time before compaction [4].
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3.4. Unconfined Compressive Strength (UCS)

Effect of admixtures on UCS.
The variation of UCS of BCS–lime mixtures (seven days curing) with IOT content for different

elapsed times after mixing is shown in Figure 11a–d. The UCS increased with an increase in both lime
and IOT contents. For 0 h elapsed time after mixing, the UCS values increased from 84.2 to 217.2kN/m2,
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153.5 to 526.6 kN/m2, 307.8 to 1071.3 kN/m2, 413.0 to 1459.1 kN/m2, and 622.1 to 1562.9 kN/m2 for 0%
lime–0 up to 10% IOT, 2% lime–up to 10% IOT, 4% lime–up to 10% IOT, 6% lime–up to 10% IOT, and 8%
lime–up to 10% IOT treatment, respectively. A similar trend was observed for 1, 2, and 3 h elapsed
time after mixing. The improvement in UCS was probably due to the development of substances like
calcium silicate hydrates (CSH), calcium aluminate hydrates (CAH), and microfabric modifications,
leading to strength development [7,58,59]. The exact products, however, varied with the kind of
clay mineralogy and the reactions, including temperature, moisture, and curing conditions [50,60,61].
This reaction continued in the presence of moisture and could have been the reason for the increase in
UCS with lime and IOT content with increased elapsed time. A reduction in the UCS values at 10% IOT
content for all the lime treatments was observed. The decrease in strength with the IOT content may be
linked to excess IOT yielding lesser valence cations that could not be neutralized with the available
greater valence cations. This reaction increased the affinity of H+ which caused a drop in strength [62].
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Effect of elapsed time after mixing on UCS.
The variation of UCS of BCS with elapsed time after mixing for 0% lime–up to 10% IOT and

optimal 8% lime–up to 10% IOT treatment is shown in Figure 12a,b. The UCS value increased to
peak values at 2 h elapsed time after mixing and thereafter decreased at 3 h elapsed time after mixing.
The UCS values increased from 84.2 to 161.6 kN/m2 for 0% lime/0% IOT and 196.8 to 369.9 kN/m2 for 0%
lime/10% IOT treatment. A similar trend was observed for optimal 8% lime–up to 10% IOT treatment.
The early increase in the UCS for the first 2 h may be attributed to the fact that, once compaction
is delayed, hydration processes that bind particles in their loose state are formed, thereby leading
to aggregations of the soil particles and hence an increase in the density of the soil, which results
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in increased strength [4]. The decrease in UCS after a 3 h delay may be due to destruction of the
cementitious bonds formed during the soil–lime–IOT reaction over the period between mixing and
compaction. The destruction of this matrix during compaction results in a decline in the strength of
the compacted soil. Ochepo [45] and Nwadiogbu [50] also reported improvement in the UCS and
reduction at higher lime/IOT treatment.
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3.5. California Bearing Ratio

Effect of admixtures for unsoaked condition.
The California bearing ratio (CBR) value for unsoaked condition values of BCS–lime–IOT mixtures

varied for different elapsed times after mixing is shown in Figure 13a–d. The CBR improved with
increases in lime and IOT contents. Generally, peak CBR values were recorded at 8% lime/8% IOT
treatment before decreasing at 10% IOT for the lime content considered. For 0 h elapsed time, CBR values
increased from 2.54 to 10.15%, 8.16 to 40.06%, 16.31 to 52.21%, 28.46 to 84.28%, and 43.32 to 104.23%
for 0% lime–0 up to 8% IOT, 2% lime–0 up to 8% IOT, 4% lime–0 up to 8% IOT, 6% lime–0 up to 8%
IOT, and 8% lime–0 up to 8% IOT. A similar trend was noticed for 1–3 h elapsed time after mixing.
However, 8% lime/8% IOT treatment of BCS met the 80% requirement for base materials for unsoaked
condition. The observed increase in CBR value was due to the development of cementitious substances
like calcium silicate hydrates (CSH), calcium aluminates hydrates (CAH), and hydrated lime due to
the hydration of lime. The first two hydrates developed cementation linkages between these hydration
products and soil particles regardless of the type of soil [7]. The hydrated lime released, however,
reacted with pozzolanic iron ore tailing to form secondary cementitious material.

Effect of elapsed time after mixing on CBR for unsoaked condition.
The variation in CBR ratio with elapsed time after mixing for the various lime and IOT treatments

for unsoaked condition is shown in Figure 14a,b for 0% lime–up to 10% IOT and optimal 8% lime–up to
10% IOT treatment. The CBR values generally increased with elapsed time up to 2 h, before decreasing
at 3 h elapsed time irrespective of lime and IOT treatment. The reduction in the CBR values at 3 h
elapsed time may be the link to the disruption of the hydration products in the process of compaction.
The hydration product bound the soil particles, however, compaction after delay disrupted this
aggregation, thereby resulting in lower densities and consequently lower strength. Nigerian General
Specifications [34] endorse a CBR value of 180% for adequate cement stabilization in the laboratory.
However, when compacted at 100% West African Standard energy (intermediate compaction) with
OMC, an unsoaked CBR value of 80% is desired for base course and 30% CBR soaked value for
sub-base course [63,64]. Based on the above criterion, the soil optimally treated with 8% lime/8%
IOT compacted with BSL energy recorded CBR values of 150% which met the requirement for base
course material [34]. However, the least conventional CBR values for lime modified soils of 40, 80,
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and 100% (BSL) for subgrade; sub-base course and base course were used in assessing the strength of
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3.6. Regression Analysis

The relationship between strength properties (i.e., UCS and CBR) established in Equations (4)
and (5) indicates a strong link between UCS and CBR as dependent soils variables with lime content
(L), iron ore tailing content (IOT), elapsed time (ET), liquid limit (LL), plasticity index (PI), maximum
dry density (MDD), and optimum moisture content (OMC) as independent variables. The strength
of the relationship is established by the coefficients of determination of R2 = 89.4% for UCS and
R2 = 90.1% for CBR from Equations (4) and (5), respectively. From the equations, variables with
positive coefficients increased the strength properties of the treated soil with increases in such variables.
It was observed that only LL had a negative coefficient and was the only variable that had a negative
impact on the strength of the treated soil. Thus, an increase in soil LL, which is related to increasing
plasticity of the treated soil, affected the strength of the soil and is a requirement to be carefully
monitored during the period of field compaction. It is commendable that the lime and IOT use in the
soil improvement and the elapsed time after mixing significantly improved the strength properties
considered (UCS and CBR), which equally agreed with laboratory results. Therefore, during field
compaction, caution should be reserved to guarantee that adequate quantities of lime and IOT are
added and mixed properly prior to compaction at a maximum delay period of 2 h so as to achieve
desired compaction density in the field at optimum moisture content of optimal 8% lime–8% IOT blend.

UCS = −9824 + 204L + 27.8IOT + 130ET− 2.8LL + 57.6PI + 5198MDD + 13.3OMC (4)

R2 = 89.4%
CBR(unsoaked) = −541 + 13.4L + 0.18IOT + 10.7ET− 1.18LL + 2.81PI+321MDD + 1.25 OMC

R2 = 90.1%
(5)

where UCS = unconfined compressive strength (kN/m2); CBR = California bearing ratio (%); L = lime
content (%); IOT = iron ore tailing content (%); ET = elapsed time (hours); LL = liquid limit (%); PI =

plasticity index (%); MDD = maximum dry density (Mg/m3); OMC = optimum moisture content (%).

3.7. Microanalysis of Specimens

Scanning Electron Microscope Images

Specimens cured for 7 days.
Scanning electron microscope (SEM) equipment was employed to investigate the morphology

of the stabilized soil. Figure 15a,b shows the SEM results of the natural and optimal 8% lime–8%
IOT-treated BCS after a seven-day curing period. From the SEM images, the natural soil has a smooth
surface appearance with macropores (see Figure 15a) while the optimally treated BCS, after seven
days curing, was aggregated with coarse and rough textured surface appearance. The morphology
may be related to new compounds formed as a result of aggregation of the soil particles due to cation
exchange, flocculation–agglomeration, pozzolanic reaction, and carbonation that took place during
the curing period. The micrograph showed the development of cementitious products of calcium
silicates hydrates, calcium aluminate hydrates, and calcium aluminosilicate hydrates covering the soil
grains and filling up interaggregate openings. These compounds were accountable for strength gain.
Similar results were reported by Mallela et al. [65] as well as Deneele et al. [66].



Infrastructures 2020, 5, 89 16 of 19

Infrastructures 2020, 8, x FOR PEER REVIEW 16 of 19 

treated BCS after a seven-day curing period. From the SEM images, the natural soil has a smooth 
surface appearance with macropores (see Figure 15a) while the optimally treated BCS, after seven 
days curing, was aggregated with coarse and rough textured surface appearance. The morphology 
may be related to new compounds formed as a result of aggregation of the soil particles due to cation 
exchange, flocculation–agglomeration, pozzolanic reaction, and carbonation that took place during 
the curing period. The micrograph showed the development of cementitious products of calcium 
silicates hydrates, calcium aluminate hydrates, and calcium aluminosilicate hydrates covering the 
soil grains and filling up interaggregate openings. These compounds were accountable for strength 
gain. Similar results were reported by Mallela et al. [65] as well as Deneele et al. [66]. 

  
(a) (b) 

Figure 15. SEM images of: (a) natural BCS after 7 days curing at × 1000 magnification, (b) optimal 8% 
lime–8% IOT blend after 7 days curing at × 1000 magnification. 

4. Conclusions 

The effect of elapsed time on the strength properties of lime- and IOT-treated BCS was studied. 
From the study, the following conclusions can be drawn: 

1. An improvement in the plasticity of the treated soil with admixture and up to 2 h elapsed time 
after mixing was noted. 

2. MDD increased while OMC decreased with increase in IOT content. The MDD value increased 
up to 2 h elapsed time after mixing for all the lime and IOT treatments considered and decreased 
at 3 h elapsed time after mixing. The OMC value decreased with increased elapsed time after 
mixing for all the lime and IOT treatments considered. 

3. The UCS value increased with increase in both lime and IOT contents for up to 2 h elapsed time 
after mixing. 

4. CBR improved with increase in lime and IOT contents up to 2 h elapsed time after mixing. 
5. Regression analysis shows the strength of the affiliation between strength properties (UCS and 

CBR) and the soil variables by the coefficients of determination of  𝑅ଶ = 89.4% for UCS and 𝑅ଶ =90.1% for CBR. 
6. Based on the best recorded admixture improvement of the soil, the optimal treatment of 8% 

lime–8% IOT for a maximum 2 h elapsed time after mixing is recommended for use as sub-base 
material for low-trafficked roads. 

Author Contributions: A.Q.B: investigation, methodology, resources, writing original draft 
preparation; E.A.O.: Conceptualization, supervision, project administration, writing review editing, 
resources; Y.P.: Software, Validation, formal analysis, writing review editing, resources; O.K.J: 
Conceptualization, supervision, Project administration, writing review editing, resources. All authors 
have read and agreed to the published version of the manuscript. 

Figure 15. SEM images of: (a) natural BCS after 7 days curing at × 1000 magnification, (b) optimal 8%
lime–8% IOT blend after 7 days curing at × 1000 magnification.

4. Conclusions

The effect of elapsed time on the strength properties of lime- and IOT-treated BCS was studied.
From the study, the following conclusions can be drawn:

1. An improvement in the plasticity of the treated soil with admixture and up to 2 h elapsed time
after mixing was noted.

2. MDD increased while OMC decreased with increase in IOT content. The MDD value increased
up to 2 h elapsed time after mixing for all the lime and IOT treatments considered and decreased
at 3 h elapsed time after mixing. The OMC value decreased with increased elapsed time after
mixing for all the lime and IOT treatments considered.

3. The UCS value increased with increase in both lime and IOT contents for up to 2 h elapsed time
after mixing.

4. CBR improved with increase in lime and IOT contents up to 2 h elapsed time after mixing.
5. Regression analysis shows the strength of the affiliation between strength properties (UCS and

CBR) and the soil variables by the coefficients of determination of R2 = 89.4% for UCS and
R2 = 90.1% for CBR.

6. Based on the best recorded admixture improvement of the soil, the optimal treatment of 8%
lime–8% IOT for a maximum 2 h elapsed time after mixing is recommended for use as sub-base
material for low-trafficked roads.
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