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Abstract: The interfacial adhesion between asphalt binder and carbon nanotubes (CNTs) depends on
many nanoscopic properties such as diffusion of SARA molecules on CNTs surface. Functionalization
of CNTs with Oxygens (O=CNTs), hydroxyl groups (HO–CNTs), and hydrogens (H–CNTs) has been
an effective way to modify the surface properties of CNTs and ultimately the macroscopic properties
of the CNT-composites. This paper presents the effect of different dosages of oxygenated and
hydrogenated CNTs on the adhesion and diffusion of SARA molecules on CNTs’ surfaces. First,
reactive molecular dynamics simulation is used to oxygenate and hydrogenate CNTs up to a certain
dosage. Next, it is employed to model the interaction and diffusion of SARA molecules with the
functionalized CNTs. We employ the steer molecular dynamic (SMD) and Einstein formula to
calculate the adhesion and diffusion properties. The results demonstrate that hydrogenation has
little effect on the adhesion energy, while oxygenation can increase adhesion energy up to 100% for
25% dosage. The diffusion coefficient dramatically drops for both oxygenated and hydrogenated
CNTs, with lower values for the latter. We observe that for hydrogenated and oxygenated CNTs
at different dosages, asphaltene, resin, aromatic, and saturate molecules have the highest to lowest
values, respectively.

Keywords: diffusion; molecular dynamics; SARA molecules; adhesion; carbon nanotube

1. Introduction

Since their discovery in 1991, many researchers have extensively studied carbon
nanotubes (CNTs) for their exceptional properties such as low density, high mechanical
properties, and outstanding electronic properties [1]. CNTs can be imagined to be formed
by rolling up a graphene sheet (a two-dimensional hexagonal lattice of carbon atoms in one
layer) into a cylindrical shell. Each carbon atom in CNTs is connected to three neighboring
atoms (∼=0.146 nm C–C bond length), forming sp2 hybridized atomic structures. Studies
have shown that the properties of CNTs can be tailored with surface functionalization [2]
for different applications such as drug delivery and biosensors [3]. Functionalization of
CNTs with oxygens (O=CNTs), hydroxyl groups (HO–CNTs), and hydrogens (H–CNTs)
have been introduced by many researchers for different applications such as purification,
biosensor [4–6], hydrogen storage, and semiconductors [7–10]. The functionalized atoms
such as oxygens change the intrinsic properties of CNTs through change in sp2 atomic
structure and improve interfacial adhesion and solubility [2]. In recent years, there has been
a great interest in employing CNT-, graphene-, graphene oxide (GO)- and polymer grafted
graphene as modifiers to improve fatigue life and performance of asphalt binders [11–15].
A study on the intrinsic healing capacity of GO-modified asphalt binder showed that
increasing the dosage of GO improves thermodynamic properties and self-healing capacity
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of aged binder [15]. While exceptional properties of CNTs can improve the performance
of CNT-modified asphalt binders, weak interfacial properties and load transfer at the
interface can dramatically decrease their properties [16,17]. Functionalized CNTs, however,
can enhance interfacial properties and bring CNTs closer to their full potential. Most
studies on the functionalized surface of CNT can be related to the usage of graphene oxide
(GO) [15,18], which has similar chemistry in asphalt binder. However, there have been few
studies on the usage of functionalized CNT (with 3% carboxylic acid groups) in asphalt
binder [19]. Previous studies have shown that the contact and diffusion of molecules at
the interface are important factors behind the molecular adhesion of materials [20–24].
Therefore, the aggregation and distribution of saturate, asphaltene, resin, and aromatic
(SARA) molecules on the surface of inclusions (CNTs, aggregates, etc.) are crucial in
defining the adhesion behaviors of the asphalt–inclusion interface. For example, Huang
et al. studied the diffusion of SARA molecules on mineral surfaces. They showed that the
adhesion between asphalt and aggregate could be improved via the diffusion of SARA
molecules on the aggregate surface [20]. A study by Luo et al. on the diffusion of SARA
molecules on the mineral aggregate demonstrated that the diffusion of SARA molecules on
the Al2O3 aggregate could be independent of temperature due to the interaction between
asphalt components [25]. In recent years, many researchers have employed molecular
dynamic (MD) to study the properties of the binder at the nanoscale [17,26], diffusion
of SARA molecules on various aggregates [20,23–25,27–29], interactions of Graphene-
SARA [30], the interactions of SARA-CNTs and CNTs-aggregate [16,31].

In this study, the effect of oxygenation and hydrogenation of CNTs on adhesion and
diffusion of saturate, asphaltene, resin, and aromatic (SARA) molecules on CNTs surface is
evaluated. The results are compared with those in pristine CNTs using reactive molecular
dynamic (MD) simulations. MD simulations provide a new perspective and understanding
at the nanoscale that can hardly be achieved through experiments. A combination study
of diffusion and adhesion of different SARA molecules provides more insight into the
cause of adhesion (kinetic vs. static) between CNTs and SARA molecules. This analysis
is particularly important as the adhesion provides information about the separation of
surfaces (normal direction) while diffusion mostly provides friction strength. The result
of this work helps to design a better material according to the adhesion and diffusion
response of different molecules. From the cost perspective, both CNT and graphene sheets
are expensive materials. Studies have suggested limiting the usage of pristine CNT to 1.5%
to justify the cost [32]. However, one of the advantages of GO and functionalized CNT is
reducing the cost. Functionated CNT and GO can be easily separated in the solution due to
their hydrophilic attributes and therefore reduce their cost [33].

2. Molecular Models for SARA-CNT Interface

The SARA molecules used in this study (shown in Figure 1a–d) are suggested by Li
and Greenfield [17,34] and used in a previous study for SARA CNTs interactions [16,17].
The SARA molecules have many potential choices, and the selected molecules do not
represent all possible choices. However, we believe each molecule represents its category
(saturate, asphaltene, resin, and aromatic molecules). To make a SARA-CNT interface, each
SARA molecule is placed within 5 Å distance from the surface of a CNT (10,10) (with 100 Å
length as shown in Figure 2 for aromatic molecule). Next, a vacuum layer of 50 Å is added
in the x-direction to prevent the interaction of the molecules with periodic images in the
pulling direction. Although in many cases, especially in the crude oil industry, the SARA
molecules are dispersed in fluids, in nanocomposite studies (for instance, the interaction
between asphalt binder and carbon nanotube), the SARA molecules are in direct contact
with other materials such as carbon nanotube. Therefore the vacuum environment is more
appropriate.
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reactive force fields such as REAXFF, the bonds are defined based on the bond order con-
cepts, and bond breaking and formation are possible. Furthermore, as opposed to nonre-
active force fields, the charge of atoms is not constant, and it can be updated at each time 
step. Finally, REAXFF provides explicit hydrogen bonding (HB) potential term and the 
possibility of studying the effect of HB on the interface properties, while in most nonreac-
tive force fields, HB is included in the electrostatic (ES) interactions. 
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2.1. Force Field

Generally, force fields can be categorized into nonreactive and reactive force fields.
Although the nonreactive force fields are computationally fast compared to reactive force
fields, they cannot model bond breaking and new bond formation. On the other hand,
in reactive force fields such as REAXFF, the bonds are defined based on the bond order
concepts, and bond breaking and formation are possible. Furthermore, as opposed to
nonreactive force fields, the charge of atoms is not constant, and it can be updated at
each time step. Finally, REAXFF provides explicit hydrogen bonding (HB) potential term
and the possibility of studying the effect of HB on the interface properties, while in most
nonreactive force fields, HB is included in the electrostatic (ES) interactions.
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2.2. Molecular Model for Hydrogenated and Oxygenated CNTs

To generate hydrogenated and oxygenated CNTs, different dosages (0–25%) of hy-
drogen and oxygen are randomly placed near carbon atoms in CNT and equilibrated for
100 ps in NVT ensemble at room temperature using Nosé-Hoover thermostat. Note that
100 ps is the time required for bond formation between deposited oxygens/hydrogens
with CNT. Further equilibration is performed later for the CNT-SARA molecules system,
as explained in Section 3. Due to the dynamic bond formation/breaking nature of REAXFF,
any hydrogens or oxygens that are not energetically stable in the initial configuration
will be automatically removed. LAMMPS package [35] and ReaxFF Forcefield [36] were
employed to perform all the simulations. All the atomistic images were prepared with
VMD atomistic visualizations package [37].

3. Simulation and Analysis Protocol for SARA-CNT System
3.1. Molecular Dynamics (MD) Protocol

After constructing the model of hydrogenated and oxygenated SARA-CNT, the system
is minimized by using a conjugate gradient (CG) and Hessian-free truncated Newton algo-
rithm (hftn) methods for 100,000 steps and then is equilibrated at 300 K (room temperature)
for 1000 ps with 0.25 fs timestep in NVT ensemble using Nosé-Hoover thermostat. Note
that the purpose of the minimization step is merely avoiding instability at the beginning of
NVT rather than reaching the minimum energy; therefore, any minimization method such
as steepest descent should also work. LAMMPS package [35] and ReaxFF Forcefield [36]
were employed to perform all the simulations. All the atomistic images were prepared
with VMD atomistic visualizations package [37].

3.2. Diffusion Analysis

Here, we use the diffusion coefficient to characterize the diffusivity of SARA molecules
on hydrogenated and oxygenated CNT. In MD simulations, the diffusion coefficient (D) can
be obtained from the slope of the mean square displacement (MSD) time curves through
the Einstein formula [20].

D =
1

2n
lim
t→∞

1
t

MSD(t) (1)

where D is diffusion coefficient, n is the dimension (n = 3 here), t is time, and MSD(t) is
mean square displacement defined as follow:

MSD =
1
N

N

∑
n=1

(xn(t)−xn(0))2 (2)

where N is the number of particles and x is the position of particles. To obtain MSD-t curves
for each case, 100 ps MD simulation was performed after the initial 1000 ps equilibration,
and then the slope of MSD-t curves was obtained by simple linear regression. Here,
although the center of mass of SARA molecules moves on a surface (CNT), the surface is
3D, and the center of mass moves in a 3D space and therefore, we have chosen n = 3 in
Equation (2). We have to mention that the choice of n = 2 or n = 3 will not significantly
change the diffusion coefficient values, and here, the relative comparison between the
case studies is more important. In the case studies where the molecules move inside the
CNT (confined system), the interaction of molecules with the wall becomes important, and
Equation (2) should be adjusted accordingly.

3.3. Adhesion Analysis

Steer molecular dynamic (SMD) simulations are used to obtain the potential of mean
force (PMF) for hydrogenated and oxygenated SARA-CNT. In the SMD approach, a driving
force pulls a group of atoms toward a chosen coordinates and provides nonequilibrium
trajectories along the coordinate. Then, in the SMD method, PMF (adhesion energy) is
obtained through averaging the integral of steering force in the direction of the pulling (x-
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direction) over many different trajectories paths (five paths in this work) [38]. The value of
spring constant and velocity for all SMD case studies of this work are k = 100 kcal/molÅ2

and 5 m/s, respectively (Figure 2). Figure 2 demonstrates the steering of Aromatic
molecules away from the surface of CNT with 0% (Figure 2a) and 25% (Figure 2b) oxygena-
tion, respectively.

In SMD simulations, the adhesion energy (Ea) can be calculated by averaging the
integral of pulling force (Fx) in the direction of the pulling, x, over many different trajectories
(5 samples in this work) and using second-order cumulant expansion, which approximates
Jarzynski’s equality [38] as shown in Equations (3) and (4). Another approach can also
obtain the adhesion energy by subtracting the total energy of a complex system (CNT-
SARA) from their isolated energy (CNT and SARA molecules) [29]. The work of adhesion
(W) and the strength can then be obtained by dividing the adhesion energy and the
maximum force of pulling over the effective area (A) of SARA components (Table 1),
respectively.

∑ =
∫

Fx.dx (3)

Ea =< ∑ > − β

2
(< ∑2

> − < ∑ >2), β =
1

kbT
(4)

W =
Ea

A
(5)

σ =
Fm

A
(6)

where ∑ is the cumulative work, β = 1/kbT, σ is the strength, Fm is the maximum pulling
force.

Table 1. The number of atoms, molecular weight, and surface area of SARA components (adapted
from [27]).

Molecule Number of Atoms Molecular Weight (amu) Molecular Area (Å2)

Saturate 97 480 170
Asphaltene 97 575 255

Resin 100 555 200
Aromatic 79 465 205

4. Results

This section demonstrates the results for generated hydrogenated and oxygenated
CNTs (procedure explained in Section 2). Next, the results obtained from the simulation of
adhesion and diffusion of SARA molecules on the surface of oxygenated and hydrogenated
CNT are compared (the procedure is explained in Section 3).

Figure 3a displays the variation of the MSD with respect to time over the 1000 ps
time span for an aromatic molecule on CNT with 0% functionalization. The MSD curve
shows the equilibrium in the system after 500 ps as the values fluctuate around 70 Å2. The
temperature and potential energy variation during 1000 ps simulation (shown in Figure 3b
with red and green lines, respectively) show fluctuation around the equilibrium value,
indicating equilibrium state.



Infrastructures 2021, 6, 123 6 of 11

Infrastructures 2021, 6, x 6 of 11 
 

with red and green lines, respectively) show fluctuation around the equilibrium value, 
indicating equilibrium state. 

  
(a) (b) 

Figure 3. The change of (a) mean square displacement (MSD) and (b) temperature and potential 
energy during 1000 ps is shown. 

The generated dosage of 3–25% hydrogenated and oxygenated CNTs are shown in 
Figures 4a–d and 5b–d, respectively. Our simulation shows that above 25% dosage of ran-
domly positioned hydrogens and oxygens, CNTs becomes unstable, CNTs do not remain 
as a tube anymore, and several C-C bonds break. Therefore our results are limited to a 
maximum 25% dosage. We use similar oxygenated and hydrogenated CNTs structures 
for each SARA molecule to avoid random oxygenated and hydrogenated effects on the 
results. As mentioned in Section 3, after constructing the hydrogenated and oxygenated 
CNTs, each SARA molecule is placed on the CNT surface, and a 1000 ps MD simulation 
is performed. The final structure after 1000 ps MD simulations of an aromatic molecule 
on 3–25% hydrogenated and oxygenated CNTs are shown in Figures 4a–d and 5b–d, re-
spectively. 

 
Figure 4. Molecular structure of aromatic molecule and CNTs with different hydrogenated dosage 
of (a) 3%, (b) 6%, (c) 12%, and (d) 25%. 

 
Figure 5. Molecular structure of aromatic molecule and CNTs with different oxygenated dosage of 
(a) 3%, (b) 6%, (c) 12%, and (d) 25%. 

Figure 6 compares the adhesion of SARA molecules for different dosages of hydro-
genated and oxygenated CNTs. The adhesion results for hydrogenated CNTs do not show 
significant variation with changing hydrogen dosage on CNTs (Figure 6a). Among SARA 

Figure 3. The change of (a) mean square displacement (MSD) and (b) temperature and potential
energy during 1000 ps is shown.

The generated dosage of 3–25% hydrogenated and oxygenated CNTs are shown
in Figures 4a–d and 5b–d, respectively. Our simulation shows that above 25% dosage
of randomly positioned hydrogens and oxygens, CNTs becomes unstable, CNTs do not
remain as a tube anymore, and several C-C bonds break. Therefore our results are limited
to a maximum 25% dosage. We use similar oxygenated and hydrogenated CNTs structures
for each SARA molecule to avoid random oxygenated and hydrogenated effects on the
results. As mentioned in Section 3, after constructing the hydrogenated and oxygenated
CNTs, each SARA molecule is placed on the CNT surface, and a 1000 ps MD simulation
is performed. The final structure after 1000 ps MD simulations of an aromatic molecule
on 3–25% hydrogenated and oxygenated CNTs are shown in Figures 4a–d and 5b–d,
respectively.
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Figure 6 compares the adhesion of SARA molecules for different dosages of hydro-
genated and oxygenated CNTs. The adhesion results for hydrogenated CNTs do not show
significant variation with changing hydrogen dosage on CNTs (Figure 6a). Among SARA
molecules, the asphaltene molecule has the highest adhesion with 55 ± 5 kcal/mol, resin
molecule with 45 ± 5 kcal/mol, and then aromatic molecule with 40 ± 3 kcal/mol, and
finally the saturate molecule has the lowest adhesion with 30 ± 5 kcal/mol as shown in
Figure 6a. For oxygenated CNTs, the result demonstrates that the adhesion of SARA
molecules increases significantly by increasing the oxygenation dosage, as shown in
Figure 6b. For the asphaltene molecule, the blue region in Figure 6b, adhesion increases
from 50 ± 5 kcal/mol for 0% dosage to 75 ± 5 kcal/mol at 12% oxygenation and remain
constant at 75 ± 5 kcal/mol for higher dosage (25%). Adhesion of the resin molecule
on the surface of an oxygenated CNTs is improved by 50% for 25% dosage as the values
change from 45 ± 2 kcal/mol at 0% dosage to 70 ± 2 kcal/mol at 25% dosage (shown with
the green region in Figure 6b). Aromatic molecule adhesion values, shown with the red
region in Figure 6b, show a similar trend observed in resin molecule and is increased from
40 ± 2 kcal/mol at 0% dosage to 75 ± 2 kcal/mol at 25% dosage (45% increase). However,
the best enhancement is observed in saturate molecule, shown with the black region in
Figure 6b, with a 100% increase in adhesion at 25% dosage (60 ± 4 kcal/mol). To demon-
strate more clearly how hydrogenated and oxygenated change the adhesion properties for
SARA molecules, both results have been shown together in Figure 6c with a dashed line
representing hydrogenated CNTs and a solid line representing oxygenated CNTs.
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The diffusion of SARA molecules on the surface of CNTs with different dosages
of hydrogenation and oxygenation is shown in Figure 7. The diffusion of SARA on
hydrogenated CNTs shows a sudden drop in diffusion coefficient by increasing hydro-
genation dosage (Figure 7a). The diffusion coefficient of saturate molecule reduces from
2 ± 0.2 × 10−10 m2/s at 0% hydrogen dosage to 0.05 ± 0.05 × 10−10 m2/s at 25% dosage.
As expected, the values for diffusion coefficient for saturate molecule is higher than the
other components as smaller interatomic forces (adhesion) lead to more movement of
molecules on the surface of CNTs. For asphaltene molecules, although the diffusion co-
efficient is higher at 0% (1.6 ± 0.1 × 10−10 m2/s) than resin and aromatic molecules, the
values drop more rapidly. After 6% dosage, they are below those in resin and aromatic
molecules. After saturate, and asphaltene molecules, aromatic molecule (red region in
Figure 7a) has the highest initial diffusion coefficient at 0% (1.4 ± 0.1 × 10−10 m2/s), but af-
ter a sudden drop to 0.4± 0.1× 10−10 m2/s at 3% dosage, the values are smoothly reduced
to 0.25 ± 0.1 × 10−10 m2/s at 25% dosage. Finally, although resin molecule has the lowest
initial diffusion coefficient at 0% dosage (1.1± 0.1× 10−10 m2/s), it has the smoothest drop
in diffusion coefficient, and they values merge to 0.25 ± 0.1 × 10−10 m2/s at 25% dosage
(green region). The diffusion of SARA on oxygenated CNTs is shown in Figure 7b. The
results show a more sudden drop in diffusion coefficient than observed in hydrogenated
CNTs. This alteration is due to higher interatomic forces between SARA and oxygenated
CNTs. The diffusion coefficient of saturate molecule reduces from 2 ± 0.2 × 10−10 m2/s
at 0% hydrogen dosage to 0.4 ± 0.1 × 10−10 m2/s at 3% dosage and then smoothly re-
duces to 0.001 ± 0.001 × 10−10 m2/s at 25% dosage. The diffusion coefficient values for
asphaltene, resin, and aromatic molecules on oxygenated CNTs with 3% dosage and higher
is almost 0.0, and the molecules are stuck on the surface. To demonstrate more clearly
how hydrogenated and oxygenated change the diffusion properties for SARA molecules,
both sets of results have been shown together in Figure 7c, with a dashed line repre-
senting hydrogenated CNTs and the solid line representing oxygenated CNTs. It can be
seen that the functionalization with oxygen significantly reduces the diffusion of SARA
molecules on the surface. At the same time, a higher dosage of hydrogenation is required
for the same diffusion coefficient (Figure 7c). Previous studies show that the diffusion
coefficient of SARA molecules and asphalt binder on the aggregates are in the range of
0.8–12 × 10−10 m2/s [12,29,30], which is in the same order as our results for a lower dosage
of functionalization. Similar to previous studies, we observed that saturate molecule has
the highest diffusion coefficient among SARA molecules [30,31]. The obtained adhesion
values range from previously reported values for the pure CNT-SARA interface [10].
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5. Conclusions

This work evaluated hydrogenated and oxygenated CNTs on the adhesion and dif-
fusion of SARA-CNTs through reactive molecular dynamics simulations. First, we used
reactive MD simulation using REAXFF to construct 3%, 6%, 12%, and 25% hydrogenated
and oxygenated CNTs by randomly pouring hydrogens and oxygens on the surface of
CNTs and letting them form bonds with carbon atoms of CNTs. After the construction
of hydrogenated and oxygenated CNTs, the SARA molecules are placed on the vicinity
of the surface of CNTs and equilibrated for 1ns. Then, the adhesion energy and diffusion
coefficient of the CNT-SARA molecules are calculated using SMD and Einstein formula,
respectively. The results are then compared to understand the diffusivity and adhesion
of SARA molecules on hydrogenated and oxygenated CNTs. The main outcomes of this
study are as follow:

• The hydrogenation has little effect on the adhesion energy, but oxygenation can
increase adhesion energy significantly.

• Saturate molecule shows the highest increase in adhesion strength from 30 kcal/mol
at 0% to 60 kcal/mol for 25% dosage oxygenation.

• For both hydrogenated and oxygenated CNTs at different dosage, asphaltene, resin,
aromatic, and saturate molecules have the highest to lowest values, respectively.

• The diffusion coefficient of SARA molecules on both hydrogenated and oxygenated
surfaces drops significantly, with lower values and more sudden drops for the latter.

• The hierarchy of diffusion coefficient values is almost the opposite of adhesion values
due to larger interatomic forces; the molecules have less mobility. However, the
shape of the molecule may influence the result, and more flexible molecules have
more mobilities.

• The values of diffusion coefficient for asphaltene, resin, and aromatic on oxygenated
CNTs with 3% dosage and higher is almost 0.0, and the molecules are stuck on
the surface.

• In experiments, the surface of graphene and CNT oxides are coated with a combination
of oxygen and hydroxyl (OH). Therefore this study should be seen as extreme cases
where only oxygen/hydrogen exists on the surface. However, this separation reveals
that oxygen has the most significant effect on adhesion and diffusion.
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