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Abstract: One of the most discussed aspects of vibration-based structural health monitoring (SHM)
is how to link identified parameters with structural health conditions. To this aim, several damage
indexes have been proposed in the relevant literature based on typical assumptions of the operational
modal analysis (OMA), such as stationary excitation and unlimited vibration record. Wireless smart
sensor networks based on low-power electronic components are becoming increasingly popular
among SHM specialists. However, such solutions are not able to deal with long data series due to
energy and computational constraints. The decentralization of processing tasks has been shown
to mitigate these issues. Nevertheless, traditional damage indicators might not be suitable for
onboard computations. In this paper, a robust damage index is proposed based on a damage
sensitive feature computed in a decentralized fashion, suitable for smart wireless sensing solutions.
The proposed method is tested on a numerical benchmark and on a real case study, namely the
S101 bridge in Austria, a prestressed concrete bridge that has been artificially damaged for research
purposes. The results obtained show the potential of the proposed method to monitor the conditions
of civil infrastructures.

Keywords: structural health monitoring; decentralized sensor network; distributed computing;
damage localization; interpolation error

1. Introduction

Civil infrastructure management requires the development of methods to acquire
knowledge about the structural conditions and make decisions about the interventions
needed to achieve the required structural performance. Structural health monitoring (SHM)
systems provide information about the structural state that can support decisions about
maintenance interventions. This knowledge enables the optimization of the allocation of
resources based on the actual structural needs rather than scheduled ahead based on a
fixed time plan.

Damage identification based on ambient vibration data is one of the most effective
SHM technologies that allows the continuous acquisition of the structural response and the
identification of its state using bespoke damage identification algorithms [1]. In literature,
several data-driven and model-based methods have been proposed to this aim. Data-driven
methods do not need a physical model and use signal processing to extract information
about damage, generally enabling damage detection and localization. To quantify damage,
methods based on the updating of numerical models are needed. The indicators used to
identify the existence, location, and severity are often defined in terms of modal parameters
extracted from vibration data. Maeck et al. [2] and Pandey et al. [3] used the modal
curvature, Stubbs et al. [4] the strain energy, and Limongelli [5] and Domaneschi [6] the
interpolation error.
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An important component of vibration-based methods is the data management chain
that leads from measurements collected on the structure to indicators of the structural
state through the interpretation and analysis of the acquired data. The data management
chain includes data acquisition, transmission, storage, and processing, and its efficiency
depends on the characteristics of the technological components deployed to perform
such operations.

Notwithstanding their undoubtful advantages, the adoption of SHM systems is not
yet widespread. One of the reasons is the difficulty of estimating, before their installation,
the return over the investment they provide [7-9]. This makes the infrastructure owners
skeptical about the investment. Further to this, the initial cost of a traditional SHM system
can be very high due to the need for wires to connect the sensors to a central monitoring
station for data transmission [10]. Since the late 1990s, many wireless sensing prototypes
with onboard processing capacity have been developed [11]. The aim was to reduce both
data transmission and processing costs. One of the main issues when using wireless
technologies is the limited power supply of the communication channels, which have to
rely on batteries or energy harvesting systems.

In civil engineering, periodic inspections are generally enough to monitor the onset
and evolution of damage or degradation phenomena. However, in some cases the real-time
estimation of the structural health state becomes of the utmost importance, for example
in the aftermath of a natural or manmade disaster. In the literature, algorithms based
on QR decomposition, Jacobi rotations, and tridiagonalization approaches [12-14] have
been proposed to decompose a matrix of structural responses into its eigenspace. Eigen-
vectors define the set of basis functions that are most efficient to describe data variability
and can thus be employed for both data reduction strategies and modal identification.
However, most of these methods are unsuitable for real-time implementation if they are
applied on successive batches of samples, especially when large data volumes must be
processed through edge computing onboard dense wireless sensor networks. First-order
eigen perturbation (FOEP) techniques have been proposed to update the eigenspace in
a recursive framework, thus being appropriate for real-time processing. Higher-order
stabilized perturbation approaches have also been recently proposed, aimed at achieving
higher levels of accuracy by efficiently tackling the issue of closely spaced eigenvalues [15].
However, the computational cost of these methods is still prohibitive for edge computing
onboard low-power sensing nodes. Considering, e.g., the method based on recursive
correlation analysis (RCCA) presented in [16], the most demanding part related to the
eigenspace update has a computational complexity in the order of O(d%) per input sample,
with d indicating the number of eigenvectors of the block covariance matrix of structural
responses. Other recursive approaches are typically characterized by similar complex-
ity [17]. Moreover, most of the aforementioned methods require data collected from all
the instrumented locations to be processed simultaneously and in a centralized fashion.
This necessitates an accurate synchronization and high data transmission rate, which might
be challenging for large and densely instrumented structures, especially when wireless
sensor networks are employed.

Additionally, the complex network topologies necessary to avoid coverage issues
in large civil structures pose several challenges that may affect the efficiency of battery-
powered devices. An effective solution to these issues consists of the decentralization of
processing tasks (e.g., filtering and compression) to reduce the volume of data transmitted.
In the last years, researchers have developed distributed computing platforms with smart
sensing nodes that can collect and process small datasets, thereby reducing both the
volume of transmitted data and the power consumption of the sensing system. Yun et al.
proposed a method based on wavelet entropy analysis [18], while Sadhu and Narasimhan
introduced a decentralized filtering approach based on the stationary wavelet packet
transform (SWPT) [19]. Wang and Chen pursued the online identification of time-varying
structural features employing a recursive HHT-based procedure [20].
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To further improve energy efficiency, a piece of research has been devoted to removing
the comparison step between the current estimate and the “baseline” state in continuous
monitoring strategies. Such methods are addressed as “baseline free” methods [21].

The constraints relevant to reduced volumes of data lead to short, nonstationary vibra-
tion signals that do not comply with the principal underlying assumptions of operational
modal analysis (OMA) [22]. To overcome this problem, innovative algorithms for the
identification of instantaneous vibration parameters have been developed and success-
fully applied to civil structures [23-25]. The application of these algorithms provides near
real-time estimates of the modal parameters that can be used to extract instantaneous
information about the structural state. In Reference [26], a novel decentralized approach for
instantaneous identification of modal parameters was presented, involving a computational
cost of O(pN) per input sample, onboard each node, where p is the number of identified
modes and N is the length of the filters employed in the procedure. In Reference [27],
Quga et al. used instantaneous values of the modal parameters computed through the
identification method proposed in Reference [26] to estimate a local approximation of
the instantaneous values of the interpolation error [5]. The drawback of instantaneous
estimates is related to the high level of uncertainty introduced by varying operational
and environmental conditions that may affect the values of the damage features, thereby
hampering an accurate damage identification. The use of statistical models built using large
datasets enables the reduction of false or missing indication of damage. In Reference [28],
the statistical interpolation damage indicator (SIDI) was proposed for this aim. The SIDI is
a function of the statistical distributions of the interpolation error in the damaged and ref-
erence conditions of the structure and requires the availability of datasets relevant to these
two conditions. The estimation of the SIDI requires the availability of large datasets that
enable the identification of the statistical distribution of the damage feature and, from that,
the computation of the damage index. This prevents a prompt estimation of the damage
index due to the requirement of a large dataset that requires some time to be acquired.

In this paper, a new method for the timely computation of a statistical indicator of
damage is proposed. The indicator is extracted from short vibrational responses recorded
by smart decentralized networks of sensors. In this context, the term “short” refers to
a length of few minutes that enables onboard processing. For instance, for the S101
bridge, adopted as a case study in this paper, the recording length is 330 s. The proposed
method is expected to detect and localize damage due to a localized reduction of stiffness
between a reference and an inspection state. It integrates the method for the identification
of instantaneous modal parameters proposed in Reference [27] with the procedure for
damage identification based on the SIDI presented in Reference [28].

The major advantages of the proposed method include:

e The possibility of onboard computation of the damage index at selected nodes,
which autonomously and timely send alarm messages, without requiring complex
transmission/synchronization strategies to convey data to a central processing unit.

e  Alimited wireless transmission rate thanks to the onboard computation of the damage
index and the implementation of adaptive downsampling of the structural responses
before transmission. The aim is to extract and transmit only the frequency bands
containing the relevant information.

e  The data-driven nature of the approach, which does not involve any model of the
structure (either analytical or numerical, e.g., finite element models), thereby reducing
the computational effort.

The method is demonstrated on a numerical benchmark, for which several damage
scenarios were modeled, and on the 5101 bridge in Austria, for which ambient vibration
data measured in a number of damage states are available for research purposes [29].

The paper is organized as follows. Section 2 presents the procedure for the instan-
taneous identification of modal parameters. Section 3 describes the computation of the
damage sensitive feature, namely the interpolation error (Section 3.1), a decentralized
algorithm for its computation in smart sensor networks (Section 3.2), and the procedure
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for real-time identification of the novel damage index. Sections 4 and 5 are devoted to
the case studies and the relevant discussion. A discussion of the results obtained and the
conclusion section end the paper.

2. Instantaneous Identification of Modal Parameters

Clustered filter banks (CFBs) have been recently proposed to identify instantaneous
modal parameters of operating civil infrastructures. In Reference [26], a two-step pro-
cedure is presented for this aim. Specifically, (1) a bank of bandpass filters (the CFB) is
formed selecting the values of the cutoff frequencies that enable the extraction of separate
modal contributions from the recorded response, and (2) the convolution of the recorded
responses with the CFBs is carried out to obtain signals with a narrow frequency content,
each representative of a single modal component. The obtained narrow-band signals are
analyzed to identify instantaneous frequency and amplitude estimates. Although a fully
adaptive variant of this technique was recently demonstrated to be effective when dealing
with strongly time-varying systems [30], the decentralized nature of the CFB-based method
has been shown to be particularly suitable for distributed smart sensing systems and effec-
tive to identify structural damage when slight frequency variations are involved. In the
following, the basic principles useful for the construction of CFBs are reported. Interested
readers can refer to [26] for more details.

Step 1. A training signal X;[t] of length s is collected at each (i-th) instrumented
location (withi =1,..., I) and transmitted to a central node. A wavelet packet transform
(WPT) is applied to each of the I signals, generating I sets of 2" wavelet components
w; i [t], where k = 1, ...,2" indicates the frequency sub-band index and # is the level of the
WPT. The k-th wavelet component w; [t] is thus a filtered version of the i-th response ¥;t],
obtained using a narrow bandpass filter with impulse response by [h1] and cutoff frequencies
fiow = (k—1)Fs/2" and fpien, = kFs/2", where F; is half of the sampling frequency of
X;[t]. It should be noted that the set of filtered signals w; ; [t] obtained, considering all the
components from k = 1 to k = 2", provides a representation of the original signal in the
time-frequency domain.

In analogy with the operating deflection shapes (ODSs) used in traditional OMA,
herein the instantaneous sub-band shape (SBS) vectors @[t] are defined. The component
of the k-th SBSs at the i-th instrumented location is:

Wik [t]
Wy k [t]

where r represents the location chosen as a reference to normalize all the SBSs. If the impulse
response by [h] of the k-th filter has a narrow frequency band, i.e., the level of the transform
n is sufficiently high, in the frequency regions close to a resonant frequency of the structure,
the SBSs of neighboring wavelet components @[t] and @ 1[t] are similar to each other.
This similarity can be quantified using the Modal Assurance Criterion (MAC). A similar
approach is adopted in the framework of the enhanced frequency domain decomposition
(EFDD) technique for the extraction of resonant peaks in the power spectra of analyzed
signals [31].

Evaluating the MAC between each couple of consecutive instantaneous SBSs, 2" — 1
values (namely, m[t]) in the range from 0 to 1 are calculated as

Piklt] = 1

o [orlt)]
(@F Hexlt]) (@F @i lh)

my[t] =

@

where elements close to 1 indicate the presence of similar neighboring SBSs. The set of
instantaneous my[t] values is defined in [30] as the modal assurance distribution (MAD).
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The average of the SBSs computed according to Equation (1) using a training signal of s
samples reads:

_ 18
Pix == ) Pill] 3)
53

Using ¢;, a set of average MAC values, mj can be calculated and employed to
partition the filters by[h] into clusters that generate response contributions associated
with different modal responses. In particular, a set of bandpass filters that generate
my > u, with # a user-defined threshold can be merged into a single “clustered” filter E]- [h],
associated with the j-th structural vibration mode.

Step 2. Upon generating the CFB, the Ej [h] filters can be applied to the new incoming
signal x;[t] in order to extract decoupled modal responses at each instrumented location
independently from the others. The j-th modal response extracted at the i-th physical point

can be obtained as
N-1

gl = X xlt = W @
h=0
where N is the length of E]- [h]. 1t should be noted that since y;;[t| is monocomponent,
the Hilbert transform can be applied to calculate its instantaneous frequency, which can be
assumed as the instantaneous natural frequency of the structure, and amplitude, which can
be employed to calculate an instantaneous estimate of the structural mode shape as:

vilt]
]/r,j[t]

¢ijlt] = ®)
3. Damage Identification Method
3.1. The Damage Sensitive Feature: Interpolation Error

The Interpolation error method (IM) was proposed by Limongelli [32], and it can be
used to localize damage on an instrumented structure. To do that, the method exploits the
properties of interpolating cubic splines. Specifically, the IM assumes that an increase of
interpolation error occurs at the damaged locations. The IM was originally formulated in
terms of ODSs [33], but it can also be applied using mode shapes retrieved from OMA,
see, e.g., Reference [34].

To find the interpolation error E;; at a given location i for a single mode shape j,
a cubic spline interpolation line is passed through all the measured points of the mode
shape except the point i. The location i is one of thei = 1, ..., ] instrumented locations,
that is the locations in which a sensor has been installed, whereas the mode shape j is one of
thej =1, ..., ] identified mode shapes. The interpolation error at location i for the mode
shape j is computed as the absolute value of the difference between the real value of the
mode shape at that location ¢;; and the interpolated value 43]',1‘/ according to Equation (6).

Eij = |¢ji — ¢jl (6)

The root sum squared of the interpolation errors E; ; computed at the location i for
j =1, ...,] can be used to combine the interpolation errors at that location. In this way,
a single damage sensitive feature is computed at each instrumented location, accounting
for the contributions from multiple mode shapes, see Equation (7).

2

] ]
Ei= | Ef2= ||~ )
j=1 j=1

The increase of the interpolation error E; between the reference and a possibly damage
scenario highlights the occurrence of damage at the location i. It should be noted that,
due to its definition, the estimation of the interpolation error at the boundaries of the sensed
interval (e.g., first and last instrumented location) is prone to considerable inaccuracies [35].
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3.2. The Decentralized Algorithm: Clamped-Clump Interpolation Method

In applications involving wireless sensing nodes, data transmission is typically the
most energy-consuming operation compared to sensing and other simple tasks, which are
generally performed onboard distributed monitoring systems. Therefore, the centralized
estimation of the interpolation error may be particularly challenging, especially considering
large civil infrastructures where multi-hop transmissions, i.e., multiple levels of transmis-
sions would be necessary. On the other hand, the use of a decentralized topology network
entails a reduction of the transmitted data, since the evaluation of the damage index can be
achieved considering small subsets of sensors.

Recently, the clump interpolation method (CIM) and its enhanced variant, the clamped-
clump interpolation method (C?IM), have been proposed for damage identification for
applications involving wireless sensor networks. This method computes the damage
sensitive feature, i.e., the interpolation error, using a limited number of components of
the mode shapes [27]. Specifically, sensing nodes are organized into subsets based on
their spatial distribution, such that the sensors in each subset can reach a subset “head”
node (one for each subset) through wireless transmission. Following an initialization
phase (Step 1) consisting of network formation and estimation of baseline parameters,
all the nodes in a subset can transmit the extracted modal responses to the subset head,
where the interpolation error can be calculated instantaneously for each instrumented
location (Step 2). At each subset head, only the responses extracted at the locations included
within the specific subset are available, and thus the spline interpolation is performed using
partial estimates of the mode shapes. Interested readers can refer to [27] for an exhaustive
theoretical background on CIM and C?IM. To make the paper self-contained, the principal
aspects of the C?IM are herein summarized.

Step 1. A CFB for the extraction of decoupled modal responses is generated as shown
in Section 2 in a centralized process. Moreover, applying the filter of the j-th mode to
the training signal, the instantaneous mode shape can be calculated using Equation (5).
The average of the instantaneous estimates of the mode shape, calculated in the training
interval, is assumed as the “baseline” mode shape of the j-th mode. The slope of the
baseline mode shape at the instrumented locations is obtained using a finite difference
method (i.e., forward, backward, or central) and used to set the boundary conditions for
the spline interpolation at the edges of each subset. Finally, the baseline interpolation error
is evaluated at this step, for later use to estimate the damage index onboard the nodes.

At the end of the first step, the CFB is transmitted to each sensing node in the network,
while the baseline parameters are transmitted to the subset heads. Step 1 should be
performed at the beginning of the procedure and whenever the CFB becomes no more
suitable to filter the structural response due to substantial variations in the modes of the
monitored structure (e.g., after considerable damage or temperature variation).

Step 2. Following the initialization, each node is able to collect and filter the structural
response using the CFB generated in Step 1. Decoupled modal responses are instanta-
neously evaluated and sent to the reference subset head. Here, partial mode shapes are
calculated using Equation (5), and the interpolation error is evaluated by imposing the
continuity of the interpolating function and of its first and second derivatives at all the
knots (i.e., the interpolation points). The slope of the mode shapes evaluated in Step 1 is
used to define the rotation at the boundaries of the interpolation domain.

In Reference [27], the mode shapes used in the calculation of the interpolation error
are obtained employing a median filter (i.e., at each time, the component of the modal
shape is assumed as the median value computed on the previous samples) onboard the
subset head. However, this process may be energy consuming if the kernel of the filter is
particularly wide, affecting network efficiency.

Since the value of the interpolation error cannot be accurately computed at the bound-
aries of each subset, several network configurations are considered in order to have, for each
sensor, at least one configuration where it is not placed at the boundary. In this study,
to calculate the damage sensitive feature at all possible locations, the sensor subsets are reor-
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ganized at defined time intervals by switching between two different options. In particular,
these two options have subset boundaries at different locations. It should be noted that
interferences due to the overlap of subsets of sensors can be addressed using algorithms
such as the carrier-sense multiple access (CSMA) strategy [36].

3.3. The Damage Index: Modified Statistical Interpolation Damage Index

The CFB-based identification method allows the instantaneous identification of modal
parameters of an instrumented structure. As described in Section 2, this is accomplished by
extracting narrow-band components of the recorded responses using a bank of bandpass
filters. In the case of decentralized sensor networks, partial estimates of structural mode
shapes can be used to feed the C2IM, which is discussed in Section 3.2. Each instantaneous
estimate of modal parameters provides a sample of the damage sensitive feature. Statistical
characterization of it can thus be obtained considering the entire processed signal.

In Reference [28], the Statistical Interpolation Damage Index (SIDI) was proposed to
identify the location of the damage. The SID]I, at a given location i, is defined in terms of the
distribution of the damage feature E; defined in Equation (7). In the following, the suffix i is
dropped for clarity of notation, and the symbol E is used to indicate the interpolation error
at the generic instrumented location i. The suffix S is used to indicate the generic inspection
state of the structure, whereas the suffix R indicates the reference scenario. Therefore,
Eg is the damage feature at location i when the structure is in state S. The damage feature
in a generic state S is re-defined as the probability of exceedance of a fixed threshold E7,
as follows:

PTEs(Er) = /EoofES(E)dE —1-Fg, (Er) ®)

where fg (E) and Fg,(ET) are the probability density function (PDF) and the cumulative
distribution function, respectively, of the damage feature E in state S. To better clarify the
meaning of probability of threshold exceedance (PTE), two distributions which represent
the PDFs of the damage feature (interpolation error E) in the reference (green) and inspec-
tion states (red) are reported in Figure 1. The green and red patterns correspond to the
PTEs in the reference and the generic state S, respectively.

PTEq

| %

fes
PTE;

Figure 1. PDF of the interpolation error f(E) in the reference (R) and in the inspection states (S).

The damage index SIDI is defined in Equation (9) as the positive variation the prob-
ability of threshold exceedance PTEg(ET) in the state S, with respect to the value in the
reference state PTER (ET).

_ PTEs(Er) — PTER(Er) _ ©)

SIDIs(Er) PTEx(Er) >

Negative values of the SIDI are discarded, since they indicate a decrease of the damage
feature that may occur only at locations where damage is not increased. In Figure 1, the SIDI
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corresponds to the difference between the red and green areas normalized with respect
to the probability of non-detection in the reference scenario PTEg(Et). This is the area
under the greed curve at the left of the threshold. The normalization leads to values of the
damage index between 0 and 1 for, respectively, the reference and severely damaged states.

In Reference [28], the value of the threshold E7 is defined in terms of a given probability
of threshold exceedance & in the reference scenario, which corresponds to the probability
of false alarm. A value equal to 5% of the probability of false alarm « was chosen to define
the threshold.

PTER(Er) = /Ew feodE =1— Fe (E7) = a (10)

In this paper, a variant of the SIDI is proposed to increase its sensitivity to damage.
To this aim, the threshold is automatically chosen as the value that maximizes the absolute
value of the numerator of Equation (9), and the denominator is modified to obtain a value
that decreases with damage, thus leading to an increase of the index.

The value of the threshold Et that maximizes the numerator of Equation (9) can be
found as the value that zeroes its first derivative:

d[PTEg(E) — PTER(E)]
dE

=0 (11)

Writing the probability of threshold exceedance PTE in terms of the cumulative distribu-
tion Fg, the condition that zeroes the first derivative of the numerator in Equation (9) reads:

d[l—FES(E)d;1+FER(E)] _ %/Eoo[fER(E)—fES(E)]dE:O (12)

Therefore, the value of the threshold Et is chosen as the value of E for which the
PDFs of the damage sensitive feature in state R and in state S present the same value:
fEx (E) = fes(E). Among the possible solutions of Equation (11), the value corresponding
to the absolute maximum of the numerator in Equation (9) is chosen to increase the
sensitivity to damage. The criterium used to select the threshold is illustrated in Figure 2.
This value of Et changes with state S, namely, it increases with damage. The denominator
of Equation (9) is the area to the left of the threshold Et that increases with the threshold,
therefore with damage. This means that the damage index becomes less and less sensitive
at the increase of damage. To make the damage index more effective, in the modified
version of the SIDI proposed in this paper, the denominator of Equation (9) is changed in
PTEs(Et). This value decreases with damage, thereby increasing the sensitivity to damage
of the damage index. Thus, the Modified Statistical Interpolation Damage Index (MSIDI)
in the inspection state S is defined as follows:

MSIDIg(E7) = P TES(}ETT?ES (I; Z)ER(ET) (13)

where the threshold is defined as discussed above. Different from the SIDI proposed in Ref-
erence [28], the MSIDI is not limited between 0 and 1 and does not present an upper bound.
It is highlighted that the computation of the MSIDI does not require complex mathematical
operations and, therefore, it can be considered suitable for onboard computations.
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Fg

Figure 2. Illustration of the criterium used to select the threshold value E7.

4. Numerical Benchmark
4.1. Description of the Structure

The numerical benchmark examined in this study is a 2D single-span beam repre-
sented in Figure 3. The beam is modelled using the commercial software SAP2000 [37].
The beam length is L = 12.5 m, and its height is & = 0.40 m. The material properties are:
modulus of elasticity E = 20 GPa, Poisson’s ratio v = 0.3, and mass density p = 2500 kg/ m3.
The beam model is composed of quadrilateral thick shell elements. The discretization
scheme is 100 elements in the longitudinal direction and four elements in the vertical
direction for a total of 400 finite elements. The beam is supported at three nodes at both
ends. An arbitrary thickness is assigned to the beam, since the dynamic behavior of this
type of structure is not influenced by this parameter when performing 2D analysis.

I 0 A A A A A A A
EEFYSEISEE FYISEESSEFYSESSSSFYSESISEE Y EFESSSEFYSSSSSSFYSESESEIEF EEFEEEFYSEEEEEFYSEEEEERFYS

L

Figure 3. Numerical benchmark: Finite element model and locations of damage.

The choice of this structure is motivated by the possibility to focus on the investigation
of the proposed method performance under several damage scenarios characterized by
different severity levels and locations.

Five single damage types (d1 to d5) are simulated, as displayed in Figure 3. Damage is
modelled through the removal of one or more finite elements that entail a local reduction of
the flexural stiffness. Damage types d1-d3 present a damage located at midspan, whereas
for Damage types d4—-d5 and d6-d7, damage is concentrated at %L and %L, respectively.
A total of nine damage scenarios (DS) are simulated, considering combinations of single
damage type according to Table 1.
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Table 1. Simulated damage scenarios.

Damage Scenarios Damage Type

DS1 d1

DS2 d2

DS3 d3

DS4 d4

DS5 d5

DS6 d4, d6
DS7 d5, d6
DS8 d5, d7
DS9 di1, d4, dé6

4.2. Subsets of Sensors and Data Processing

The dynamic response of the beam to white noise is computed through linear time
history analyses carried out in the reference and in all the considered damage states.
The structural response in terms of vertical absolute accelerations is assumed to be recorded
by vertical accelerometers deployed at 13 locations along the beam axis. Each signal has
a length of 400 s and is sampled at 100 Hz. Each acceleration record is corrupted by
introducing a zero-mean white noise component with a standard deviation of 5% with
respect to that of the uncorrupted signal.

Two different decentralized sensor subset configurations named C1 and C2 and
illustrated in Figure 4 are investigated. The two configurations have a symmetric layout
and organize the 13 sensors with some overlaps. The nodes can be programmed to
automatically switch the network layout between configurations C1 and C2. These two
configurations are meant to comply with the main requirement of smart wireless sensing
networks (i.e., low energy consumption). Moreover, their joint use overcomes the problems
related to the computation of the spline interpolation at the boundaries of each subset.
To minimize energy consumption, the distance between sensors should be as short as
possible. In this case, we considered subsets of 34 close by sensors. The boundary problem
is solved by organizing the sensors in a way that leaves at the boundary different sensors
in C1 with respect to C2.

Configuration C1: Subset 1 Subset 2 Subset 3 Subset 4
=TS o
2 3 4 5 6 7 8 9 10 1l 2
L
Configuration C2: Subset 1 Subsct 2 Subset 3
N O |
h e e e e ke S @ e o o
2 3 4 5 6 7 8 9 10 11 12 13
L

Figure 4. Sensor subset configurations on the numerical benchmark.

The response at one location of the beam, computed for length of 400 s in the reference
state, is employed for the construction of the first CBF and the computation of the boundary
conditions according to the procedure outlined in Section 2. The stationary WPT with
a decomposition level 6 is used to calculate the initial wavelet components employed
to generate the CFB. Specifically, the 22nd order Fejér-Korovkin function is chosen as a
mother wavelet. The filter bank obtained automatically using the procedure described in
Section 2 selects the first mode of the structure (7.12 Hz in the reference configuration).
The sampling frequency of the filtered signal can be reduced to have Nyquist frequency
equal to 25 Hz (downsampling of a factor 2), thus enhancing the energy efficiency of battery-
powered nodes. The instantaneous first mode shape is then extracted using Equation (3).
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The considered damage scenarios entail very small variations of the natural frequencies;
thereby, the same CFB was used for all the inspection intervals, eliminating the updating
of the filter bank.

4.3. Results

This section describes the results obtained by applying the proposed damage local-
ization method on the numerical benchmark. The instantaneous values of the first mode
shape are used to compute the interpolation error as described in Section 3.2. Figure 5
displays the distributions of the instantaneous values of the damage feature at location
n. 7, midspan, for the different damage scenarios. The results in Figure 5 are obtained
considering the configuration C2, where sensor 7 is placed within the boundaries of the
subsets. The number of available samples of the interpolation error in each scenario is
equal to the sampling frequency (50 Hz upon downsampling) times the length of the signal
(400 s). Therefore, for each scenario, 20,000 (50 Hz-400 s) samples of the interpolation error
E are estimated. In scenarios DS1-DS3 and DS9, damage is located at midspan (location 7),
and, as shown in Figure 5, for these scenarios, the distribution of the interpolation error
shifts toward the right of the plots consistently with the increase of the damage feature at
this location.

400 Dol 400 L3r 400 DS
5, R = R = R
%209 [ ps1 % 200 [ ps2 % 200 [ ps3
8 2 a
0 - 0 0
0 0.01 0.02 0 0.01 0.02 0 0.01 0.02
E E E
400 Dot 400 L 400 D26
. R 5 R - R
2 e Ds4 | 2 e Dss | 2 DS6
Z 200 Z 200 Z 200
L |5 [
& a a
0 0 0
0.01 0.02 0 0.01 0.02 0 0.01 0.02
E E E
400 g 400 L 400 L2
_ R R R
z ps7 | £ psg | £ DS9
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a A a
0 0 0
0 0.01 0.02 0 0.01 0.02 0 0.01 0.02
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Figure 5. Histogram plots of the instantaneous values of the interpolation error E at sensor 7 for
several damage states. Grey bars indicate the reference scenario. Red bars indicate single damage
scenarios, blue bars double damages, and green bars triple damage.

Following Reference [28], the interpolation error can be considered lognormally dis-
tributed. The parameters of the distributions of the interpolation error in the different
damage scenarios are estimated using the method of moments [38], equating the moments
computed using the available samples of interpolation error and the moments of the log-
normal distribution. The estimated lognormal distributions are used to compute the MSIDI
for different damage scenarios.
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The threshold value can be calculated by imposing the derivative of the numerator of
Equation (9) equal to zero, which for the case of lognormal distributed damage sensitive
feature reads:

(lnE—yS)2 _(lnE—;tu)2

d[PTEs(E) = PTEu(E)] e e Zu
dE V2nogE V2moyE

where 7 and oy; are the parameters of the (lognormal) distribution of E in the reference
state, and yis and g are the parameters of the (lognormal) distribution of E in the inspection
state. In particular, among the solutions that can be obtained solving Equation (14),
the value that maximizes |PTE(S) — PTE(U)| should be selected. Since the derivative
shown in Equation (14) presents a close form equation, little onboard computation effort is
required to compute the threshold value.

Figure 6 displays the values of the proposed damage localization index, the MSIDI,
for the two sensor subset configurations, C1 and C2, and different damage scenarios,
from DS1 to DS9. In Figure 6, the MSIDI is set to zero in the locations in which it presents
negative values. The combination of the two sensor subset configurations allows the correct
localization of damage in the case of both single and multiple damage scenarios.
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Figure 6. Numerical benchmark: Damage indexes for different damage scenarios and sensor subset
configurations. The grey bars highlight the damage locations.

5. $101 Bridge
5.1. Description of the Bridge and Monitoring System

The case study investigated in this paper is the S101 bridge in Reibersdorf, west of
Vienna, Austria, see Figure 7. The bridge was built in the early 1960s and was demolished
in 2008. The reasons for the demolition were the enlargement of the underneath motorway
Al Westautobahn and the overall bad conservation conditions.



Infrastructures 2021, 6, 22

13 of 19

72

Figure 7. S101 bridge—West side [29].

The bridge had three spans and a post-tensioned concrete deck integral with the piers.
The total length of the bridge was 56 m. The central span was 32 m long, while each side
span had a length of 12 m. The deck was constituted by a double-webbed t-beam variable
height ranging from 0.9 m at mid-span to 1.7 m in correspondence of the piers.

Before its demolition, the bridge has been artificially damaged for research purposes
for three consecutive days from December 10 to December 13. The data retrieved from this
benchmark have been analyzed by several research groups [34,39,40]. Their analysis and
results constitute a benchmark against which the results of the MSIDI proposed in this
paper are checked.

Two main types of damage have been inflicted to the structure, namely, (i) the cut and
progressive lowering of the northwestern pier and (ii) the cut of several tendons in the
deck. The first type of damage was intended to simulate settlement and the second one to
simulate the loss of prestress. During the simulation of damage, the dynamic response of
the structure has been continuously recorded at 500 Hz using 15 three-directional FBA-23
force balance accelerometers from Kinemetrics deployed along the bridge deck according to
Figure 8. In particular, the sensitivity of the sensors is 2.5 V/g under a full-scale range of 1 g,
and they have a resolution of 107 g. Raw data were logged using a 16-bit analog-to-digital
converter (ADC).

60 . 64 32 32 32 32 32 32 32 32 30 30 60
e 2H ;a2 222 uﬁ 1° 1
| P
P De i
12 , 32 . 12 .
56

Figure 8. S101 bridge: Location of sensors [quotes in m].

During the test, the bridge was closed to traffic. Nevertheless, the roadway beneath
the bridge was in use. The temperature did not change significantly during the test,
being stable in the range —3°/—4°.

Four damage scenarios are considered in this study, which relate to the settlement of
the pier, namely, the cut of the pier (Scenario A), 1 cm lowering (Scenario B), 2 cm lowering
(Scenario C), and 3 cm lowering (Scenario D). The dynamic response of the bridge was
recorded also in the reference scenario (Scenario U) before damage was inflicted. The pier



Infrastructures 2021, 6, 22

14 of 19

was first unloaded, lifting the deck with a hydraulic jack. Then, it was cut at the base and
lowered in progressive steps, releasing the pressure in the jack.

During the tests, carried out during three consecutive days and under negligible
temperature variations, the 15 sensors measured acceleration at 500 Hz rate in three
orthogonal directions. The results reported herein are obtained by analyzing the vertical
accelerations. Data from each one of the damage scenarios were divided into several partial
records, corresponding to 330 s each.

5.2. Subsets of Sensors and Data Processing

In this study, the vertical accelerations measured by the 14 sensors placed on the West
side of the bridge (i.e., accelerometers from 1 to 14 in Figure 8) are employed to apply the
proposed damage localization method. Acceleration records are downsampled at 50 Hz
before applying the proposed procedure. As for Scenario U, five datasets, each correspond-
ing to 330 s of measurement, are considered. For each damaged scenario, only one signal is
considered. Therefore, the length of the acceleration time histories is 1650 s (=5-330 s ) for
Scenario U and 330 s for the four damage scenarios (from Scenario A to D). The rationale
behind the choice of different records length is that, at the beginning of the monitoring
period, it is possible to collect a large amount of data to fix the reference behavior of the
structure. Instead, during the inspection state, it is necessary to minimize the amount of
collected data and therefore the acquisition length to limit energy consumption in case
wireless smart sensors are used.

Two different decentralized sensor subset configurations are studied, named C1 and
C2, as illustrated in Figure 9. The reasons that guided the choice of these configurations are
similar to those described in Section 4.2 for the numerical benchmark.

Configuration C1:  Subset 1 Subset 2 Subset 3 Subset 4 Subset 5

) o . me e 00 o e v 0 o
! 121 S e R Yot (e s Y 14
Configuration C2: Subset 1 Subset 2 Subset 3 Subset 4

° oo 0 00 0 0o igpe e
; B S S R R b 14

Figure 9. 5101 bridge: Sensor subset configurations.

A training signal of 330 s is employed for the construction of the first CBF and the
boundary conditions according to the procedure outlined in Section 2. An update of the
CFB is performed at the occurrence of each further damage scenario to effectively track the
shifts of the vibration modes. As in the previous case study, the stationary WPT (using a
22-nd order Fejér—Korovkin function) with a decomposition level 6 is used to calculate the
initial wavelet components employed to generate the CFB. Two vertical bending modes,
with frequencies equal to respectively 3.98 and 9.61 Hz, and one torsional mode with
frequency 6.18 Hz (in the reference state), are used to calculate the interpolation error.

5.3. Results

This section describes the results obtained by applying the proposed method on
the 5101 bridge. The instantaneous mode shapes are used to compute the interpolation
error as described in Section 3.2. Figure 10 displays the distributions of the instantaneous
values of the interpolation error at location n. 10, close to the settled pier, relevant to
the different damage scenarios. The results in Figure 10 are computed considering the
two subsets of sensor subset configurations displayed in Figure 9. For each damage
scenario, 16,500 (=50 Hz-330 s) samples of the interpolation error E are estimated. Instead,
82,500 (=50 Hz-1650 s) samples of the interpolation error are available in the reference state.
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It is observed that the distribution of the interpolation error shifts toward the right of the
plots as the severity of damage increases.
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Figure 10. 5101 bridge: Histogram plots of the instantaneous values of the interpolation error E at
sensor 10 for different damage states and sensor subset configurations.

Figure 11 shows the distributions of the instantaneous values of the interpolation
error computed for sensor 5, which is far from the damage location. It can be noted that
the distribution of the interpolation error computed in the reference and in the different
damage scenarios (from A to D) do not differ significantly.

Configuration C1
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g s g s g s
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Figure 11. S101 bridge: Histogram plots of the instantaneous values of the interpolation error E at
sensor 5 for different damage states and sensor subset configurations.

The computation of the MSIDI is carried out using the methodology presented in
Section 4.3. for the case of the numerical benchmark: the distributions of the interpolation
error are estimated using the method of moments, assuming that it can be considered
lognormally distributed, whereas the threshold values Er are calculated according to
Equation (14).

Figure 12 presents the values of the MSIDI computed for the two sensor subset
configurations and different damages scenarios. In Figure 12, the MSIDI is set to zero in
the locations in which it presents negative values. The highest values of the MSIDI are
reached at sensors 9-11, which is in the proximity of the lowered pier. As for configuration
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C2, it is noted that sensor 11 is located at the external knots of subsets 3 and 4; therefore,
the MSIDI cannot be estimated in that location. For this reason, the highest values of the
damage index are in the area surrounding sensor 11.
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Figure 12. 5101 bridge: Damage indexes for different damage scenarios and sensor subset configura-

tions. The grey bars highlight the damage location.

6. Discussion

The damage localization method proposed in the paper was applied to a numerical

benchmark and to the S101 bridge to demonstrate its feasibility. The method comprises the
following operations:

)

)]
®)

Computation of instantaneous mode shapes using CFBs. The mode shapes are
estimated using the responses over subsets of sensors organized according to different
configurations.

Computation of instantaneous values of the damage feature, i.e., the interpolation er-
ror, at the inner sensors of each subset using the clamped-clump interpolation method.
Computation of a novel damage index, i.e., the MSIDI, from the statistical distributions
of the interpolation error in the reference and the inspection state.

Results show that:

The damage, i.e., losses of stiffness, can be correctly detected and localized by the
proposed method, see Figures 6 and 12.

In the damaged scenarios, the damage feature increases at the damage locations with
respect to the reference condition. Conversely, the damage feature in the reference
and the inspection state are similar at non-damaged locations. This is exemplified
in Figures 5, 10 and 11, which display the histogram plot of the damage feature for
different damage scenarios and at several sensor locations. It is noted, qualitatively,
that the overlapping area between the distribution of the interpolation error in the
reference and the damaged scenarios decreases as the magnitude of damage increases.
For single damage scenarios, the values of the MSIDI in general increase according
to the increasing severity of the damage. This is clearly shown by the comparison of
DS1, DS3, and DS2 corresponding to increasing losses of stiffness at the same location
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(see the first row of Figure 6). This is directly linked to the definition of the damage
indicator, see Equation (13).

o  The same stiffness loss corresponds to different values of the damage index depending
on the location of the damage. This is shown, for example, by the comparison of DS1
and DS4 or DS2 and DS5 corresponding to the same damage severity but different
values of the damage feature.

e  For multiple damage scenarios (e.g., DS9 in Figure 6), the detection of certain damages
can be hindered by damages at other locations. This is not only due to the dependence
of the damage index on the damage location (remarked at the previous point), but also
on the dependence of the damage feature at a given location on damage at other
locations. This is shown for example by the comparison between DS6 and DS9. In the
second scenario, there is a further damaged section at midspan, but the value of
the damage index at the central damage location is lower with respect to the others.
This suggests that damage at midspan affects the values of the damage indexes at the
other two locations.

e  The comparison of the results obtained herein with those reported in Reference [28]
using the SIDI show the higher sensitivity of the MSIDI with respect to the former
version of the damage index.

The proposed method, based on the MSIDI, has been developed integrating a method
for the identification of instantaneous modal parameters proposed in Reference [27] with
the procedure for damage identification presented in Reference [28]. To further integrate
the two procedures, the MSIDI introduces some modifications that simplify its application
and improve results:

e  The threshold value Et used to compare the distribution of the interpolation error
in the MSIDI is automatically determined, which simplifies the computation of the
damage index.

e  The evaluation of the damage features is carried out considering two different sensor
subset configurations. This overcomes the difficulties related to the computation of
the damage feature at the boundaries of the subsets.

7. Conclusions

In this paper, a damage localization method based on the extraction and the processing
of instantaneous values of the mode shapes from short time series is proposed.

The identification of the instantaneous mode shapes and the decentralized estimation
of the instantaneous values of the damage feature are carried out using, respectively,
the clamped-clump interpolation method (C2IM) and the clustered filter banks (CFB)-based
method previously proposed by the authors. Damage localization is achieved through a
new damage index, the Modified Statistical Interpolation Damage Index (MSIDI), proposed
as an improved version of the existing SIDI. The proposed method is tested using both
artificial data simulated with a numerical benchmark and real data recorded on the 5101
bridge in Austria.

The MSIDI presents several advantages with respect to existing methods for damage
localization: (a) it can be applied using short signals in near real time, thereby enabling
a prompt damage localization; (b) it can be applied automatically, switching between
different sensor configurations to enhance its robustness; (c) the modified version of the
damage index exhibits a higher sensitivity to damage with respect to its original version.

The method is particularly appropriate for smart sensing applications based on wire-
less technologies, since the estimation of the damage index does not require complex
mathematical operations and therefore is suitable for onboard computations.
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