Performance and Durability of Rendering and Basecoat Mortars for ETICS with CSA and Portland Cement
Abstract
:1. Introduction
2. Materials and methods
2.1. Materials
2.2. Methods
3. Results
3.1. Rendering Mortars for ETICS
3.2. Basecoat Mortars for ETICS
3.3. Discussion
3.3.1. Physical Properties
3.3.2. Mechanical Properties
3.3.3. Dimensional and Porous Variation
3.3.4. Moisture Transport Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Juenger, M.C.G.; Winnefeld, F.; Provis, J.L.; Ideker, J.H. Advances in Alternative Cementitious Binders. Cem. Concr. Res. 2011, 41, 1232–1243. [Google Scholar] [CrossRef]
- Damtoft, J.S.; Lukasik, J.; Herfort, D.; Sorrentino, D.; Gartner, E.M. Sustainable Development and Climate Change Initiatives. Cem. Concr. Res. 2008, 38, 115–127. [Google Scholar] [CrossRef]
- Alaoui, A.; Feraille, A.; Dimassi, A.; Nguyen, V.H.; Le Roy, R.; Divet, L. Experimental Study of Sulfoaluminate Concrete Based Materials: Etude Expérimentale d’un Béton à Base de Clinker Sulfoalumineux. In Proceedings of the Concrete under Severe Conditions, Tours, France, 4–6 June 2017; pp. 909–916. [Google Scholar]
- Cembureau The European Cement Association. 2050 Carbon Neutrality Roadmap. Available online: https://cembureau.eu/library/reports/2050-carbon-neutrality-roadmap (accessed on 29 March 2021).
- Shi, C.; Jiménez, A.F.; Palomo, A. New Cements for the 21st Century: The Pursuit of an Alternative to Portland Cement. Cem. Concr. Res. 2011, 750–763. [Google Scholar] [CrossRef]
- Więckowski, A. Automating CSA Cement-Based Reinforced Monolithic Ceiling Construction. Autom. Constr. 2020, 111. [Google Scholar] [CrossRef]
- Chen, I.A. Synthesis of Portland Cement and Calcium Sulfoaluminate-Belite Cement for Sustainable Development and Performance; University of Texas at Austin: Austin, TX, USA, 2009. [Google Scholar]
- Chen, I.A.; Hargis, C.W.; Juenger, M.C.G. Understanding Expansion in Calcium Sulfoaluminate-Belite Cements. Cem. Concr. Res. 2012, 42, 51–60. [Google Scholar] [CrossRef]
- Concrete Counter Top Institute (CCTI). Available online: http://www.concretecountertopinstitute.com/modules/smartsection/category.php?categoryid=22/ (accessed on 10 February 2014).
- Angulski da Luz, C. Behaviour of Sulfoaluminate Cement (CSA) and Bottom Ash (CZP) in the Treatment of Waste: Phosphogypsum and Galvanic Sludge, Graduate Program in Civil Engineering; Universidade Federal de Santa Catarina: Florianópolis, Brazil, 2005. [Google Scholar]
- Min, D.; Mingshu, T. Formation and Expansion of Ettringite Crystals. Cem. Concr. Res. 1994, 24, 119–126. [Google Scholar] [CrossRef]
- Tan, B.; Okoronkwo, M.U.; Kumar, A.; Ma, H. Durability of Calcium Sulfoaluminate Cement Concrete. J. Zhejiang Univ. Sci. A 2020, 21, 118–128. [Google Scholar] [CrossRef]
- Bertola, F.; Gastaldi, D.; Irico, S.; Paul, G.; Canonico, F. Behavior of Blends of CSA and Portland Cements in High Chloride Environment. Constr. Build. Mater. 2020, 262, 120852. [Google Scholar] [CrossRef]
- Chen, H.; Guo, Z.; Hou, P.; Fu, X.; Qu, Y.; Li, Q.; Cheng, X.; Zhu, X. The Influence of Surface Treatment on the Transport Properties of Hardened Calcium Sulfoaluminate Cement-Based Materials. Cem. Concr. Compos. 2020, 114, 103784. [Google Scholar] [CrossRef]
- Pelletier, L.; Winnefeld, F.; Lothenbach, B. The Ternary System Portland Cement-Calcium Sulphoaluminate Clinker-Anhydrite: Hydration Mechanism and Mortar Properties. Cem. Concr. Compos. 2010, 32, 497–507. [Google Scholar] [CrossRef]
- Trigo, T. Characterization and Evaluation of Plastering Mortars and Base Layer with PC and CSA Binder. Master’s Thesis, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal, 2014. (In Portuguese). [Google Scholar]
- OTA. European Assessment Document EAD 040083-00-0404—External Thermal Insulation Composite Systems (ETICS) with Renderings; European Organization for Technical Approvals: Brussels, Belgium, 2019. [Google Scholar]
- Cimpor–Cimentos de Portugal. Technical Data Sheet of Portland Cement CEM I 42.5R, Lisbon, Portugal. Available online: https://www.cimpor.com/ (accessed on 29 March 2021).
- Cimpor–Cimentos de Portugal. Technical Data Sheet of Portland Limestone Cement CEM II/A-L 4.,5R, Lisbon, Portugal. Available online: https://www.cimpor.com/ (accessed on 29 March 2021).
- Caltra Nederland BV. Technical Data Sheet of Calumex Quick—Calcium Sulpho-Aluminate Cement; Caltra Nederland BV: Mijdrecht, The Netherlands, 2009. [Google Scholar]
- Parapedra–Sociedade Transformadora de Pedras, G. Technical Data Sheet of Siliceous Sand—S50, Rio Maior, Portugal. Available online: https://grupoparapedra.pt/parapedra/ (accessed on 29 March 2021).
- CEN. EN 1015-3: Methods of Test for Mortar for Masonry—Part 3: Determination of Consistence of Fresh Mortar (by Flow Table); European Committee for Standardization (CEN): Brussels, Belgium, 2007. [Google Scholar]
- CEN. EN 1015-6: Methods of Test for Mortar for Masonry—Part 6: Determination of Bulk Density of Fresh Mortar; European Committee for Standardization (CEN): Brussels, Belgium, 2007. [Google Scholar]
- CEN. EN 196-3: Methods of Testing Cement—Part 3: Determination of Setting Time and Soundness; European Committee for Standardization (CEN): Brussels, Belgium, 2017. [Google Scholar]
- CEN. EN 1015-10: Methods of Test for Mortar for Masonry—Part 10: Determination of Dry Bulk Density of Hardened Mortar; European Committee for Standardization (CEN): Brussels, Belgium, 2007. [Google Scholar]
- CEN. EN 1015-11: Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar; European Committee for Standardization (CEN): Brussels, Belgium, 2019. [Google Scholar]
- CSTB. Cahier 2669-4. Certification CSTB des Enduits Monocouches D’Imperméabilisation; Modalités d’essais”: Paris, France, 1993. [Google Scholar]
- AFNOR. NF B 10-511- Mesure du Module d´élasticité Dynamique; Association Française de Normalisation: Paris, France, 1975. [Google Scholar]
- CEN. EN 1015-18: Methods of Test for Mortar for Masonry—Part 18: Determination of Water Absorption Coefficient Due to Capillary Action of Hardened Mortar; European Committee for Standardization (CEN): Brussels, Belgium, 2002. [Google Scholar]
- LNEC. Test Record FE Pa 39.1-Coating Walls. Water Absorption at Low Pressure Test; National Civil Engineering Laboratory Lisboa: Lisbon, Portugal, 2002. (In Portuguese) [Google Scholar]
- CEN. EN 1015-19: Methods of Test for Mortar for Masonry—Part 19: Determination of Water Vapour Permeability of Hardened Rendering and Plastering Mortars; European Committee for Standardization (CEN): Brussels, Belgium, 2004. [Google Scholar]
- RILEM TC 25-PEM. Recommended Tests to Measure the Deterioration of Stone and to Assess the Effectiveness of Treatment Methods. Mater. Struct. 1980, 13, 175–253.
- CEN. EN 1348: Adhesives for Tiles—Determination of Tensile Adhesion Strength for Cementitious Adhesives; European Committee for Standardization (CEN): Brussels, Belgium, 2007. [Google Scholar]
- CEN. EN 1015-12: Methods of Test for Mortar for Masonry—Part 12: Determination of Adhesive Strength of Hardened Rendering and Plastering Mortars on Substrates; European Committee for Standardization (CEN): Brussels, Belgium, 2016. [Google Scholar]
- CEN. EN 12004: Adhesives for Tiles—Definitions and Specifications; European Committee for Standardization (CEN): Brussels, Belgium, 2017. [Google Scholar]
- Li, N.; Xu, L.; Wang, R.; Li, L.; Wang, P. Experimental Study of Calcium Sulfoaluminate Cement-Based Self-Leveling Compound Exposed to Various Temperatures and Moisture Conditions: Hydration Mechanism and Mortar Properties. Cem. Concr. Res. 2018, 108, 103–115. [Google Scholar] [CrossRef]
- Chaunsali, P.; Mondal, P. Influence of Calcium Sulfoaluminate (CSA) Cement Content on Expansion and Hydration Behavior of Various Ordinary Portland Cement-CSA Blends. J. Am. Ceram. Soc. 2015, 98, 2617–2624. [Google Scholar] [CrossRef]
- Zhang, J.; Li, G.; Ye, W.; Chang, Y.; Liu, Q.; Song, Z. Effects of Ordinary Portland Cement on the Early Properties and Hydration of Calcium Sulfoaluminate Cement. Constr. Build. Mater. 2018, 186, 1144–1153. [Google Scholar] [CrossRef]
- CEN. EN 998-1: Specification for Mortar for Masonry. Part 1: Rendering and Plastering Mortar; European Committee for Standardization (CEN): Brussels, Belgium, 2010. [Google Scholar]
- LNEC. Report 427/05-NRI—Rules for the Granting of Application Documents to Prebatched Coatings of Mineral Binder Based on Cement for Walls; National Civil Engineering Laboratory: Lisboa, Portugal, 2005. (In Portuguese) [Google Scholar]
- Flores-Colen, I. Methodology to Performance Evaluation on Facades In-service Conditions Towards Predictive Maintenance. Ph.D. Thesis, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal, 2009. (In Portuguese). [Google Scholar]
Material | Main Constituents | Additional Minority Constituents * | Chemical Composition | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Clinker | Limestone | SO3 | Cl | CaO | Al2O3 | SiO2 | Fe2O3 | MgO | TiO2 | Na2O | ||
CEM I 42.5R [18] | ≥95% | - | 0–5% | ≤4% | ≤0.10% | - | - | - | - | - | - | - |
CEM II/A-L 42.5R [19] | 80–94% | 6–20% | - | - | - | - | - | - | - | - | ||
CSA (Calumex Quick) [20] | - | - | - | ≥15% | - | ≥25% | ≥30% | ≤6% | ≤1.4% | ≤1.0% | ≤2.5% | - |
Silica sand [21] | - | - | - | - | - | 0.02 | 0.20 | 99.40 | 0.06 | 0.07 | 0.02 | 0.18 |
Material | Physical Properties | Mechanical Properties | |||||
---|---|---|---|---|---|---|---|
Minimum Compressive Strength (MPa) | |||||||
Initial Setting Time (min) | Expandability (mm) | 6 h | 24 h | 2 days | 72 h | 28 days | |
CEM I 42.5R [18] | ≥60 | ≤10 | - | - | 20 | - | 42.5 |
CEM II/A-L 42.5R [19] | |||||||
CSA (Calumex Quick) [20] | 1–15 | - | ≥5 | ≥10 | - | ≥20 | - |
Materials | Type | Rendering Mortars | Basecoat Mortars for ETICS | ||||||
---|---|---|---|---|---|---|---|---|---|
ROP | R1 | R2 | RCSA | BOP | B1 | B2 | BCSA | ||
Cement type I | Binder | - | 28–36% | 18–26% | 6–14% | 0% | |||
Cement type II | 10–15% | 8–13% | 2–6% | 0% | - | ||||
CSA Cement | 0% | 2–4% | 8–12% | 10–15% | 0% | 6–14% | 18–26% | 28–36% | |
Silica sand | Aggregate | Adjustment | |||||||
Water repellent | Admixture | 0.2–0.8% | |||||||
Water retention and plasticizing admixture | 0.08–0.10% | 0.20–0.40% | |||||||
Setting time accelerator | 0–0.05% | 0–0.10% | |||||||
Setting time retarder | 0–0.10% | ||||||||
Filler | Additive | 10–20% | - | ||||||
Plastic fibers | - | 0.05–0.15% | |||||||
Water/binder ratio | 1.45 | 1.4 | 1.55 | 1.5 | 0.85 | 0.85 | 0.85 | 0.9 | |
Ponderal Portland:CSA:Sand ratio | 1:0:5.71 | 1:0.4:7.02 | 1:2.5:17.59 | 0:1:5.75 | 1:0:2.1 | 1:0.45:3.05 | 1:2.2:6.71 | 0:1:2.10 |
Characterization | Test | Standard | Product |
---|---|---|---|
Fresh state properties | Consistence (flow value) | EN 1015-3 (2007) [22] | Rendering and Basecoat mortars |
Bulk density | EN 1015-6 (2007) [23] | ||
Setting time | EN NP 196-3 (2017) [24] | ||
Hardened state properties | Bulk density | EN 1015-10 (2007) [25] | |
Tensile and compressive strengths | EN 1015-11 (2019) [26] | ||
Dimensional variation (shrinkage) and mass variation | Cahier 2669-4 (1993) [27] | ||
Dynamic elastic modulus | NF B 10-511 (1975) [28] | ||
Capillary water absorption coefficient | Adapted from EN 1015-18 (2002) [29] | ||
Water absorption under low pressure | Adapted from LNEC FE Pa 39 (2002) [30] | ||
Water vapor permeability | EN 1015-19 (2004) [31] | ||
Open porosity | Adapted from RILEM I.1 (1980) [32] | ||
Durability (freeze-thaw cycles) | Adapted from EN 1348 (2007) [33] | ||
Adhesive strength in brick substrate | EN 1015-12 (2016) [34] | Rendering mortar | |
Cracking susceptibility—brick substrate | Internal method | ||
Adhesive strength in concrete and EPS substrate | EN 1348 (2007) [33] and EN 12004 (2017) [35] | Basecoat mortar | |
Impact resistance | EAD (2019) [17] |
Characterization | Test | Test Specimen Type and Dimension | Curing Conditions |
---|---|---|---|
Hardened state properties | Bulk density | Prismatic 25 × 25 × 280 mm | Normal |
Dynamic elastic modulus | |||
Tensile and compressive strengths | Prismatic 40 × 40 × 160 mm | Normal, immersion and freeze-thaw | |
Dimensional variation (shrinkage) and mass variation | |||
Capillary water absorption coefficient | Prismatic specimens 40 × 40 × 80 mm | Normal | |
Water absorption at low pressure | Circular 12 cm diameter | ||
Water vapor permeability | |||
Open porosity | Cubic 1 cm | ||
Adhesive strength in brick substrate | Coating layer in hollowed ceramic bricks with 300 × 200 × 110 mm | ||
Cracking susceptibility—brick substrate | |||
Adhesive strength in concrete and EPS substrate | Coating layer in concrete and EPS substrate | Normal, immersion and heat | |
Impact resistance | Coating layer in EPS substrate with or without reinforcement | Normal |
Mortar | ROP | R1 | R2 | RCSA | |
---|---|---|---|---|---|
Test | |||||
Fresh state | Consistence (flow value) (mm) | 150 | 153 | 130 | 149 |
Bulk density (kg/m3) | 1554.4 | 1535.47 | 1492.79 | 1497.89 | |
Setting time with regulators (min) | 360/465 | 195/360 | 60/150 | 270/390 | |
Setting time without regulators (min) | 360/465 | 5/15 | 60/150 | 270/390 | |
Hardened state | Bulk density (kg/m3) | 1557.97 ± 0.00 | 1508.49 ± 0.00 | 1572.51 ± 0.01 | 1584.31 ± 0.01 |
Tensile strength (MPa) | 1.56 ± 0.03 | 0.85 ± 0.20 | 1.12 ± 0.07 | 1.27 ± 0.02 | |
Tensile strength after water immersion curing conditions (MPa) | 1.21 ± 0.00 | 0.66 ± 0.00 | 0.96 ± 0.00 | 0.92 ± 0.00 | |
Compressive strength (MPa) | 3.41 ± 0.07 | 1.1 ± 0.29 | 2.51 ± 0.09 | 3.83 ± 0.03 | |
Compressive strength after water immersion (MPa) | 2.01 ± 0.00 | 1.04 ± 0.00 | 1.89 ± 0.00 | 2.44 ± 0.00 | |
Dimensional variation (shrinkage) (mm/m) (24 h vs. 28 days) | 0.99 ± 0.14 | 0.76 ± 0.08 | 0.87 ± 0.17 | 2.23 ± 0.4 | |
Dimensional variation (shrinkage) after water immersion (mm/m) (24 h vs. 28 days) | 0.49 ± 0.28 | 0.8 ± 1.31 | −0.1 ± 4.05 | 1.8 ± 0.39 | |
Mass variation after water immersion (g/kg) | 25.09 ± 0.05 | −4.84 ± 0.6 | 18.18 ± 0.02 | 45.65 ± 0.01 | |
Dynamic elastic modulus (MPa) | 7061.9 ± 0.00 | 4886.89 ± 0.05 | 5852.53 ± 0.04 | 7260.44 ± 0.00 | |
Capillary water absorption coefficient (kg/(m2·min0.5) | 0.07 ± 0.18 | 0.02 ± 0.00 | 0.03 ± 0.16 | 0.03 ± 0.00 | |
Water absorption at low pressure (mL) | 1.1 ± 0.55 | 0.05 ± 2.12 | 0.15 ± 0.60 | 0.25 ± 0.36 | |
Water vapor diffusion coefficient | 4.31 | 4.03 | 7.09 | 4.54 | |
Open porosity (%) | 42.00 ± 0.02 | 37.37 ± 0.06 | 40.1 ± 0.01 | 42.51 ± 0.02 | |
Adhesive strength in brick substrate (MPa) (rupture typology) | 0.50 ± 0.19 (cohesive in the rendering) | 0.19 ± 0.14 (cohesive in the rendering) | 0.13 ± 0.09 (mainly adhesive in the brick) | 0.11 ± 0.40 (adhesive in the brick) | |
Durability (after freeze-thaw cycles) | |||||
Dimensional variation (shrinkage) (mm/m) | 0.04 ± 19.89 | −0.24 ± 4.66 | 0.43 ± 0.09 | 7.03 ± 0.98 | |
Mass variation (mm/m) | −84.29 ± 0.27 | −113.36 ± 0.31 | −102.53 ± 0.31 | −99.63 ± 0.14 | |
Tensile bending strength (MPa) | 0.91 ± 0.04 | 0.51 ± 0.27 | 0.78 ± 0.02 | 0.69 ± 0.11 | |
Compressive strength (MPa) | 0.75 ± 0.47 | 0.79 ± 0.09 | 1.2 ± 0.13 | 0.95 ± 0.07 |
Mortar | BOP | B1 | B2 | BCSA | |
---|---|---|---|---|---|
Test | |||||
Fresh State | Consistence (flow value) (mm) | 152 | 150 | 130 | 125 |
Bulk density (kg/m3) | 1452.52 | 1477.7 | 1344.48 | 1431.18 | |
Setting time with regulators (min) | 720/750 | 105/180 | 60/180 | 20/75 | |
Setting time without regulators (min) | 720/750 | 5/30 | 60/180 | 345/450 | |
Hardened State | Bulk density (kg/m3) | 1440 ± 0.01 | 1397.23 ± 0.01 | 1444.49 ± 0.00 | 1786.43 ± 0.00 |
Tensile strength (MPa) | 3.42 ± 0.04 | 1.66 ± 0.14 | 1.59 ± 0.09 | 1.79 ± 0.07 | |
Tensile strength after water (MPa) | 2.97 ± 0.00 | 1.71 ± 0.00 | 1.9 ±0.00 | 2.1 ± 0.00 | |
Compressive strength (MPa) | 6.77 ± 0.05 | 6.1 ± 0.09 | 9.1 ± 0.05 | 13.83 ±0.10 | |
Compressive strength after water immersion (MPa) | 5.55 ± 0.00 | 6.13 ± 0.00 | 5.51 ± 0.00 | 6.38 ± 0.00 | |
Dimensional variation (shrinkage) (mm/m) (24 h vs. 28 days) | 2.00± 0.33 | 1.63 ± 1.03 | 1.04 ± 0.17 | 0.60 ± 0.06 | |
Dimensional variation (shrinkage) after water immersion (mm/m) (24 h vs. 28 days) | 0.29 ± 0.56 | 1.09 ± 1.19 | 0.49 ± 0.13 | −1.25 ± 0.11 | |
Mass variation (g/kg) | −94.06 ± 0.00 | −98.08 ± 0.01 | −82.47 ± 0.00 | −67.91 ± 0.01 | |
Mass variation after water immersion (g/kg) | 36.7 ± 0.04 | 32.66 ±0.25 | 37.92 ± 0.03 | 55.52 ± 0.04 | |
Dynamic elastic modulus (MPa) | 9862.9 ± 0.01 | 6125.07 ± 0.03 | 7957.78 ± 0.01 | 12747.46 ± 0.00 | |
Capillary water absorption coefficient (kg/(m2·min0.5) | 0.04 ± 0.11 | 0.05 ± 0.09 | 0.03 ± 0.20 | 0.05 ± 0.02 | |
Water absorption at low pressure (ml) | 1.3 ± 0.52 | 0.2 ± 0.55 | 0.2 ± 0.57 | 0.15 ± 0.27 | |
Water vapor diffusion coefficient | 5.73 | 6.29 | 7.4 | 5.29 | |
Open porosity (%) | 40.4 ± 0.01 | 38.7 ± 0.02 | 44.35 ± 0.01 | 29.12 ± 0.01 | |
Adhesive strength in concrete substrate after water immersion (MPa) | 0.55 ± 0.24 (50% AFT/50% CFA) | 0.47 ± 0.06 (85% AFT/15% CFA) | 0.60 ± 0.19 (50% AFT/50% CFA) | 0.19 ± 0.16 (95% AFT/5% CFA) | |
Adhesive strength in concrete substrate after heat cycles (MPa) | 0.04 ± 0.48 (95% AFT/5% CFA) | 0.25 ± 0.30 (95% AFT/5% CFA) | 0.51 ± 0.25 (40% AFT/60% CFA) | - (unglued during the curing conditions) | |
Adhesive strength in EPS substrate after water immersion (MPa) | 0.08 ± 0.11 (AFS) | 0.11 ± 0.22 (AFS) | 0.12 ± 0.07 (80% CFS/20% AFS) | 0.02 ± 1.22 (79% AFT/21% AFS) | |
Adhesive strength in EPS substrate after heat cycles (MPa) | 0.06 ± 0.23 (31% AFT/65% AFS/4% CFS) | 0.06 ± 0.13 (20% AFT/80% AFS) | 0.02 ± 1.55 (95% AFT/5% AFS) | 0.04 ± 0.22 (34% AFT/62% AFS/4% CFS) | |
Durability (after freeze-thaw cycles) | |||||
Dimensional variation (shrinkage) (mm/m) | 3.47 ± 0.81 | 1.98 ± 0.16 | 0.26 ± 1.19 | −1.71 ± 0.04 | |
Mass variation (mm/m) | −6.82 ± 0.93 | 39.2 ± 0.38 | 9.12 ± 0.43 | −10.34 ± 0.33 | |
Tensile strength (MPa) | 3.45 ± 0.01 | 1.92 ± 0.03 | 1.98 ± 0.04 | 1.99 ± 0.05 | |
Compressive strength (MPa) | 6.42 ± 0.02 | 6.35 ± 0.03 | 4.9 ± 0.09 | 6.61 ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trigo, T.; Flores-Colen, I.; Silva, L.; Vieira, N.; Raimundo, A.; Borsoi, G. Performance and Durability of Rendering and Basecoat Mortars for ETICS with CSA and Portland Cement. Infrastructures 2021, 6, 60. https://doi.org/10.3390/infrastructures6040060
Trigo T, Flores-Colen I, Silva L, Vieira N, Raimundo A, Borsoi G. Performance and Durability of Rendering and Basecoat Mortars for ETICS with CSA and Portland Cement. Infrastructures. 2021; 6(4):60. https://doi.org/10.3390/infrastructures6040060
Chicago/Turabian StyleTrigo, Tiago, Inês Flores-Colen, Luís Silva, Nuno Vieira, Ana Raimundo, and Giovanni Borsoi. 2021. "Performance and Durability of Rendering and Basecoat Mortars for ETICS with CSA and Portland Cement" Infrastructures 6, no. 4: 60. https://doi.org/10.3390/infrastructures6040060
APA StyleTrigo, T., Flores-Colen, I., Silva, L., Vieira, N., Raimundo, A., & Borsoi, G. (2021). Performance and Durability of Rendering and Basecoat Mortars for ETICS with CSA and Portland Cement. Infrastructures, 6(4), 60. https://doi.org/10.3390/infrastructures6040060