The Role of Additives in Soil-Cement Subjected to Wetting-Drying Cycles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods and Procedures
3. Results
3.1. Optimum Additive and Soil-Cement Content
3.2. Granitic Soil
3.3. Lateritic Soil
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sunitsakul, J.; Sawatparnich, A.; Sawangsuriya, A. Prediction of Unconfined Compressive Strength of Soil-Cement at 7 Days. Geotech. Geol. Eng. 2012, 30, 263–268. [Google Scholar] [CrossRef]
- Da, C.; Yingdi, L.; Chaohua, J.; Xingguo, F. The Mechanical Properties of Coastal Soil Treated with Cement. J. Wuhan Univ. Technol. Sci. Ed. 2013, 28, 1155–1160. [Google Scholar] [CrossRef]
- Wang, F.; Ping, X.; Zhou, J.; Kang, T. Effects of crumb rubber on the frost resistance of cement-soil. Constr. Build. Mater. 2019, 223, 120–132. [Google Scholar] [CrossRef]
- Xing, H.; Yang, X.; Xu, C.; Ye, G. Strength characteristics and mechanisms of salt-rich soil-cement. Eng. Geol. 2009, 103, 33–38. [Google Scholar] [CrossRef]
- Antunes, V.; Simão, N.; Freire, A.C. A Soil-Cement Formulation for Road Pavement Base and Sub Base Layers: A Case Study. Transp. Infrastruct. Geotechnol. 2017, 4, 126–141. [Google Scholar] [CrossRef]
- Fan, J.; Wang, D.; Qian, D. Journal of Rock Mechanics and Geotechnical Engineering Soil-cement mixture properties and design considerations for reinforced excavation. J. Rock Mech. Geotech. Eng. 2018, 10, 791–797. [Google Scholar] [CrossRef]
- Mengue, E.; Mroueh, H.; Lancelot, L.; Medjo, R. Evaluation of the Compressibility and Compressive Strength of a Compacted Cement Treated Laterite Soil for Road Application. Geotech. Geol. Eng. 2018, 36, 3831–3856. [Google Scholar] [CrossRef]
- Pongsivasathit, S.; Horpibulsuk, S.; Piyaphipat, S. Assessment of mechanical properties of cement stabilized soils. Case Stud. Constr. Mater. 2019, 11, e00301. [Google Scholar] [CrossRef]
- Khosravi, M.; Boulanger, R.W.; Wilson, D.W.; Olgun, C.G. ScienceDirect Stress transfer from rocking shallow foundations on soil-cement reinforced clay. Soils Found. 2019, 59, 966–981. [Google Scholar] [CrossRef]
- Tyagi, A.; Xiao, H.; Chin, K.; Lee, F. Model for predicting the unit weight of cement-treated soils. Soils Found. 2019, 59, 1921–1932. [Google Scholar] [CrossRef]
- Xiong, F.; Xing, H.; Li, H. Experimental study on the effects of multiple corrosive ion coexistence on soil-cement characteristics. Soils Found. 2019, 59, 398–406. [Google Scholar] [CrossRef]
- Zidan, A.F. Strength and Consolidation Characteristics for Cement Stabilized Cohesive Soil Considering Consistency Index. Geotech. Geol. Eng. 2020, 6, 5341–5353. [Google Scholar] [CrossRef]
- Lambe, T.W.; Moh, Z.-C. Improvement of strength of soil-cement with additives. Highw. Res. Board Bull. 1958, 183, 38–47. [Google Scholar]
- Blanck, G.; Cuisinier, O.; Masrouri, F. Soil treatment with organic non-traditional additives for the improvement of earthworks. Acta Geotech. 2014, 9, 1111–1122. [Google Scholar] [CrossRef]
- Lin, D.F.; Luo, H.L.; Hsiao, D.H.; Chen, C.T.; Cai, M. Du Enhancing soft subgrade soil with a sewage sludge ash/cement mixture and nano-silicon dioxide. Environ. Earth Sci. 2016, 75, 1–11. [Google Scholar] [CrossRef]
- Aryal, S.; Kolay, P.K. Long-Term Durability of Ordinary Portland Cement and Polypropylene Fibre Stabilized Kaolin Soil Using Wetting–Drying and Freezing–Thawing Test. Int. J. Geosynth. Ground Eng. 2020, 6, 1–15. [Google Scholar] [CrossRef]
- Tajdini, M.; Hajialilue Bonab, M.; Golmohamadi, S. An Experimental Investigation on Effect of Adding Natural and Synthetic Fibres on Mechanical and Behavioural Parameters of Soil–Cement Materials. Int. J. Civ. Eng. 2018, 16, 353–370. [Google Scholar] [CrossRef]
- Deboucha, S.; Aissa Mamoune, S.m.; Sail, Y.; Ziani, H. Effects of Ceramic Waste, Marble Dust, and Cement in Pavement Sub-base Layer. Geotech. Geol. Eng. 2020, 38, 3331–3340. [Google Scholar] [CrossRef]
- Anagnostopoulos, C.A.; Chrysanidis, T.; Anagnostopoulou, M. Experimental data of cement grouting in coarse soils with different superplasticisers. Data Brief 2020, 30, 105612. [Google Scholar] [CrossRef]
- Carvalho, A.; de Castro Xavier, G.; Alexandre, J.; Pedroti, L.G.; de Azevedo, A.R.G.; Vieira, C.M.F.; Monteiro, S.N. Environmental durability of soil-cement block incorporated with ornamental stone waste. Mater. Sci. Forum 2014, 798, 548–553. [Google Scholar] [CrossRef]
- Elahi, T.E.; Shahriar, A.R.; Islam, M.S. Engineering characteristics of compressed earth blocks stabilized with cement and fly ash. Constr. Build. Mater. 2021, 277, 122367. [Google Scholar] [CrossRef]
- França, B.R.; Azevedo, A.R.G.; Monteiro, S.N.; Da Costa, F.; Filho, G.; Marvila, M.T.; Alexandre, J.; Zanelato, E.B. Durability of soil-Cement blocks with the incorporation of limestone residues from the processing of marble. Mater. Res. 2018, 21, 21. [Google Scholar] [CrossRef] [Green Version]
- De Souza, J.M.; Lucena, L.d.F.L. Soil-Cement Brick with Cassava Wastewater. In Use of Cassava Wastewater and Scheelite Residues in Ceramic Formulations; Acchar, W., da Silva, V.M., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2021; p. 116. ISBN 9783030587819. [Google Scholar]
- Van Ngoc, P.; Turner, B.; Huang, J.; Kelly, R. Experimental study on the durability of soil-cement columns in coastal areas. Geotech. Eng. 2017, 48, 138–143. [Google Scholar]
- ASTMD2487. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM Int. West Conshohocken PA 2006, 1–12. [Google Scholar] [CrossRef]
- Kirgiz, M.S. Effects of blended-cement paste chemical composition changes on some strength gains of blended-mortars. Sci. World J. 2014, 2014, 1–11. [Google Scholar] [CrossRef]
- Bediako, M.; Amankwah, E.O. Analysis of chemical composition of Portland cement in Ghana: A key to understand the behavior of cement. Adv. Mater. Sci. Eng. 2015, 2015, 1–5. [Google Scholar] [CrossRef] [Green Version]
- SNI03-6887-2002. Metode Pengujian Kuat Tekan Bebas Campuran Tanah Semen. Natl. Stand. Agency Indones. 2002, 1–12. [Google Scholar]
- ASTMD1633-00. Standard Test Methods for Compressive Strength of Molded Soil-Cement Cylinders. ASTM Int. West Conshohocken PA USA 2000, 1–4. [Google Scholar]
- SNI03-3438-1994. Tata cara pembuatan rencana stabilisasi tanah dengan semen portland. Natl. Stand. Agency Indones. 1994, 1–15. [Google Scholar]
- DGH. General Specifications for Road and Bridge Construction Works, 2018th ed.; Directorate General of Highway, Ministry of Public Work and Housing: Jakarta, Indonesia, 2018.
- SNI-6427-2012. Test methods for wetting and drying test of compacted soil-cement mixtures. Natl. Stand. Agency Indones. 2012, 1–25. [Google Scholar]
- ASTMD559. Standard Test Methods for Wetting and Drying Compacted Soil-Cement Mixtures. Am. Soc. Test. Mater. 1996, 1–6. [Google Scholar]
- Cai, L.; He, L.; Peng, S.; Li, M.; Tong, M. Influence of titanium dioxide nanoparticles on the transport and deposition of microplastics in quartz sand. Environ. Pollut. 2019, 253, 351–357. [Google Scholar] [CrossRef]
- Tan, W.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Interaction of titanium dioxide nanoparticles with soil components and plants: Current knowledge and future research needs-a critical review. Environ. Sci. Nano 2018, 5, 257–278. [Google Scholar] [CrossRef]
- Goldberg, S. Interaction of aluminum and iron oxides and clay minerals and their effect on soil physical properties: A review. Commun. Soil Sci. Plant. Anal. 1985, 20, 1181–1207. [Google Scholar] [CrossRef]
- Yong, R.N.; Sethi, A.J.; Booy, E.; Dascal, O. Basic characterization and effect of some chemicals on a clay from outardes 2. Eng. Geol. 1979, 14, 83–107. [Google Scholar] [CrossRef]
- Bowers, B.B.; Daniels, J.L.; Anderson, J.B. Field considerations for calcium chloride modification of soil-cement. J. Mater. Civ. Eng. 2014, 26, 65–70. [Google Scholar] [CrossRef]
- Bowers, B.F.; Daniels, J.L.; Lei, S.; Deblasis, N.J. Additives for Soil-Cement Stabilization. In Pavement and Geotechnical Engineering for Transportation; Huang, B., Bowers, B.F., Mei, G.-X., Luo, S.-H., Zhang, Z., Eds.; ASCE: Preston, VA, USA, 2013; pp. 68–75. ISBN 9780784412817. [Google Scholar]
Properties | Granitic | Lateritic |
---|---|---|
Specific gravity | 2.64 | 2.64 |
Water content (%) | 2.4 | 4.3 |
Gravel (%) | 0.00 | 1.19 |
Sand (%) | 77.76 | 69.46 |
Silt (%) | 7.74 | 0.9 |
Clay (%) | 14.5 | 28.56 |
Liquid limit (%) | − | 28.59 |
Plastic limit (%) | − | 22.74 |
Plasticity index (%) | − | 5.85 |
Soil Classification (USCS) | Silty sand | Silty sand |
Unconfined compression strength (cu) (kN/m2) | − | 26.8 |
Maximum dry density (kN/m3) 1 | 16.33 | 17.73 |
Optimum moisture content (%) 1 | 12.5 | 14.3 |
Composition | Granitic 1 | Lateritic 1 |
---|---|---|
Al | 1.77 | 15 |
Si | 83.12 | 29 |
Ca | 0.02 | 0.89 |
Ti | 10.75 | 2.28 |
Fe | 1.18 | 46.3 |
Ni | 0.00 | 3.93 |
Compounds | Percentage 1 |
---|---|
CaO | 67.28 |
SiO2 | 18.68 |
Al2O3 | 4.30 |
Fe2O3 | 4.54 |
MgO | 1.10 |
Alkali (K2O + Na2O) | 1.71 |
SO3 | 1.28 |
Compositions | Percentage 1 |
---|---|
Cl | 55.7 |
K | 4.47 |
Ca | 37.6 |
Fe | 0.18 |
Ni | 0.964 |
Cu | 0.092 |
Layer | U.S. Army Corps for Engineer [5] | German [5] | Portuguese [5] | Southern African [5] | Indonesia [30] | Indonesia [31] |
---|---|---|---|---|---|---|
Base | ≥5.17 MPa for 7 days curing time | ≥7.0 MPa for 28 days curing time | Non-specified | 1.5 ≤ UCS ≤ 3.0 MPa for 7 days curing time | 2.2 MPa for 7 days curing time | 2.0 ≤ UCS ≤ 2.4 MPa for 7 days curing time |
Sub-baseLayer | ≥1.72 MPa for 7 days curing time | ≥0.5 MPa for 28 days curing time | 0.8 ≤ UCS ≤ 1.0 MPa for 28 days curing time | 0.75 ≤ UCS ≤ 1.5 MPa for 7 days curing time | 0.6 MPa for 7 days curing time | Non-specified |
Soil | Sample Code | γd | w (%) | Cement (%) | Additive (%) |
---|---|---|---|---|---|
Granitic | GC-5-0-1 | 16.33 | 12.5 | 5 | 0 |
Granitic | GC-5-0-2 | 16.33 | 12.5 | 5 | 0 |
Granitic | GC-5-0.8-1 | 16.33 | 12.5 | 5 | 0.8 |
Granitic | GC-5-0.8-2 | 16.33 | 12.5 | 5 | 0.8 |
Lateritic | LC-5-0-1 | 17.73 | 14.3 | 5 | 0 |
Lateritic | LC-5-0-2 | 17.73 | 14.3 | 5 | 0 |
Lateritic | LC-5-2-1 | 17.73 | 14.3 | 5 | 2.0 |
Lateritic | LC-5-2-2 | 17.73 | 14.3 | 5 | 2.0 |
Lateritic | LC-5-5-1 | 17.73 | 14.3 | 5 | 5.0 |
Lateritic | LC-5-5-2 | 17.73 | 14.3 | 5 | 5.0 |
Lateritic | LC-5-9-1 | 17.73 | 14.3 | 5 | 9.0 |
Lateritic | LC-5-9-2 | 17.73 | 14.3 | 5 | 9.0 |
Lateritic | LC-5-14-1 | 17.73 | 14.3 | 5 | 14.0 |
Lateritic | LC-5-14-2 | 17.73 | 14.3 | 5 | 14.0 |
Element | Granitic Soil (Figure 8) | GC-5-0-1 (Figure 9) | GC-5-0.8-1 (Figure 10) |
---|---|---|---|
Si (%) | 91.95 | 88.82 | 77.06 |
Al (%) | 1.93 | 1.28 | 6.39 |
Ca (%) | 0.095 | 6.64 | 15.2 |
Ti (%) | 6.73 | 1.41 | 1.69 |
Element | Before Wetting-Drying Process | After Wetting-Drying | ||||||
---|---|---|---|---|---|---|---|---|
Lateritic Figure 15a | LC-5-0 Figure 15b | LC-5-2 Figure 15c | LC-5-5 Figure 15d | LC-5-9 Figure 15e | LC-5-14 Figure 15f | LC-5-0-1 Figure 16a | LC-5-2-1 Figure 16b | |
Al (%) | 31.37 | 30.48 | 34.41 | 28.16 | 30.42 | 26.68 | 32.62 | 36.08 |
Si (%) | 45.14 | 42.99 | 45.1 | 40.87 | 40.54 | 35.37 | 42.00 | 44.83 |
Ca (%) | 0.21 | 4.11 | 4.67 | 9.66 | 13.74 | 22.95 | 9.00 | 7.50 |
Fe (%) | 19.39 | 17.65 | 13.45 | 9.70 | 10.92 | 9.84 | 10.75 | 7.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arifin, Y.F.; Agustina, E.; Andhi, F.; Agus, S.S. The Role of Additives in Soil-Cement Subjected to Wetting-Drying Cycles. Infrastructures 2021, 6, 48. https://doi.org/10.3390/infrastructures6030048
Arifin YF, Agustina E, Andhi F, Agus SS. The Role of Additives in Soil-Cement Subjected to Wetting-Drying Cycles. Infrastructures. 2021; 6(3):48. https://doi.org/10.3390/infrastructures6030048
Chicago/Turabian StyleArifin, Yulian Firmana, Eka Agustina, Fransius Andhi, and Setianto Samingan Agus. 2021. "The Role of Additives in Soil-Cement Subjected to Wetting-Drying Cycles" Infrastructures 6, no. 3: 48. https://doi.org/10.3390/infrastructures6030048
APA StyleArifin, Y. F., Agustina, E., Andhi, F., & Agus, S. S. (2021). The Role of Additives in Soil-Cement Subjected to Wetting-Drying Cycles. Infrastructures, 6(3), 48. https://doi.org/10.3390/infrastructures6030048