Latest Advances in Finite Element Modelling and Model Updating of Cable-Stayed Bridges
Abstract
:1. Introduction
2. Model-Based SHM of Cable-Stayed Bridges
3. Finite Element Modelling of Cable-Stayed Bridges
3.1. General Bridge Modelling Approaches
3.2. Cable-Stayed Bridge Modelling Approaches
3.2.1. Single-Girder Modelling
3.2.2. Double-Girder Modelling
3.2.3. Triple-Girder Modelling
3.2.4. Multi-Scale Modelling
3.2.5. Stay Cable Modelling
3.3. Survey of Existing Modelling Approaches
4. Finite Element Model Updating
4.1. Overview of Model Updating Methods
4.1.1. Direct Methods
4.1.2. Iterative Methods
4.1.3. Stochastic Methods
4.1.4. Computational Intelligence Methods
4.2. Model Updating of Cable-Stayed Bridges
4.2.1. Single-Girder Models
4.2.2. Double-Girder Models
4.2.3. Triple-Girder Models
4.2.4. Multi-Scale Models
5. Issues in FE Modelling and Model Updating
6. Conclusions and Future Research Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chinchane, A.; Sumant, O. Bridge Construction Market: Global Opportunity Analysis and Industry Forecst, 2020–2027; Allied Market Research: Portland, OR, USA, 2020; p. 295. [Google Scholar]
- Leridon, H. World population outlook: Explosion or implosion? Popul. Soc. 2020, 573, 1–4. [Google Scholar]
- ASCE. 2017 Infrastructure Report Card; American Society of Civil Engineers: Reston, VA, USA, 2017. [Google Scholar]
- APNews. French Audit Warns 840 Bridges May Face Risk of Collapse. 2018. Available online: https://apnews.com/article/f76d8d1da7534e09a48b7867b9a27c77 (accessed on 6 October 2020).
- The Local. Bridge Collapse “Cannot Be Ruled out” in Germany, Says Expert. 2018. Available online: https://www.thelocal.de/20180815/bridge-collapse-cannot-be-ruled-out-in-germany-says-expert (accessed on 6 October 2020).
- RAC Foundation. Council Bridge Maintenance Backlog Grows. 2019. Available online: https://www.racfoundation.org/research/economy/council-bridge-maintenance-backlog-grows (accessed on 6 October 2020).
- National Transportation Safety Board. Collapse of I-35W Highway Bridge, Minneapolis, Minnesota, August 1, 2007; Createspace Independent Pub.: Scotts Valley, CA, USA, 2008. [Google Scholar]
- Morgese, M.; Ansari, F.; Domaneschi, M.; Cimellaro, G.P. Post-collapse analysis of Morandi’s Polcevera viaduct in Genoa Italy. J. Civ. Struct. Health Monit. 2020, 10, 69–85. [Google Scholar] [CrossRef]
- Horgan, R. Fatal Taiwan Bridge Collapse Is Latest Example of Maintenance Failings. 2019. Available online: https://www.newcivilengineer.com/latest/fatal-taiwan-bridge-collapse-is-latest-example-of-maintenance-failings-07-10-2019/ (accessed on 7 October 2020).
- Wong, K.Y. Instrumentation and health monitoring of cable-supported bridges. Struct. Control Health Monit. 2004, 11, 91–124. [Google Scholar] [CrossRef]
- Mehrabi, A.B. In-service evaluation of cable-stayed bridges, overview of available methods and findings. J. Bridge Eng. 2006, 11, 716–724. [Google Scholar] [CrossRef]
- Fujino, Y.; Siringoringo, D.M. Structural health monitoring of bridges in Japan: An overview of the current trend. In Proceedings of the Fourth International Conference on FRP Composities in Civil Engineering, Zurich, Switzerland, 22–24 July 2008. [Google Scholar]
- Roberts, G.W.; Meng, X.; Brown, C.J.; Dallard, P. GPS measurements on the London Millennium Bridge. Civ. Eng. Innov. 2008, 2, 15–28. [Google Scholar] [CrossRef]
- Peeters, B.; Couvreur, G.; Razinkov, O.; Kündig, C.; Van Der Auweraer, H.; De Roeck, G. Continuous monitoring of the Øresund Bridge: System and data analysis. Struct. Infrastruct. Eng. 2009, 5, 395–405. [Google Scholar] [CrossRef]
- Woellner, J. Automated structural health monitoring and data analysis of the first cable-stayed suspension bridge in Switzerland. In Proceedings of the Ninth Symposium on Field Measurements in Geomechanics, Sydney, Australia, 9–11 September 2015; pp. 149–160. [Google Scholar]
- Cho, S.; Jo, H.; Jang, S.; Park, J.; Jung, H.-J.; Yun, C.-B.; Spencer Jr, B.F.; Seo, J.-W. Structural health monitoring of a cable-stayed bridge using wireless smart sensor technology: Data analyses. Smart Struct. Syst. 2010, 6, 461–480. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, K.-D.; Kim, J.-T.; Park, Y.-H. Long-term vibration monitoring of cable-stayed bridge using wireless sensor network. Int. J. Distrib. Sens. Netw. 2013, 9, 804516. [Google Scholar] [CrossRef]
- Park, J.C.; Shin, J.; Kim, H. Long-Term Monitoring of Seohae cable-stayed bridge using GNSS and SHMS. In Proceedings of the Instanbul Bridge Conference, Instanbul, Turkey, 11–13 August 2014. [Google Scholar]
- Li, H.; Ou, J. The state of the art in structural health monitoring of cable-stayed bridges. J. Civ. Struct. Health Monit. 2016, 6, 43–67. [Google Scholar] [CrossRef]
- Hoang, N.; To, N.-T. A Structural Health Monitoring Network for Cable-Stayed Bridges in Vietnam. In Proceedings of the East Asia-Pacific Conference on Structural Engineering and Construction, Xi’an, China, 11–13 October 2017. [Google Scholar]
- Kaya, Y.; Mendler, A.; Ventura, C.E. Structural health monitoring network in British Columbia, Canada. In Proceedings of the EWSWH—9th European Workshop on Structural Health Monitoring, Manchester, UK, 10–13 July 2018. [Google Scholar]
- Webb, G.T.; Vardanega, P.J.; Middleton, C.R. Categories of SHM deployments: Technologies and capabilities. J. Bridge Eng. 2015, 20, 04014118. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Zhang, Z.; Ficher, C. Structural health monitoring of a long-span cable-stayed bridge. J. Intell. Mater. Syst. Struct. 2007, 18, 835–843. [Google Scholar] [CrossRef]
- Clemente, P.; Bongiovanni, G.; Buffarini, G.; Saitta, F. Structural health status assessment of a cable-stayed bridge by means of experimental vibration analysis. J. Civ. Struct. Health Monit. 2019, 9, 655–669. [Google Scholar] [CrossRef]
- Alamdari, M.M.; Ge, L.; Kildashti, K.; Zhou, Y.; Harvey, B.; Du, Z. Non-contact structural health monitoring of a cable-stayed bridge: Case study. Struct. Infrastruct. Eng. 2019, 15, 1119–1136. [Google Scholar] [CrossRef]
- Cao, Y.; Yim, J.; Zhao, Y.; Wang, M.L. Temperature effects on cable stayed bridge using health monitoring system: A case study. Struct. Health Monit. 2011, 10, 523–537. [Google Scholar]
- Li, S.; Li, H.; Liu, Y.; Lan, C.; Zhou, W.; Ou, J. SMC structural health monitoring benchmark problem using monitored data from an actual cable-stayed bridge. Struct. Control Health Monit. 2014, 21, 156–172. [Google Scholar] [CrossRef]
- Asadollahi, P.; Huang, Y.; Li, J. Bayesian finite element model updating and assessment of cable-stayed bridges using wireless sensor data. Sensors 2018, 18, 3057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, X.; Ni, Y.; Chen, Z.; Ko, J. Structural damage detection of cable-stayed bridges using changes in cable forces and model updating. J. Struct. Eng. 2009, 135, 1093–1106. [Google Scholar] [CrossRef]
- Zhang, X.; Peng, J.; Cao, M.; Damjanović, D.; Ostachowicz, W. Identification of instantaneous tension of bridge cables from dynamic responses: STRICT algorithm and applications. Mech. Syst. Signal Processing 2020, 142, 106729. [Google Scholar] [CrossRef]
- Hou, N.; Sun, L.; Chen, L. Cable Reliability Assessments for Cable-Stayed Bridges using Identified Tension Forces and Monitored Loads. J. Bridge Eng. 2020, 25, 05020003. [Google Scholar] [CrossRef]
- Sun, H.; Chen, W.; Cai, S.; Zhang, B. Mechanical State Assessment of In-Service Cable-Stayed Bridge Using a Two-Phase Model Updating Technology and Periodic Field Measurements. J. Bridge Eng. 2020, 25, 04020015. [Google Scholar] [CrossRef]
- Wang, H.; Mao, J.-X.; Xu, Z.-D. Investigation of dynamic properties of a long-span cable-stayed bridge during typhoon events based on structural health monitoring. J. Wind. Eng. Ind. Aerodyn. 2020, 201, 104172. [Google Scholar] [CrossRef]
- Zhu, Q.; Xu, Y.; Xiao, X. Multiscale modeling and model updating of a cable-stayed bridge. I: Modeling and influence line analysis. J. Bridge Eng. 2015, 20, 04014112. [Google Scholar] [CrossRef]
- Adams, D. Health Monitoring of Structural Materials and Components: Methods with Applications; John Wiley & Sons: New York, NY, USA, 2007. [Google Scholar]
- Friswell, M.; Mottershead, J.E. Finite Element Model Updating in Structural Dynamics; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995; Volume 38. [Google Scholar]
- Marwala, T. Finite Element Model Updating Using Computational Intelligence Techniques: Applications to Structural Dynamics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Sehgal, S.; Kumar, H. Structural dynamic model updating techniques: A state of the art review. Arch. Comput. Methods Eng. 2016, 23, 515–533. [Google Scholar] [CrossRef]
- Alkayem, N.F.; Cao, M.; Zhang, Y.; Bayat, M.; Su, Z. Structural damage detection using finite element model updating with evolutionary algorithms: A survey. Neural Comput. Appl. 2018, 30, 389–411. [Google Scholar] [CrossRef] [Green Version]
- Arjomandi, K.; Araki, Y.; MacDonald, T. Application of a hybrid structural health monitoring approach for condition assessment of cable-stayed bridges. J. Civ. Struct. Health Monit. 2019, 9, 217–231. [Google Scholar] [CrossRef]
- Wu, G.-M.; Yi, T.-H.; Yang, D.-H.; Li, H.-N. Damage detection of tension pendulums in cable-stayed bridges using structural frequency variance. J. Perform. Constr. Facil. 2021, 35, 04020126. [Google Scholar] [CrossRef]
- Domaneschi, M.; Limongelli, M.P.; Martinelli, L. Damage detection and localization on a benchmark cable-stayed bridge. Earthq. Struct. 2015, 8, 1113–1126. [Google Scholar] [CrossRef]
- Casciati, S.; Elia, L. Damage localization in a cable-stayed bridge via bio-inspired metaheuristic tools. Struct. Control. Health Monit. 2017, 24, e1922. [Google Scholar] [CrossRef]
- Zhong, R.; Zong, Z.; Niu, J.; Liu, Q.; Zheng, P. A multiscale finite element model validation method of composite cable-stayed bridge based on Probability Box theory. J. Sound Vib. 2016, 370, 111–131. [Google Scholar] [CrossRef]
- Wang, F.-Y.; Xu, Y.-L.; Sun, B.; Zhu, Q. Updating multiscale model of a long-span cable-stayed bridge. J. Bridge Eng. 2018, 23, 04017148. [Google Scholar] [CrossRef]
- Zheng, P.J.; Zong, Z.H.; Liu, Q.Q.; Niu, J.; Zhou, H.F.; Zhong, R.M. Multi-scale finite element model validation method of cable-stayed bridge based on the support vector regression. Int. J. Lifecycle Perform. Eng. 2019, 3, 35–58. [Google Scholar] [CrossRef]
- Lin, K.; Xu, Y.L.; Lu, X.; Guan, Z.; Li, J. Cluster computing-aided model updating for a high-fidelity finite element model of a long-span cable-stayed bridge. Earthq. Eng. Struct. Dyn. 2020, 49, 904–923. [Google Scholar] [CrossRef]
- Hoa, T.N.; Khatir, S.; De Roeck, G.; Long, N.N.; Thanh, B.T.; Wahab, M.A. An efficient approach for model updating of a large-scale cable-stayed bridge using ambient vibration measurements combined with a hybrid metaheuristic search algorithm. Smart Struct. Syst. 2020, 25, 487–499. [Google Scholar]
- Zhang, J.; Au, F.T.; Yang, D. Finite element model updating of long-span cable-stayed bridge by Kriging surrogate model. Struct. Eng. Mech. 2020, 74, 157–173. [Google Scholar]
- Ho, L.V.; Khatir, S.; Roeck, G.D.; Bui-Tien, T.; Wahab, M.A. Finite element model updating of a cable-stayed bridge using metaheuristic algorithms combined with Morris method for sensitivity analysis. Smart Struct. Syst. 2020, 26, 451–468. [Google Scholar]
- Cong, Y.; Kang, H. Planar nonlinear dynamic behavior of a cable-stayed bridge under excitation of tower motion. Eur. J. Mech. -A/Solids 2019, 76, 91–107. [Google Scholar] [CrossRef]
- Su, X.; Kang, H.; Chen, J.; Guo, T.; Sun, C.; Zhao, Y. Experimental study on in-plane nonlinear vibrations of the cable-stayed bridge. Nonlinear Dyn. 2019, 98, 1247–1266. [Google Scholar] [CrossRef]
- Pan, H.; Azimi, M.; Yan, F.; Lin, Z. Time-frequency-based data-driven structural diagnosis and damage detection for cable-stayed bridges. J. Bridge Eng. 2018, 23, 04018033. [Google Scholar] [CrossRef]
- Bisheh, H.B.; Amiri, G.G.; Nekooei, M.; Darvishan, E. Damage detection of a cable-stayed bridge based on combining effective intrinsic mode functions of empirical mode decomposition using the feature selection technique. Inverse Probl. Sci. Eng. 2020, 29, 861–881. [Google Scholar] [CrossRef]
- Mao, J.-X.; Wang, H.; Li, J. Fatigue reliability assessment of a long-span cable-stayed bridge based on one-year monitoring strain data. J. Bridge Eng. 2019, 24, 05018015. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.-M.; Mao, J.-X.; Wan, H.-P.; Tao, T.-Y.; Zhu, Q.-X. Modeling and forecasting of temperature-induced strain of a long-span bridge using an improved Bayesian dynamic linear model. Eng. Struct. 2019, 192, 220–232. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, L. Insights into temperature effects on structural deformation of a cable-stayed bridge based on structural health monitoring. Struct. Health Monit. 2019, 18, 778–791. [Google Scholar] [CrossRef]
- Mao, J.; Wang, H.; Xu, Y.; Li, H. Deformation monitoring and analysis of a long-span cable-stayed bridge during strong typhoons. Adv. Bridge Eng. 2020, 1, 8. [Google Scholar] [CrossRef]
- Shim, C.; Kang, H.; Dang, N. Digital twin models for maintenance of cable-supported bridges. In Proceedings of the International Conference on Smart Infrastructure and Construction 2019 (ICSIC) Driving data-informed decision-making, Cambridge, UK, 8–10 July 2019; pp. 737–742. [Google Scholar]
- Daneshvar, M.H.; Gharighoran, A.; Zareei, S.A.; Karamodin, A. Early damage detection under massive data via innovative hybrid methods: Application to a large-scale cable-stayed bridge. Struct. Infrastruct. Eng. 2020, 17, 902–920. [Google Scholar] [CrossRef]
- Tomé, E.S.; Pimentel, M.; Figueiras, J. Online early damage detection and localisation using multivariate data analysis: Application to a cable-stayed bridge. Struct. Control Health Monit. 2019, 26, e2434. [Google Scholar]
- Entezami, A.; Sarmadi, H.; Behkamal, B.; Mariani, S. Big Data Analytics and Structural Health Monitoring: A Statistical Pattern Recognition-Based Approach. Sensors 2020, 20, 2328. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.; Xu, Y.-L.; Lu, X.; Guan, Z.; Li, J. Digital twin-based collapse fragility assessment of a long-span cable-stayed bridge under strong earthquakes. Autom. Constr. 2021, 123, 103547. [Google Scholar] [CrossRef]
- Xiao, X.; Xu, Y.; Zhu, Q. Multiscale modeling and model updating of a cable-stayed bridge. II: Model updating using modal frequencies and influence lines. J. Bridge Eng. 2015, 20, 04014113. [Google Scholar] [CrossRef]
- Hambly, E.C. Bridge Deck Behaviour; CRC Press: Boca Raton, FL, USA, 1991. [Google Scholar]
- Kanok-Nukulchai, W.; Yiu, P.K.A.; Brotton, D.M. Mathematical modelling of cable-stayed bridges. Struct. Eng. Int. 1992, 2, 108–113. [Google Scholar] [CrossRef]
- Walther, R. Cable Stayed Bridges; Thomas Telford Ltd.: London, UK, 1999. [Google Scholar]
- Fu, C.C.; Wang, S. Computational Analysis and Design of Bridge Structures; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Adams, A.; Galindez, N.; Hopper, T.; Murphy, T.; Ritchie, P.; Storlie, V.; Weisman, J. Manual for Refined Analysis in Bridge Design and Evaluation; United States, Federal Highway Administration, Office of Infrastructure: Washington, DC, USA, 2019.
- Xu, Y.-L. Wind Effects on Cable-Supported Bridges; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Xu, Y.-L.; Xia, Y. Structural Health Monitoring of Long-Span Suspension Bridges; CRC Press: Oxford, UK, 2011. [Google Scholar]
- Xu, Y.; Ko, J.; Zhang, W. Vibration studies of Tsing Ma suspension bridge. J. Bridge Eng. 1997, 2, 149–156. [Google Scholar] [CrossRef]
- Ernst, J. Der E-Modul von Seilen unter berucksichtigung des Durchhanges. Der Bauing. 1965, 40, 52–55. [Google Scholar]
- Gazzola, F. Mathematical Models for Suspension Bridges; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Bas, S. Structural Identification (St-Id) Concept for Performance Prediction of Long-Span Bridges. In Bridge Engineering; IntechOpen: London, UK, 2017. [Google Scholar]
- Pipinato, A. Innovative Bridge Design Handbook: Construction, Rehabilitation and Maintenance; Butterworth-Heinemann: Oxford, UK, 2015. [Google Scholar]
- Ereiba, H. The Dynamic Behaviour of Cable-Stayed Bridges; University of Sheffield: Sheffield, UK, 1980. [Google Scholar]
- Zhang, S. The Finite Element Analysis of Thin-Walled Box Spine-Beam Bridges; City University London: London, UK, 1982. [Google Scholar]
- Wilson, J.C.; Gravelle, W. Modelling of a cable-stayed bridge for dynamic analysis. Earthq. Eng. Struct. Dyn. 1991, 20, 707–721. [Google Scholar] [CrossRef]
- Yiu, P.; Brotton, D. Mathematical modelling of cable-stayed bridges for computer analysis. In Proceedings of the International Conference on Cable-Stayed Bridges, Bangkok, Thailand, 18–20 November 1987. [Google Scholar]
- Cheng, S.; Han, D.-J.; Wang, L.W. The establishment of 3-D finite element dynamic models for long-span cable-stayed bridges. J. South China Univ. Technol. Nat. Sci. 1999, 27, 51–56. [Google Scholar]
- Zhu, L.; Xiang, H.; Xu, Y. Triple-girder model for modal analysis of cable-stayed bridges with warping effect. Eng. Struct. 2000, 22, 1313–1323. [Google Scholar] [CrossRef]
- Brownjohn, J.M.W.; Lee, J.; Cheong, B. Dynamic performance of a curved cable-stayed bridge. Eng. Struct. 1999, 21, 1015–1027. [Google Scholar] [CrossRef] [Green Version]
- Ren, W.-X.; Peng, X.-L. Baseline finite element modeling of a large span cable-stayed bridge through field ambient vibration tests. Comput. Struct. 2005, 83, 536–550. [Google Scholar] [CrossRef]
- Ding, Y.; Li, A.; Du, D.; Liu, T. Multi-scale damage analysis for a steel box girder of a long-span cable-stayed bridge. Struct. Infrastruct. Eng. 2010, 6, 725–739. [Google Scholar] [CrossRef]
- Dyke, S.J.; Caicedo, J.M.; Turan, G.; Bergman, L.A.; Hague, S. Phase I benchmark control problem for seismic response of cable-stayed bridges. J. Struct. Eng. 2003, 129, 857–872. [Google Scholar] [CrossRef] [Green Version]
- Caicedo, J.; Dyke, S.; Turan, G.; Bergman, L. Comparison of modeling techniques for dynamic analysis of a cable-stayed bridge. In Proceedings of the Engineering Mechanics Conference, Austin, TX, USA, 21–24 May 2000; pp. 21–23. [Google Scholar]
- Schemmann, A.G.; Smith, H.A. Vibration control of cable-stayed bridges—Part 1: Modeling issues. Earthq. Eng. Struct. Dyn. 1998, 27, 811–824. [Google Scholar] [CrossRef]
- Caetano, E.; Cunha, A.; Taylor, C.A. Investigation of dynamic cable–deck interaction in a physical model of a cable-stayed bridge. Part I: Modal analysis. Earthq. Eng. Struct. Dyn. 2000, 29, 481–498. [Google Scholar] [CrossRef]
- Wu, Q.; Takahashi, K.; Okabayashi, T.; Nakamura, S. Response characteristics of local vibrations in stay cables on an existing cable-stayed bridge. J. Sound Vib. 2003, 261, 403–420. [Google Scholar] [CrossRef]
- Chang, C.; Chang, T.; Zhang, Q. Ambient vibration of long-span cable-stayed bridge. J. Bridge Eng. 2001, 6, 46–53. [Google Scholar] [CrossRef]
- Song, W.; Giraldo, D.; Clayton, E.; Dyke, S.; Caicedo, J. Application of ARMAV for modal identification of the Emerson Bridge. In Proceedings of the Third international conference on bridge maintenance, safety and management, Porto, Portugal, 16–19 July 2006. [Google Scholar]
- Lin, Y.Y.; Lieu, Y.L. Geometrically nonlinear analysis of cable-stayed bridges subject to wind excitations. J. Chin. Inst. Eng. 2003, 26, 503–511. [Google Scholar] [CrossRef]
- Nazmy, A.S.; Abdel-Ghaffar, A.M. Non-linear earthquake-response analysis of long-span cable-stayed bridges: Theory. Earthq. Eng. Struct. Dyn. 1990, 19, 45–62. [Google Scholar] [CrossRef]
- Torkamani, M.A.; Lee, H.E. Dynamic behavior of steel deck tension-tied arch bridges to seismic excitation. J. Bridge Eng. 2002, 7, 57–67. [Google Scholar] [CrossRef]
- Hu, J.; Harik, I.E.; Smith, S.W.; Gagel, J.; Campbell, J.E.; Graves, R.C. Baseline Modeling of the Owensboro Cable-Stayed Bridge over the Ohio River; University of Kentucky Transportation Center: Lexington, KY, USA, 2006. [Google Scholar]
- Ren, W.-X.; Zhao, T.; Harik, I.E. Experimental and analytical modal analysis of steel arch bridge. J. Struct. Eng. 2004, 130, 1022–1031. [Google Scholar] [CrossRef]
- Park, W.; Kim, H.-K.; Park, J.-C. Finite element model updating for a cable-stayed bridge using manual tuning and sensitivity-based optimization. Struct. Eng. Int. 2012, 22, 14–19. [Google Scholar] [CrossRef]
- Brownjohn, J.M.W.; Xia, P.-Q.; Hao, H.; Xia, Y. Civil structure condition assessment by FE model updating: Methodology and case studies. Finite Elem. Anal. Des. 2001, 37, 761–775. [Google Scholar] [CrossRef]
- Macdonald, J.H.; Daniell, W.E. Variation of modal parameters of a cable-stayed bridge identified from ambient vibration measurements and FE modelling. Eng. Struct. 2005, 27, 1916–1930. [Google Scholar] [CrossRef]
- Abozeid, E.H.; Fayed, M.; Mourad, S.; Khalil, A. Cable-Stayed Bridge Model Update using Dynamic Measurements. In Proceedings of the International Conference on Bridge Management Systems-Monitoring, Assessment and Rehabilitation, Giza, Egypt, 21–23 March 2006. [Google Scholar]
- Fleming, J.F.; Egeseli, E.A. Dynamic behaviour of a cable-stayed bridge. Earthq. Eng. Struct. Dyn. 1980, 8, 1–16. [Google Scholar] [CrossRef]
- Abdel-Ghaffar, A.M.; Khalifa, M.A. Importance of cable vibration in dynamics of cable-stayed bridges. J. Eng. Mech. 1991, 117, 2571–2589. [Google Scholar] [CrossRef]
- Adeli, H.; Zhang, J. Fully nonlinear analysis of composite girder cable-stayed bridges. Comput. Struct. 1995, 54, 267–277. [Google Scholar] [CrossRef]
- Caetano, E. Cable Vibrations in Cable-Stayed Bridges; IABSE: Zürich, Switzerland, 2007; Volume 9. [Google Scholar]
- Ali, H.; Abdel-Ghaffar, A. Modeling the nonlinear seismic behavior of cable-stayed bridges with passive control bearings. Comput. Struct. 1995, 54, 461–492. [Google Scholar] [CrossRef]
- Ni, Y.; Wang, J.; Ko, J. Modal Interaction in Cable-Stayed Ting Kau Bridge; Citeseer: Princeton, NJ, USA, 2000; Volume 1, pp. 537–544. [Google Scholar]
- Au, F.; Cheng, Y.; Cheung, Y.; Zheng, D. On the determination of natural frequencies and mode shapes of cable-stayed bridges. Appl. Math. Model. 2001, 25, 1099–1115. [Google Scholar] [CrossRef]
- Gattulli, V.; Lepidi, M. Localization and veering in the dynamics of cable-stayed bridges. Comput. Struct. 2007, 85, 1661–1678. [Google Scholar] [CrossRef]
- Caetano, E.; Cunha, A.; Gattulli, V.; Lepidi, M. Cable–deck dynamic interactions at the International Guadiana Bridge: On-site measurements and finite element modelling. Struct. Control Health Monit. 2008, 15, 237–264. [Google Scholar] [CrossRef]
- Liu, M.-Y.; Lin, L.-C.; Wang, P.-H. Investigation on deck-stay interaction of cable-stayed bridges with appropriate initial shapes. Struct. Eng. Mech. 2012, 43, 691–709. [Google Scholar] [CrossRef]
- Sun, C.; Zhao, Y.; Peng, J.; Kang, H.; Zhao, Y. Multiple internal resonances and modal interaction processes of a cable-stayed bridge physical model subjected to an invariant single-excitation. Eng. Struct. 2018, 172, 938–955. [Google Scholar] [CrossRef]
- Treyssède, F. Finite element modeling of temperature load effects on the vibration of local modes in multi-cable structures. J. Sound Vib. 2018, 413, 191–204. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, L.; Davidson, M.T.; Harik, I.E.; Patil, A. Nonlinear dynamic analysis of long-span cable-stayed bridges with train–bridge and cable coupling. Int. J. Adv. Struct. Eng. 2019, 11, 271–283. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.; Zou, D.; Wei, M. Nonlinear analysis of cable vibration of a multispan cable-stayed bridge under transverse excitation. Math. Probl. Eng. 2014, 2014, 832432. [Google Scholar] [CrossRef]
- Mottershead, J.E.; Friswell, M. Model updating in structural dynamics: A survey. J. Sound Vib. 1993, 167, 347–375. [Google Scholar] [CrossRef]
- Zhang, Q.; Chang, T.-Y.P.; Chang, C.C. Finite-element model updating for the Kap Shui Mun cable-stayed bridge. J. Bridge Eng. 2001, 6, 285–293. [Google Scholar] [CrossRef]
- Yue, L.N.; Li, S. The Finite Element Model Updating of Long Span Cable-stayed Bridge Based on Static and Dynamic Loading Test. Appl. Mech. Mater. 2014, 644, 5014–5018. [Google Scholar] [CrossRef]
- Asgari, B.; Osman, S.; Adnan, A. Three-dimensional finite element modelling of long-span cable-stayed bridges. IES J. Part A: Civ. Struct. Eng. 2013, 6, 258–269. [Google Scholar] [CrossRef]
- Brownjohn, J.M.W.; Xia, P.-Q. Dynamic assessment of curved cable-stayed bridge by model updating. J. Struct. Eng. 2000, 126, 252–260. [Google Scholar] [CrossRef] [Green Version]
- Kanev, S.; Weber, F.; Verhaegen, M. Experimental validation of a finite-element model updating procedure. J. Sound Vib. 2007, 300, 394–413. [Google Scholar] [CrossRef]
- Yuan, Z.X.; Yu, K.P. Finite element model updating of damped structures using vibration test data under base excitation. J. Sound Vib. 2015, 340, 303–316. [Google Scholar] [CrossRef]
- Rezaiee-Pajand, M.; Entezami, A.; Sarmadi, H. A sensitivity-based finite element model updating based on unconstrained optimization problem and regularized solution methods. Struct. Control Health Monit. 2020, 27, e2481. [Google Scholar] [CrossRef]
- Chhipa, S.M.; Kumar, P.; Bagha, A.K.; Bahl, S. Removing uncertainty in the boundary condition of five degree of freedom spring mass vibratory system using direct updating method. Mater. Today Proc. 2021, 41, 251–255. [Google Scholar] [CrossRef]
- Mottershead, J.E.; Link, M.; Friswell, M.I. The sensitivity method in finite element model updating: A tutorial. Mech. Syst. Signal Processing 2011, 25, 2275–2296. [Google Scholar] [CrossRef]
- Pepi, C.; Gioffré, M.; Grigoriu, M.D.; Matthies, H.G. Bayesian updating of cable stayed footbridge model parameters using dynamic measurements. In Proceedings of the 7th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Crete, Greece, 24–26 June 2019; pp. 330–342. [Google Scholar]
- Baisthakur, S.; Chakraborty, A. Modified Hamiltonian Monte Carlo-based Bayesian finite element model updating of steel truss bridge. Struct. Control Health Monit. 2020, 27, e2556. [Google Scholar] [CrossRef]
- Mao, J.; Wang, H.; Li, J. Bayesian Finite Element Model Updating of a Long-Span Suspension Bridge Utilizing Hybrid Monte Carlo Simulation and Kriging Predictor. KSCE J. Civ. Eng. 2020, 24, 569–579. [Google Scholar] [CrossRef]
- Deng, L.; Cai, C. Bridge model updating using response surface method and genetic algorithm. J. Bridge Eng. 2010, 15, 553–564. [Google Scholar] [CrossRef]
- Jung, D.-S.; Kim, C.-Y. Finite element model updating on small-scale bridge model using the hybrid genetic algorithm. Struct. Infrastruct. Eng. 2013, 9, 481–495. [Google Scholar] [CrossRef]
- Astroza, R.; Nguyen, L.T.; Nestorović, T. Finite element model updating using simulated annealing hybridized with unscented Kalman filter. Comput. Struct. 2016, 177, 176–191. [Google Scholar] [CrossRef]
- Tran-Ngoc, H.; Khatir, S.; De Roeck, G.; Bui-Tien, T.; Nguyen-Ngoc, L.; Abdel Wahab, M. Model updating for Nam O bridge using particle swarm optimization algorithm and genetic algorithm. Sensors 2018, 18, 4131. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, A.; Kodikara, K.T.L.; Chan, T.H.; Thambiratnam, D.P. Deterioration assessment of buildings using an improved hybrid model updating approach and long-term health monitoring data. Struct. Health Monit. 2019, 18, 5–19. [Google Scholar] [CrossRef] [Green Version]
- Naranjo-Pérez, J.; Infantes, M.; Jiménez-Alonso, J.F.; Sáez, A. A collaborative machine learning-optimization algorithm to improve the finite element model updating of civil engineering structures. Eng. Struct. 2020, 225, 111327. [Google Scholar] [CrossRef]
- Daniell, W.E.; Macdonald, J.H. Improved finite element modelling of a cable-stayed bridge through systematic manual tuning. Eng. Struct. 2007, 29, 358–371. [Google Scholar] [CrossRef]
- Benedettini, F.; Gentile, C. Operational modal testing and FE model tuning of a cable-stayed bridge. Eng. Struct. 2011, 33, 2063–2073. [Google Scholar] [CrossRef]
- Enevoldsen, I.; Pedersen, C.; Axhag, F.; Johansson, Ö.; Töyrä, B. Assessment and measurement of the Forsmo Bridge, Sweden. Struct. Eng. Int. 2002, 12, 254–257. [Google Scholar] [CrossRef]
- Zong, Z.-H.; Xia, Z.-H. Finite element model updating method of bridge combined modal flexibility and static displacement. China J. Highw. Transp. 2008, 6, 43–49. [Google Scholar]
- Ren, W.-X.; Fang, S.-E.; Deng, M.-Y. Response surface–based finite-element-model updating using structural static responses. J. Eng. Mech. 2011, 137, 248–257. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Wang, C.; Wang, H. Concurrent multi-scale modelling and updating of long-span bridges using a multi-objective optimisation technique. Struct. Infrastruct. Eng. 2013, 9, 1251–1266. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, B.; Chen, W. Evaluation of the seismic responses of a long-span cable-stayed bridge located in complex terrain based on an SHM-oriented model. Stahlbau 2015, 84, 252–266. [Google Scholar] [CrossRef]
- Jang, J.; Smyth, A.W. Model updating of a full-scale FE model with nonlinear constraint equations and sensitivity-based cluster analysis for updating parameters. Mech. Syst. Signal Processing 2017, 83, 337–355. [Google Scholar] [CrossRef]
- Zárate, B.A.; Caicedo, J.M. Finite element model updating: Multiple alternatives. Eng. Struct. 2008, 30, 3724–3730. [Google Scholar] [CrossRef]
- Ding, Y.; Li, A. Finite element model updating for the Runyang Cable-stayed Bridge tower using ambient vibration test results. Adv. Struct. Eng. 2008, 11, 323–335. [Google Scholar] [CrossRef]
- Zheng, Y.; Xu, Y.; Gu, Q. Nonlinear model updating of a reinforced concrete pedestrian cable-stayed bridge. Struct. Control Health Monit. 2020, 27, e2487. [Google Scholar] [CrossRef]
- Lin, K.; Xu, Y.L.; Lu, X.; Guan, Z.; Li, J. Collapse prognosis of a long-span cable-stayed bridge based on shake table test and nonlinear model updating. Earthq. Eng. Struct. Dyn. 2021, 50, 455–474. [Google Scholar] [CrossRef]
- Asadollahi, P.; Li, J. Statistical analysis of modal properties of a cable-stayed bridge through long-term wireless structural health monitoring. J. Bridge Eng. 2017, 22, 04017051. [Google Scholar] [CrossRef]
- Cui, C.; Xu, Y.-L.; Zhang, Q.-H.; Wang, F.-Y. Vehicle-induced dynamic stress analysis of orthotropic steel decks of cable-stayed bridges. Struct. Infrastruct. Eng. 2020, 16, 1067–1081. [Google Scholar] [CrossRef]
- Ching, J.; Chen, Y.-C. Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging. J. Eng. Mech. 2007, 133, 816–832. [Google Scholar] [CrossRef]
- Cheung, S.H.; Beck, J.L. Bayesian model updating using hybrid Monte Carlo simulation with application to structural dynamic models with many uncertain parameters. J. Eng. Mech. 2009, 135, 243–255. [Google Scholar] [CrossRef] [Green Version]
- Behmanesh, I.; Moaveni, B.; Lombaert, G.; Papadimitriou, C. Hierarchical Bayesian model updating for structural identification. Mech. Syst. Signal Processing 2015, 64, 360–376. [Google Scholar] [CrossRef] [Green Version]
- Trucano, T.G.; Swiler, L.P.; Igusa, T.; Oberkampf, W.L.; Pilch, M. Calibration, validation, and sensitivity analysis: What’s what. Reliab. Eng. Syst. Saf. 2006, 91, 1331–1357. [Google Scholar] [CrossRef]
- Aughenbaugh, J.M.; Herrmann, J.W. Updating uncertainty assessments: A comparison of statistical approaches. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Las Vegas, NV, USA, 4–7 September 2007; pp. 1195–1209. [Google Scholar]
- Ma, T.; Zhang, Y.; Huang, X. A novel approach for stochastic finite element model updating and parameter estimation. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2014, 228, 3329–3342. [Google Scholar] [CrossRef]
- Marwala, T. Finite-element-model Updating Using the Response-surface Method. In Finite-Element-Model Updating Using Computional Intelligence Techniques: Applications to Structural Dynamics; Springer: London, UK, 2010; pp. 103–125. [Google Scholar]
- Ren, W.-X.; Chen, H.-B. Finite element model updating in structural dynamics by using the response surface method. Eng. Struct. 2010, 32, 2455–2465. [Google Scholar] [CrossRef]
- Yin, T.; Zhu, H.P. An efficient algorithm for architecture design of Bayesian neural network in structural model updating. Comput. Aided Civ. Infrastruct. Eng. 2020, 35, 354–372. [Google Scholar] [CrossRef]
- Sung, H.; Chang, S.; Cho, M. Efficient Model Updating Method for System Identification Using a Convolutional Neural Network. AIAA J. 2021, 59, 1–10. [Google Scholar] [CrossRef]
- Yang, X.; Guo, X.; Ouyang, H.; Li, D. A Kriging model based finite element model updating method for damage detection. Appl. Sci. 2017, 7, 1039. [Google Scholar] [CrossRef] [Green Version]
- Qin, S.; Zhou, Y.-L.; Cao, H.; Wahab, M.A. Model updating in complex bridge structures using kriging model ensemble with genetic algorithm. KSCE J. Civ. Eng. 2018, 22, 3567–3578. [Google Scholar] [CrossRef]
- Adhikari, S.; Friswell, M. Distributed parameter model updating using the Karhunen–Loève expansion. Mech. Syst. Signal Processing 2010, 24, 326–339. [Google Scholar] [CrossRef]
- Huang, B.; Chen, H. A new approach for stochastic model updating using the hybrid perturbation-Garlekin method. Mech. Syst. Signal Processing 2019, 129, 1–19. [Google Scholar] [CrossRef]
One-Element Cable System (OECS) | Multi-Element Cable System (MECS) | |
---|---|---|
One-element linear model | One-element refined model | Multi-element model |
One element, two-node linear model with cable weight concentrated at the nodes. Tension is assumed constant along the cable which ignores any geometric effects and directly uses the cable elastic modulus. | One element, two-node linear model with cable weight concentrated at the nodes. Uses an equivalent elastic modulus (Equation (1)) which approximates the cable sag due to self-weight as parabolic. | Multi-element, multi-node linear model refinement with cable weight distributed across the nodes. This method gives the best approximation of the cable’s true profile as catenary due to sag. |
Source | Bridge Name and Location | Tower Type | Modelling Approach |
---|---|---|---|
Wilson and Gravelle [79] | Quincy Bayview Bridge, USA | H-shape | Single-girder, OECS |
Caicedo et al. [87] | Bill Emerson Memorial Bridge, USA | H-shape | Single-girder, OECS |
Zhu et al. [82] | Nanpu Bridge, China | H-shape | Triple-girder, OECS |
Macdonald and Daniell [100] | Second Severn Crossing, UK | H-shape | Multi-scale, shell elements for deck, OECS |
Ren and Peng [84] | Qingzhou Bridge, China | A-shape | Multi-scale, shell elements for deck, OECS |
Hu et al. [96] | Owensboro Bridge, USA | A-shape | Triple-girder, OECS |
Park et al. [98] | Seohae Bridge, South Korea | H-shape | Triple-girder model, OECS |
Li et al. [27] | Benchmark Bridge, China | H-shape | Single-girder, OECS |
Domaneschi et al. [42] | Bill Emerson Memorial Bridge, USA | H-shape | Multi-scale, shell elements for deck, MECS |
Zhong et al. [44] | Guanhe Bridge, China | H-shape | Multi-scale, solid elements for edge girders, OECS |
Source | Bridge Name and Location | Tower Type | Modelling Approach |
---|---|---|---|
Chang et al. [91] | Kap Shui Bridge, Hong Kong | H-shape | Single-girder, OECS |
Zhang et al. [117] | Kap Shui Bridge, Hong Kong | H-shape | Single-girder, OECS |
Abozeid et al. [101] | Suez-Canal Bridge, Egypt | H-shape | Multi-scale, shell elements for deck, OECS |
Yue and Li [118] | River Highway Bridge, China | H-shape | Single-girder, OECS |
Schemmann and Smith [88] | Jindo Bridge, South Korea | A-shape | Single-girder, OECS |
Caetano et al. [89] | Jindo Bridge, South Korea | A-shape | Single-girder, OECS and MECS |
Wu et al. [90] | Oshima Bridge, Japan | A-shape | Single-girder, OECS and MECS |
Lin and Lieu [93] | Kao Ping Hsi Bridge, Taiwan | A-shape | Single-girder, OECS |
Caetano et al. [110] | Guadiana International Bridge, Spain/Portugal | A-shape | Single-girder, OECS and MECS |
Asgari et al. [119] | Tatara Bridge, Japan | A-shape | Single-girder, OECS |
Asadollahi et al. [28] | Jindo Bridge, South Korea | A-shape | Double-girder, OECS |
Sun et al. [32] | Haihe Bridge (old), China | A-shape | Single-girder, OECS |
Source | Bridge Name and Location | Configuration | Modelling Approach |
---|---|---|---|
Brownjohn and Xia [120] | Safti Link Bridge, Singapore | I-shape tower, single central cable plane, box girder deck | Multi-scale, shell elements for deck, OECS |
Brownjohn et al. [99] | Safti Link Bridge, Singapore | I-shape tower, single central cable plane, box girder deck | Multi-scale, shell elements for deck, OECS |
Zhu et al. [34] | Stonecutters Bridge, Hong Kong | Single column towers, two cable planes, two separated longitudinal box section girders | Multi-scale, solid elements for towers, shell elements for deck, OECS |
Source | Updating Parameters | Total No. of Updating Parameters |
---|---|---|
Brownjohn and Xia [120] | Concrete elastic modulus, concrete density, deck thickness (shell elements) | 21 |
Zhang et al. [117] | Deck and tower elastic modulus, density, area, moment of inertia, torsional constant, rotational mass, and bearing stiffness | 31 |
Park et al. [98] | Concrete elastic modulus, steel elastic modulus, cable elastic modulus, deck moment of inertia, deck area, area of cable, mass of deck | 9 |
Asgari et al. [119] | Steel elastic modulus, steel density, deck area, deck moment of inertia, cable elastic modulus, bearing stiffness | 5 |
Li et al. [27] | Concrete elastic modulus, concrete density, secondary dead load, additional mass, bearing stiffness | 10 |
Zhu et al. [34] | Concrete elastic modulus, concrete density, steel elastic modulus, steel density, cable elastic modulus, bearing stiffness | 9 |
Xiao et al. [64] | Concrete elastic modulus, concrete density, steel elastic modulus, steel density, cable elastic modulus, bearing stiffness | 13 |
Asadollahi et al. [28] | Elastic modulus, mass, moment of inertia of deck | 12 |
Wang et al. [45] | Concrete elastic modulus, concrete density, steel elastic modulus, steel density, cable elastic modulus | 14 |
Lin et al. [47] | Concrete elastic modulus, steel elastic modulus, deck thickness (shell elements), additional mass, bearing stiffness | 11 |
Sun et al. [32] | Concrete elastic modulus, concrete density, steel elastic modulus, steel density, additional mass | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharry, T.; Guan, H.; Nguyen, A.; Oh, E.; Hoang, N. Latest Advances in Finite Element Modelling and Model Updating of Cable-Stayed Bridges. Infrastructures 2022, 7, 8. https://doi.org/10.3390/infrastructures7010008
Sharry T, Guan H, Nguyen A, Oh E, Hoang N. Latest Advances in Finite Element Modelling and Model Updating of Cable-Stayed Bridges. Infrastructures. 2022; 7(1):8. https://doi.org/10.3390/infrastructures7010008
Chicago/Turabian StyleSharry, Thomas, Hong Guan, Andy Nguyen, Erwin Oh, and Nam Hoang. 2022. "Latest Advances in Finite Element Modelling and Model Updating of Cable-Stayed Bridges" Infrastructures 7, no. 1: 8. https://doi.org/10.3390/infrastructures7010008
APA StyleSharry, T., Guan, H., Nguyen, A., Oh, E., & Hoang, N. (2022). Latest Advances in Finite Element Modelling and Model Updating of Cable-Stayed Bridges. Infrastructures, 7(1), 8. https://doi.org/10.3390/infrastructures7010008