Application of Digital Image Correlation in Structural Health Monitoring of Bridge Infrastructures: A Review
Abstract
:1. Introduction
2. Digital Image Correlation
2.1. Two-Dimensional Digital Image Correlation
2.2. Three-Dimensional Digital Image Correlation
2.3. Digital Volume Correlation Method
3. Structural Health Monitoring Using DIC in Bridge Structures
3.1. Concrete Bridges
3.2. Suspension Bridges
3.3. Masonry Arch Bridges
3.4. Steel Bridges
Bridge Type. | Description | Location (Year) | Authors and Reference |
---|---|---|---|
Concrete | Concrete bridge with a steel box girder | South Korea (2006) | Lee and Shinozuka, 2006 [95] |
Concrete girder bridge | Japan (2012) | Yoneyama and Ueda, 2012 [96] | |
Three full-scale concrete bridges | United States (2013, 2017) | Nonis et al., 2013 [98] Reagan et al., 2017 [30] | |
Railway and pedestrian concrete bridge | United States (2015) | Feng et al., 2015 [97] | |
Rail bridge girder | China (2016) | Pan et al., 2016 [55] | |
Concrete bridge deck | United Kingdom (2017) | Winkler and Hendy, 2017 [99] | |
A high-speed railway concrete bridge | China (2021) | Tian et al., 2021 [100] | |
Suspension | Cable-stayed pedestrian bridge | Hong Kong (2008) | Ji et al., 2008 [101] |
Suspension bridge hanger cables | South Korea (2013) | Kim and Kim, 2013 [102] | |
Seven-wires steel cable strands | United States (2013) | Vanniamparambil et al., 2013 [103] | |
Cable-stayed bridge model | China (2020) | Du et al., 2020 [104] | |
A long-span suspension bridge | China (2021) | Tian et al., 2021 [105] | |
Masonry | Four-span old masonry railway arch bridge. | United Kingdom (2013) | Koltsida et al., 2013 [106] |
Masonry viaduct bridge | United Kingdom (2018) | Acikgoz et al., 2018 [109] | |
Two old masonry railway arch bridges | Australia (2019) | Dhanasekar et al., 2019 [107] | |
Steel | Concrete bridge with a steel box girder | South Korea (2006) | Lee and Shinozuka, 2006 [95] |
Three-span steel girder bridge and concrete bridge supported by steel beams | United States (2011) | Peddle et al., 2011 [112] | |
Fatigue-sensitive steelworks details of a railway bridge | United Kingdom (2017) | Winkler and Hendy, 2017 [113] | |
Two steel bridges (coated and bare steel structures) | United States (2019) | Wang et al., 2019 [114] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zinno, R.; Artese, S.; Clausi, G.; Magarò, F.; Meduri, S.; Miceli, A.; Venneri, A. Structural Health Monitoring (SHM). In The Internet of Things for Smart Urban Ecosystems; Springer International Publishing: Cham, Switzerland, 2019; pp. 225–249. [Google Scholar] [CrossRef]
- Shull, P.J. Nondestructive Evaluation: Theory, Techniques, and Applications; CRC Press: Boca Raton, FL, USA, 2016; ISBN 9780203911068. [Google Scholar]
- Giurgiutiu, V. Embedded non-destructive evaluation for structural health monitoring, damage detection, and failure prevention. Shock. Vib. Dig. 2005, 37, 83–105. [Google Scholar] [CrossRef]
- Bhalla, S.; Soh, C.K. Structural health monitoring by piezo–impedance transducers. II: Applications. J. Aerosp. Eng. 2004, 17, 166–175. [Google Scholar] [CrossRef]
- Song, G.; Gu, H.; Mo, Y.; Hsu, T.; Dhonde, H. Concrete structural health monitoring using embedded piezoceramic transducers. Smart Mater. Struct. 2007, 16, 959–968. [Google Scholar] [CrossRef] [Green Version]
- Song, G.; Olmi, C.; Gu, H. An overheight vehicle–bridge collision monitoring system using piezoelectric transducers. Smart Mater. Struct. 2007, 16, 462–468. [Google Scholar] [CrossRef]
- Betz, D.; Thursby, G.; Culshaw, B.; Staszewski, W. Advanced layout of a fiber Bragg grating strain gauge rosette. J. Light. Technol. 2006, 24, 1019–1026. [Google Scholar] [CrossRef]
- De Freitas, S.T.; Kolstein, H.; Bijlaard, F. Structural monitoring of a strengthened orthotropic steel bridge deck using strain data. Struct. Health Monit. 2012, 11, 558–576. [Google Scholar] [CrossRef]
- Vurpillot, S.; Krueger, G.; Benouaich, D.; Clément, D.; Inaudi, D. Vertical deflection of a pre-stressed concrete bridge obtained using deformation sensors and inclinometer measurements. ACI Struct. J. 1998, 95, 518–526. [Google Scholar] [CrossRef]
- Burdet, O.; Zanella, J.-L. Automatic Monitoring of Bridges Using Electronic Inclinometers. 2011, Volume 16, pp. 1574–1581. Available online: https://ur.booksc.eu/book/59370113/94ec25 (accessed on 7 December 2021). [CrossRef] [Green Version]
- Li, X.; Ge, L.; Ambikairajah, E.; Rizos, C.; Tamura, Y.; Yoshida, A. Full-scale structural monitoring using an integrated GPS and accelerometer system. GPS Solut. 2006, 10, 233–247. [Google Scholar] [CrossRef]
- Sony, S.; LaVenture, S.; Sadhu, A. A literature review of next-generation smart sensing technology in structural health monitoring. Struct. Control. Health Monit. 2019, 26, e2321. [Google Scholar] [CrossRef]
- Lau, K.T.; Chan, C.C.; Zhou, L.-M.; Jin, W. Strain monitoring in composite-strengthened concrete structures using optical fibre sensors. Compos. Part B Eng. 2001, 32, 33–45. [Google Scholar] [CrossRef]
- Chung, W.; Kang, D. Full-scale test of a concrete box girder using FBG sensing system. Eng. Struct. 2008, 30, 643–652. [Google Scholar] [CrossRef]
- Taheri, S. A review on five key sensors for monitoring of concrete structures. Constr. Build. Mater. 2019, 204, 492–509. [Google Scholar] [CrossRef]
- Ye, X.W.; Su, Y.H.; Han, J.P. Structural health monitoring of civil infrastructure using optical fiber sensing technology: A comprehensive review. Sci. World J. 2014, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Saha, P. A review of some advanced sensors used for health diagnosis of civil engineering structures. Measurement 2018, 129, 68–90. [Google Scholar] [CrossRef]
- Sabato, A.; Niezrecki, C.; Fortino, G. Wireless MEMS-based accelerometer sensor boards for structural vibration monitoring: A review. IEEE Sens. J. 2016, 17, 226–235. [Google Scholar] [CrossRef]
- Ragam, P.; Sahebraoji, N.D. Application of MEMS-based accelerometer wireless sensor systems for monitoring of blast-induced ground vibration and structural health: A review. IET Wirel. Sens. Syst. 2019, 9, 103–109. [Google Scholar] [CrossRef]
- Udod, V.A.; Van, Y.; Osipov, S.; Chakhlov, S.V.; Usachev, E.Y.; Lebedev, M.B.; Temnik, A.K. State-of-the art and development prospects of digital radiography systems for nondestructive testing, evaluation, and inspection of objects: A review. Russ. J. Nondestruct. Test. 2016, 52, 492–503. [Google Scholar] [CrossRef]
- Vásárhelyi, L.; Kónya, Z.; Kukovecz, Á.; Vajtai, R. Microcomputed Tomography–Based Characterisation of Advanced Materials: A Review. Mater. Today Adv. 2020, 8, 100084. [Google Scholar] [CrossRef]
- Bennett, P.J. Vibration Monitoring and Live Load Tests of Civil Infrastructure with Interferometric Radar. In Proceedings of the 9th International Workshop on Structural Health Monitoring, IWSHM 2013, Stanford University, Stanford, CA, USA, 10–12 September 2013. [Google Scholar]
- Hellstein, P.; Szwedo, M. 3D thermography in non-destructive testing of composite structures. Meas. Sci. Technol. 2016, 27, 124006. [Google Scholar] [CrossRef]
- Gholizadeh, S. A review of non-destructive testing methods of composite materials. Procedia Struct. Integr. 2016, 1, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, S.K.; Vishwakarma, M.; Soni, A. Advances and researches on non destructive testing: A review. Mater. Today Proc. 2018, 5, 3690–3698. [Google Scholar] [CrossRef]
- Wang, N.; Ri, K.; Liu, H.; Zhao, X. Structural displacement monitoring using smartphone camera and digital image correlation. IEEE Sens. J. 2018, 18, 4664–4672. [Google Scholar] [CrossRef]
- Winkler, J.; Hansen, M.D. Innovative long-term monitoring of the great belt bridge expansion joint using digital image correlation. Struct. Eng. Int. 2018, 28, 347–352. [Google Scholar] [CrossRef]
- Reagan, D.; Sabato, A.; Niezrecki, C. Feasibility of using digital image correlation for unmanned aerial vehicle structural health monitoring of bridges. Struct. Health Monit. 2017, 17, 1056–1072. [Google Scholar] [CrossRef]
- Khuc, T.; Catbas, F.N. Completely contactless structural health monitoring of real-life structures using cameras and computer vision. Struct. Control. Health Monit. 2017, 24, e1852. [Google Scholar] [CrossRef]
- Reagan, D.; Sabato, A.; Niezrecki, C. Unmanned aerial vehicle acquisition of three-dimensional digital image correlation measurements for structural health monitoring of bridges. In Nondestructive Characterisation and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure 2017; International Society for Optics and Photonics: Bellingham, DA, USA, 2017; Volume 10169, p. 1016909. [Google Scholar]
- Cha, Y.-J.; Choi, W.; Büyüköztürk, O. Deep learning-based crack damage detection using convolutional neural networks. Comput. Civ. Infrastruct. Eng. 2017, 32, 361–378. [Google Scholar] [CrossRef]
- Kim, E.; Jang, W.J.; Kim, W.; Park, J.; Lee, M.K.; Park, S.-H.K.; Choi, K.C. Suppressed instability of a-IGZO thin-film transistors under negative bias illumination stress using the distributed BRAGG reflectors. IEEE Trans. Electron. Devices 2016, 63, 1066–1071. [Google Scholar] [CrossRef]
- Lyasheva, S.; Tregubov, V.; Shleymovich, M. Detection and Recognition of Pavement Cracks Based on Computer Vi-sion Technology. In Proceedings of the 2019 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2019, Sochi, Russia, 25–29 March 2019. [Google Scholar]
- Xie, X.; Xia, Y.; Liu, B.; Li, K.; Wang, T. The multichannel integration active contour framework for crack detection. Int. J. Adv. Robot. Syst. 2019, 16, 1–13. [Google Scholar] [CrossRef]
- Guo, H.; Wang, X.; Liu, C.; Zhou, Y. Research on defect extraction of particleboard surface images based on gray level co-occurrence matrix and hierarchical clustering. Linye Kexue/Sci. Silvae Sin. 2018, 54, 111–120. [Google Scholar] [CrossRef]
- Oliveira, J.; Xavier, J.; Pereira, F.; Morais, J.; de Moura, M. Direct evaluation of mixed mode I+II cohesive laws of wood by coupling MMB test with DIC. Materials 2021, 14, 374. [Google Scholar] [CrossRef] [PubMed]
- Bakir, K.; Aydemir, D.; Bardak, T. Dimensional stability and deformation analysis under mechanical loading of recycled PET-wood laminated composites with digital image correlation. J. Clean. Prod. 2020, 280, 124472. [Google Scholar] [CrossRef]
- Ngeljaratan, L.; Moustafa, M.A. System Identification of Large-Scale Bridge Model Using Digital Image Correlation from Monochrome and Color Cameras. In Proceedings of the 12th International Workshop on Structural Health Monitoring, Stanford, CA, USA, 10–12 September 2019; DEStech Publications: Pennsylvania, PA, USA, 2019; Volume 2019. [Google Scholar]
- Dai, S.; Liu, X.; Nawnit, K. Experimental Study on the Fracture Process Zone Characteristics in Concrete Utilizing DIC and AE Methods. Appl. Sci. 2019, 9, 1346. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Zhao, X.; Du, K.; Ru, F.; Zhang, Y. Recognition and evaluation of bridge cracks with modified active contour model and greedy search-based support vector machine. Autom. Constr. 2017, 78, 51–61. [Google Scholar] [CrossRef]
- Oliveira, H.; Correia, P.L. Road surface crack detection: Improved segmentation with pixel-based refinement. In Proceedings of the 2017 25th European Signal Processing Conference (EUSIPCO), Kos, Greece, 28 August–2 September 2017. [Google Scholar] [CrossRef] [Green Version]
- Grygierek, M.; Grzesik, B.; Rokitowski, P.; Rusin, T. Usage of digital image correlation in assessment of behavior of block element pavement structure. IOP Conf. Ser. Mater. Sci. Eng. 2018, 356, 012024. [Google Scholar] [CrossRef]
- Kong, X.; Li, J. Vision-based fatigue crack detection of steel structures using video feature tracking. Comput. Civ. Infrastruct. Eng. 2018, 33, 783–799. [Google Scholar] [CrossRef]
- Taher, S.A.; Li, J.; Collins, W.; Bennett, C. UAV-Based Non-Contact Fatigue Crack Monitoring of Steel Structures. In Proceedings of the Structural Health Monitoring 2019: Enabling Intelligent Life-Cycle Health Management for Industry Internet of Things (IIOT), Stanford, CA, USA, 10–12 September 2019; 2019; Volume 2, pp. 3188–3194. Available online: https://www.researchgate.net/publication/337301925_UAV-Based_Non-Contact_Fatigue_Crack_Monitoring_of_Steel_Structures (accessed on 7 December 2021).
- Al-Salih, H.; Juno, M.; Collins, W.; Bennett, C.; Li, J. Application of a digital image correlation bridge inspection methodology on geometrically complex bifurcated distortion-induced fatigue cracking. Fatigue Fract. Eng. Mater. Struct. 2021, 44, 3186–3201. [Google Scholar] [CrossRef]
- Palanca, M.; Tozzi, G.; Cristofolini, L. The use of digital image correlation in the biomechanical area: A review. Int. Biomech. 2016, 3, 1–21. [Google Scholar] [CrossRef]
- Zhou, B.; Ravindran, S.; Ferdous, J.; Kidane, A.; Sutton, M.A.; Shazly, T. Using digital image correlation to characterise local strains on vascular tissue specimens. J. Vis. Exp. 2016, e53625. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Genovese, K.; Pan, B. In vivo panoramic human skin shape and deformation measurement using mirror-assisted multi-view digital image correlation. J. Mech. Behav. Biomed. Mater. 2020, 110, 103936. [Google Scholar] [CrossRef]
- Cabrera, I.A.; Martin, J.C.; Fong, S.T.; Nguyen, K.H.M.; Bourgin, V.D.; Zhao, W.-Y.; Lawson, K.J.; Wong, K.A.; Bagheri, P.; Hill, P.J.; et al. Seeing the Big Picture: Improving the prosthetic design cycle using 360° 3D digital image correlation. J. Mater. Res. Tehnol. 2020, 1–13, in press. [Google Scholar] [CrossRef]
- Lundstrom, T.; Baqersad, J.; Niezrecki, C. Monitoring the dynamics of a helicopter main rotor with high-speed stereophotogrammetry. Exp. Tech. 2016, 40, 907–919. [Google Scholar] [CrossRef]
- Janeliukstis, R.; Chen, X. Review of digital image correlation application to large-scale composite structure testing. Compos. Struct. 2021, 271, 114143. [Google Scholar] [CrossRef]
- Wang, Z.; Kieu, H.; Nguyen, H.; Le, M. Digital image correlation in experimental mechanics and image registration in computer vision: Similarities, differences and complements. Opt. Lasers Eng. 2015, 65, 18–27. [Google Scholar] [CrossRef]
- Okada, D.R.; Blankstein, R. Digital image processing for medical applications. Perspect. Biol. Med. 2009, 52, 617–623. [Google Scholar] [CrossRef]
- Sciammarella, C.A.; Sciammarella, F.M. Digital image correlation (DIC). In Experimental Mechanics of Solids; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 607–629. [Google Scholar]
- Pan, B.; Tian, L.; Song, X. Real-time, non-contact and targetless measurement of vertical deflection of bridges using off-axis digital image correlation. NDT E Int. 2016, 79, 73–80. [Google Scholar] [CrossRef]
- McCormick, N.; Lord, J. Digital image correlation. Mater. Today 2010, 13, 52–54. [Google Scholar] [CrossRef]
- Anuta, P.E. Spatial registration of multispectral and multitemporal digital imagery using fast fourier transform techniques. IEEE Trans. Geosci. Electron. 1970, 8, 353–368. [Google Scholar] [CrossRef]
- Keating Terrence, J.; Wolf, P.R.; Scarpace, F.L. Improved method of digital image correlation. Photogramm. Eng. Remote Sens. 1975, 41, 993–1002. [Google Scholar]
- Chu, T.; Ranson, W.F.; Sutton, M.A. Applications of digital-image-correlation techniques to experimental mechanics. Exp. Mech. 1985, 25, 232–244. [Google Scholar] [CrossRef]
- Bruck, H.; McNeill, S.R.; Sutton, M.A.; Peters, W.H. Digital image correlation using Newton-Raphson method of partial differential correction. Exp. Mech. 1989, 29, 261–267. [Google Scholar] [CrossRef]
- Peters, W.H.; Ranson, W.F. Digital imaging techniques in experimental stress analysis. Opt. Eng. 1982, 21, 427–431. [Google Scholar] [CrossRef]
- Wang, B.; Pan, B. Subset-based local vs. finite element-based global digital image correlation: A comparison study. Theor. Appl. Mech. Lett. 2016, 6, 200–208. [Google Scholar] [CrossRef] [Green Version]
- Piekarczuk, A.; Malesa, M.; Kujawinska, M.; Malowany, K. Application of hybrid FEM-DIC method for assessment of low cost building structures. Exp. Mech. 2012, 52, 1297–1311. [Google Scholar] [CrossRef] [Green Version]
- Gerbig, D.; Bower, A.; Savic, V.; Hector, L.G. Coupling digital image correlation and finite element analysis to determine constitutive parameters in necking tensile specimens. Int. J. Solids Struct. 2016, 97–98, 496–509. [Google Scholar] [CrossRef]
- Fang, F.; Li, L.; Gu, Y.; Zhu, H.; Lim, J.-H. A novel hybrid approach for crack detection. Pattern Recognit. 2020, 107, 107474. [Google Scholar] [CrossRef]
- Boukhtache, S.; Abdelouahab, K.; Berry, F.; Blaysat, B.; Grédiac, M.; Sur, F. When deep learning meets digital image correlation. Opt. Lasers Eng. 2020, 136, 106308. [Google Scholar] [CrossRef]
- Cinar, A.; Barhli, S.; Hollis, D.; Flansbjer, M.; Tomlinson, R.; Marrow, T.; Mostafavi, M. An autonomous surface discontinuity detection and quantification method by digital image correlation and phase congruency. Opt. Lasers Eng. 2017, 96, 94–106. [Google Scholar] [CrossRef]
- Sutton, M.A.; Orteu, J.-J.; Schreier, H.W. Image Correlation for Shape, Motion and Deformation Measurements; Springer: Boston, MA, USA, 2009; ISBN 978-0-387-78746-6. [Google Scholar]
- Pan, B. Digital image correlation for surface deformation measurement: Historical developments, recent advances and future goals. Meas. Sci. Technol. 2018, 29, 082001. [Google Scholar] [CrossRef]
- Luo, P.F.; Chao, Y.J.; Sutton, M.A.; Peters, W.H. Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision. Exp. Mech. 1993, 33, 123–132. [Google Scholar] [CrossRef]
- Sutton, M.A.; Li, N.; Garcia, D.; Cornille, N.; Orteu, J.J.; McNeill, S.R.; Schreier, H.W.; Li, X. Metrology in a scanning electron microscope: Theoretical developments and experimental validation. Meas. Sci. Technol. 2006, 17, 2613–2622. [Google Scholar] [CrossRef] [Green Version]
- Siebert, T.; Becker, T.; Spiltthof, K.; Neumann, I.; Krupka, R. High-speed digital image correlation: Error estimations and applications. Opt. Eng. 2007, 46, 051004. [Google Scholar] [CrossRef]
- Orteu, J.-J.; Rotrou, Y.; Sentenac, T.; Robert, L. An innovative method for 3-D shape, strain and temperature full-field measurement using a single type of camera: Principle and preliminary results. Exp. Mech. 2007, 48, 163–179. [Google Scholar] [CrossRef] [Green Version]
- Bay, B.; Smith, T.S.; Fyhrie, D.P.; Saad, M. Digital volume correlation: Three-dimensional strain mapping using X-ray tomography. Exp. Mech. 1999, 39, 217–226. [Google Scholar] [CrossRef]
- Lenoir, N.; Bornert, M.; Desrues, J.; Bésuelle, P.; Viggiani, G. Volumetric digital image correlation applied to X-ray microtomography images from triaxial compression tests on argillaceous rock. Strain 2007, 43, 193–205. [Google Scholar] [CrossRef]
- Louis, L.; Wong, T.F.; Baud, P. X-Ray Imaging of compactant strain localisation in sandstone. Adv. X-ray Tomogr. Geomater. 2010, 118, 193. [Google Scholar]
- Hanke, R.; Fuchs, T.; Salamon, M.; Zabler, S. X-Ray microtomography for materials characterisation. In Materials Characterization Using Nondestructive Evaluation (NDE) Methods; Elsevier: Amsterdam, The Netherlands, 2016; pp. 45–79. ISBN 9780081000571. [Google Scholar]
- Pan, B.; Tian, L. Advanced video extensometer for non-contact, real-time, high-accuracy strain measurement. Opt. Express 2016, 24, 19082–19093. [Google Scholar] [CrossRef]
- Tian, L.; Yu, L.; Pan, B. Accuracy enhancement of a video extensometer by real-time error compensation. Opt. Lasers Eng. 2018, 110, 272–278. [Google Scholar] [CrossRef]
- Hua, T.; Xie, H.; Wang, S.; Hu, Z.; Chen, P.; Zhang, Q. Evaluation of the quality of a speckle pattern in the digital image correlation method by mean subset fluctuation. Opt. Laser Technol. 2011, 43, 9–13. [Google Scholar] [CrossRef]
- Zhang, J.; Sweedy, A.; Gitzhofer, F.; Baroud, G. A novel method for repeatedly generating speckle patterns used in digital image correlation. Opt. Lasers Eng. 2018, 100, 259–266. [Google Scholar] [CrossRef]
- Forsström, A.; Bossuyt, S.; Scotti, G.; Hänninen, H. Quantifying the effectiveness of patterning, test conditions, and DIC parameters for characterisation of plastic strain localisation. Exp. Mech. 2020, 60, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Pan, B. A review of speckle pattern fabrication and assessment for digital image correlation. Exp. Mech. 2017, 57, 1161–1181. [Google Scholar] [CrossRef]
- Liu, X.-Y.; Tan, Q.-C.; Xiong, L.; Liu, G.-D.; Liu, J.-Y.; Yang, X.; Wang, C.-Y. Performance of iterative gradient-based algorithms with different intensity change models in digital image correlation. Opt. Laser Technol. 2012, 44, 1060–1067. [Google Scholar] [CrossRef]
- Hild, F.; Roux, S. Comparison of local and global approaches to digital image correlation. Exp. Mech. 2012, 52, 1503–1519. [Google Scholar] [CrossRef]
- Novak, M.D.; Zok, F.W. High-temperature materials testing with full-field strain measurement: Experimental design and practice. Rev. Sci. Instrum. 2011, 82, 115101. [Google Scholar] [CrossRef]
- Khokhlov, M.; Fischer, A.; Rittel, D. Multi-scale stereo-photogrammetry system for fractographic analysis using scanning electron microscopy. Exp. Mech. 2011, 52, 975–991. [Google Scholar] [CrossRef]
- Beberniss, T.J.; Ehrhardt, D.A. High-speed 3D digital image correlation vibration measurement: Recent advancements and noted limitations. Mech. Syst. Signal Process. 2017, 86, 35–48. [Google Scholar] [CrossRef]
- Wu, L.; Yin, Y.; Zhang, Q.; Fang, D.; Zhang, R.; Zhu, J.; Xie, H. Bi-prism-based single-lens three dimensional digital image correlation system with a long working distance: Methodology and application in extreme high temperature deformation test. Sci. China Ser. E Technol. Sci. 2017, 61, 37–50. [Google Scholar] [CrossRef]
- Wang, Y.; Lava, P.; Coppieters, S.; Houtte, P.V.; Debruyne, D. Application of a Multi-Camera Stereo DIC Set-up to Assess Strain Fields in an Erichsen Test: Methodology and Validation. Strain 2013, 49, 190–198. [Google Scholar] [CrossRef]
- Zhang, Z.; Matsushita, Y.; Ma, Y. Camera Calibration with Lens Distortion from Low-Rank Textures. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 20–25 June 2011. [Google Scholar]
- Forsberg, F.; Mooser, R.; Arnold, M.; Hack, E.; Wyss, P. 3D Micro-Scale Deformations of Wood in Bending: Synchrotron Radiation ΜCT Data Analysed with Digital Volume Correlation. J. Struct. Biol. 2008, 164, 255–262. [Google Scholar] [CrossRef]
- Roberts, B.C.; Perilli, E.; Reynolds, K.J. Application of the Digital Volume Correlation Technique for the Measurement of Displacement and Strain Fields in Bone: A Literature Review. J. Biomech. 2014, 47, 923–934. [Google Scholar] [CrossRef]
- Concrete Bridge Development Group. Available online: https://www.cbdg.org.uk/types-of-bridges.asp (accessed on 13 September 2021).
- Lee, J.J.; Shinozuka, M. A Vision-Based System for Remote Sensing of Bridge Displacement. NDT E Int. 2006, 39, 425–431. [Google Scholar] [CrossRef]
- Yoneyama, S.; Ueda, H. Bridge Deflection Measurement Using Digital Image Correlation with Camera Movement Correction. Mater. Trans. 2012, 53, 285–290. [Google Scholar] [CrossRef] [Green Version]
- Feng, D.; Feng, M.Q.; Ozer, E.; Fukuda, Y. A Vision-Based Sensor for Noncontact Structural Displacement Measurement. Sensors 2015, 15, 16557–16575. [Google Scholar] [CrossRef]
- Nonis, C.; Niezrecki, C.; Yu, T.-Y.; Ahmed, S.; Su, C.-F.; Schmidt, T. Structural Health Monitoring of Bridges Using Digital Image Correlation. In Proceedings of the Health Monitoring of Structural and Biological Systems, San Diego, CA, USA, 17 April 2013; Volume 8695. [Google Scholar]
- Winkler, J.; Hendy, C. Improved Structural Health Monitoring of the DLR Warton Road Bridge Using Digital Image Correlation. In Proceedings of the SMAR 2017, Zürich, Switzerland, 13–17 September 2017. [Google Scholar]
- Tian, L.; Zhao, J.; Pan, B.; Wang, Z. Full-Field Bridge Deflection Monitoring with off-Axis Digital Image Correlation. Sensors 2021, 21, 5058. [Google Scholar] [CrossRef]
- Ji, Y.F.; Chang, C.C. Nontarget Image-Based Technique for Small Cable Vibration Measurement. J. Bridge Eng. 2008, 13, 34–42. [Google Scholar] [CrossRef]
- Kim, S.W.; Kim, N.S. Dynamic Characteristics of Suspension Bridge Hanger Cables Using Digital Image Processing. NDT E Int. 2013, 59, 25–33. [Google Scholar] [CrossRef]
- Vanniamparambil, P.A.; Khan, F.; Hazeli, K.; Cuadra, J.; Schwartz, E.; Kontsos, A.; Bartoli, I. Novel Optico-Acoustic Nondestructive Testing for Wire Break Detection in Cables. Struct. Control Health Monit. 2013, 20, 1339–1350. [Google Scholar] [CrossRef]
- Du, W.; Lei, D.; Bai, P.; Zhu, F.; Huang, Z. Dynamic Measurement of Stay-Cable Force Using Digital Image Techniques. Meas. J. Int. Meas. Confed. 2020, 151, 107211. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, C.; Jiang, S.; Zhang, J.; Duan, W. Noncontact Cable Force Estimation with Unmanned Aerial Vehicle and Computer Vision. Comput.-Aided Civ. Infrastruct. Eng. 2021, 36, 73–88. [Google Scholar] [CrossRef]
- Koltsida, I.S.; Tomor, A.K.; Booth, C.A. The Use of Digital Image Correlation Technique for Monitoring Masonry Arch Bridges. Paper Presented at 7th International Conference on Arch Bridges, Split, Croatia, 4–6 October 2013; 2013; Volume 13, pp. 681–690. Available online: https://uwe-repository.worktribe.com/output/926944 (accessed on 7 December 2021).
- Dhanasekar, M.; Prasad, P.; Dorji, J.; Zahra, T. Serviceability Assessment of Masonry Arch Bridges Using Digital Image Correlation. J. Bridge Eng. 2019, 24, 04018120. [Google Scholar] [CrossRef] [Green Version]
- Metrology beyond Colors MatchID 2D. Available online: http://www.matchidmbc.be/ (accessed on 20 October 2020).
- Acikgoz, S.; DeJong, M.J.; Soga, K. Sensing Dynamic Displacements in Masonry Rail Bridges Using 2D Digital Image Correlation. Struct. Control Health Monit. 2018, 25, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Mousa, M.A.; Yussof, M.M. A Simple Two-Dimensional Digital Image Correlation Model for out of Plane Displacement Using Smartphone Camera. J. Eng. Sci. Technol. 2021, 16, 10–17. [Google Scholar]
- Nova Instruments Istra. 4D Software Manual Q-400 System; Dantec Dynamics: Hovedstaden, Denmark, 2016. [Google Scholar]
- Peddle, J.; Goudreau, A.; Carlson, E.; Santini-Bell, E. Bridge Displacement Measurement through Digital Image Correlation. Bridge Struct. 2011, 7, 165–173. [Google Scholar] [CrossRef]
- Winkler, J.; Hendy, C. Improved Structural Health Monitoring of London’s Docklands Light Railway Bridges Using Digital Image Correlation. Struct. Eng. Int. J. Int. Assoc. Bridge Struct. Eng. 2017, 27, 435–440. [Google Scholar] [CrossRef]
- Wang, Y.; Tumbeva, M.D.; Thrall, A.P.; Zoli, T.P. Pressure-Activated Adhesive Tape Pattern for Monitoring the Structural Condition of Steel Bridges via Digital Image Correlation. Struct. Control Health Monit. 2019, 26, 1–14. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mousa, M.A.; Yussof, M.M.; Udi, U.J.; Nazri, F.M.; Kamarudin, M.K.; Parke, G.A.R.; Assi, L.N.; Ghahari, S.A. Application of Digital Image Correlation in Structural Health Monitoring of Bridge Infrastructures: A Review. Infrastructures 2021, 6, 176. https://doi.org/10.3390/infrastructures6120176
Mousa MA, Yussof MM, Udi UJ, Nazri FM, Kamarudin MK, Parke GAR, Assi LN, Ghahari SA. Application of Digital Image Correlation in Structural Health Monitoring of Bridge Infrastructures: A Review. Infrastructures. 2021; 6(12):176. https://doi.org/10.3390/infrastructures6120176
Chicago/Turabian StyleMousa, Mohammed Abbas, Mustafasanie M. Yussof, Ufuoma Joseph Udi, Fadzli Mohamed Nazri, Mohd Khairul Kamarudin, Gerard A. R. Parke, Lateef N. Assi, and Seyed Ali Ghahari. 2021. "Application of Digital Image Correlation in Structural Health Monitoring of Bridge Infrastructures: A Review" Infrastructures 6, no. 12: 176. https://doi.org/10.3390/infrastructures6120176
APA StyleMousa, M. A., Yussof, M. M., Udi, U. J., Nazri, F. M., Kamarudin, M. K., Parke, G. A. R., Assi, L. N., & Ghahari, S. A. (2021). Application of Digital Image Correlation in Structural Health Monitoring of Bridge Infrastructures: A Review. Infrastructures, 6(12), 176. https://doi.org/10.3390/infrastructures6120176