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Abstract: This research provides a practical guideline for Digital Image Correlation (DIC) data
variations minimization in structural engineering through simple image processing techniques. The
main objective of this research is to investigate the Pixel Averaging (P.A.) effect on the differential
strain Diff(εx) variations. Three concrete arches were tested with three-point bending using the DIC
technique for strain measurements. The measured strains are obtained through two virtual horizontal
extensometers in the middle of each arch. The Diff(εx) was selected to avoid other 2D-DIC issues,
such as the sample-camera out-of-plane movement. Three image cases, namely, one, ten, and twenty
averaged images, were used for DIC analysis of each arch. The conditions of each image case are
assessed by computing the Diff(εx) variance and the linear least square criterion (R2) between the
two extensometers. The second objective is to examine the speckles’ dilation effects on the speckle
pattern density and surface component quality utilizing the Image Erode (I.E.) technique. The (P.A.)
technique provided consistent differential strain Diff(εx) values with a variance reduction of up
to (90%) when averaged images were used. The (R2) has considerably increased (from 0.46, 0.66,
0.91 to 0.90, 0.96, 0.99), respectively, for the three samples. Moreover, the (I.E.) technique provided
qualitatively denser speckles with a highly consistent DIC surface component.

Keywords: concrete arch; DIC; digital image correlation; pre-process; structure; vision-based method

1. Introduction

Digital Image Correlation (DIC) applications have been widely accepted and used
recently, owing to the development of optical-based tools such as digital cameras and
smartphones. Likewise, the advancements in computational photography accompanied
by the rapid enhancement of the computational capabilities of the computers have also
added to making the DIC a reliable and robust metrological tool adopted by multiple fields.
However, as it is an optical-based technique, the DIC also suffers several shortcomings,
such as the data variability delivered by correlation algorithms. Deformation variations
are instigated by the ambient light noise impinging over the camera sensor. It is worth
noting that these random errors produced by light noise are different from other sources of
errors, such as camera vibration or heating. Moreover, the poor application of speckles to
the material hampers realizing good correlation features.

In the literature, Bruck et al. 1989 [1] suggested the image averaging procedure to
eliminate random error from the random noise affecting the camera sensor. To assess these
random errors, the author created an image averaged from 20 frames recorded over two
minutes and compared it with a regular image within the Newton–Raphson DIC correlation
algorithm framework [1]. Later, Pan 2013 [2] proposed a pre-processing approach based on
“pre-smoothing” of the speckles using a five-by-five Gaussian filter to reduce the correlation
bias error. The suggested technique minimized the measured displacement bias error to
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a negligible degree using only a bicubic interpolation algorithm [2]. Also, Pan et al. [3–5]
suggested several experimental approaches in 2012, 2013, and 2014. Firstly, Pan et al., 2012 [3]
implemented an active imaging DIC approach using a monochromatic light filter over
the camera lens. The active imaging approach applies a customized light illumination
with a particular wavelength over the targeted surface. Then, images are captured for DIC
analysis using a camera capped with a monochromatic light filter of a similar wavelength to
the used artificial light. This technique provided images with a high-fidelity measurement
as the camera sensor is not influenced by the ambient light variation of the environment.
The active imaging approach showed promising potential for in-field DIC applications [3].
Pan et al., 2013 [4] used bilateral telecentric lenses for 2D-DIC to minimize errors produced
by out-of-plane camera movement and camera overheating. The DIC was applied for a
simple uniaxial tensile test of an aluminum sample together with traditional strain gages
attached to the sample. The results from the DIC reveal that using a bilateral telecentric
lens effectively eliminated the out-of-plane errors and provided strain data compatible
with the conventional axial and transverse strain gauges. However, telecentric lenses are
limited due to their high cost and little depth of field [4].

Consequently, Pan et al., 2014 [5] have used low-cost imaging camera lenses and a gen-
eralized compensation technique for high-accuracy 2D-DIC. The compensation technique
comprised a fixed, non-deformable surface used as a reference for the DIC displacement
measurements, later used by Tian et al., 2018 [6]. The reference is a fixed plate near the
targeted surface placed at a similar distance from the camera. Any displacement produced
at the fixed reference surface can be considered noise later subtracted from the targeted DIC
data using a parametric model. The validity of the suggested technique was verified for in-
and out-of-plane displacement and rotation [5]. In addition, Zhu et al., 2016 [7] proposed
a “dual-reflector” imaging technique where two cameras were used to capture images on
both the front and back sides of the tested sample. The captured images on each side were
used for DIC deformation analysis, where the strain computed at any point on each side
is averaged with the corresponding point on the other side to eliminate any out-of-plane
effect during the test [7].

On the other hand, other researchers followed new computational approaches to reduce
inaccuracies and enhance the performance of the DIC deformation data. For example, Yaofeng
and Pang 2007 [8] investigated the effect of the subset size and the subset distance on the
image pattern quality and DIC deformation accuracy. Next, Cofaru et al., 2010 [9] evaluated
the subpixel estimation algorithms based on ground truth digital speckles and artificial
displacement fields.

Meanwhile, Wang et al., 2015 [10] proposed a “super-resolution” technique to reduce
the subpixel interpolation error by stacking a group of low-resolution images and con-
structing a high-resolution image to compensate for the low sampling rate of the cameras.
Following this, Ruocci et al., 2016 [11] suggested a post-process approach based on noise-
filtering for the crack assessment using the DIC. The noise filtering technique was applied
to the data extracted from the DIC virtual strain gauge by moving average to filter out
higher frequency components related to noisy punctual fluctuations [11]. Recently, Dong
and Pan 2017 [12] reviewed the speckle pattern role in DIC measurement accuracy by
addressing the critical issues related to speckle pattern fabrication and applications. The
authors have also assessed the speckle pattern quality based on systematic classification
and fabrication techniques followed in the literature [12]. Recently, a new approach based
on optimal exposure time for image noise reduction was devised by Pan et al., 2022 [13].
The new approach captures images with different exposure times to serve two purposes;
the first is to produce a reference image with the best speckle version, and the second is
to adjust the camera exposure period to obtain deformed images with quiet close speckle
quality to the reference image [13].

Thus, the quality of the DIC data mainly depends on the quality of the captured images
and the testing conditions. Therefore, the research focused on improving the pattern quality
using high-contrast patterning with high-resolution cameras. However, the experimental
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works with DIC still involve inevitable errors due to various testing conditions, such as the
out-of-plane effect [14]. Therefore, this work provides on-desk solutions for the DIC random
errors produced by the gaussian light noise. In addition, it handles poor speckle patterns
produced during lab testing by reproducing new high-contrast speckles digitally with high
fidelity. As the literature shows, this work is the first to integrate two computational image
processing techniques for minimizing random error with a high-fidelity speckle pattern.
The new approach has the potential for structural-such as bridges [15,16] and nonstructural
applications of the DIC [17]. The images captured while testing three concrete arches were
digitally processed in these approaches by developing MATLAB and Python codes. The
following section demonstrates the proposed techniques through the simplified steps for
practical and straightforward application for the DIC.

2. Image Processing Methods

Two distinct image processing algorithms were used to reduce the deleterious effect
from light noise and to process poor speckle applications. These techniques are (1) Pixels’
Averaging (P.A.) and (2) Image Eroding (I.E.). The methodology of this work is illustrated
in Figure 1. Three concrete arch bridges were tested under a single point of loading applied
at the top middle part. The test was filmed using a DSLR camera for DIC analysis. Then,
raw images are extracted and processed following the techniques illustrated in Figure 1.
Four imaging cases were investigated under similar DIC parameters, i.e., equivalent surface
deformation components such as the subset size and distance, as presented in Table 1. Also,
a similar extensometer subset size and similar extensometer length were selected at the
exact location in all cases for strain variations comparison. The extensometer locations
were set at the middle part of the arch in the horizontal direction and 50 mm apart, as
shown in Figure 1. There are 12 cases divided into 9 cases regarding Pixel Averaging (P.A.)
and the rest related to the Image Erode (I.E.) technique; refer to the last row of Table 1.
Each of the 9 (P.A.) cases computed the differential strain Diff (εx) between two horizontal
extensometers in the middle of the arch and the linear least square criterion (R2) between
the two extensometers to establish the effect of image averaging on the strain variations.
The last 3 cases are regarding the speckle pattern digital enhancement with the Image
Erode (I.E.) technique. The (I.E.) cases were derived from the optimum cases of the (P.A.)
approach. The cases are presented in Table 1 and as follows:
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Table 1. Differential strain Diff(εx) measurement cases.

Sample
Strain Measurement

(εx2: Upper Extensometer)
(εx1: Lower Extensometer)

Standard Image
(S.I.)

(No. of Images)

Pixel Average
(P.A.)

(No. of Images)

Pixel Average
(P.A.)

(No. of Images)

Image Erode
(I.E.)

(No. of Images)

Arch (B1)

Diff (εx) = (Ex.1 − Ex.2)
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1. Standard DIC images used for DIC analysis (S.I.). Only one image was extracted for
every second of the test and used for strain variations analysis.

2. Pixels’ Averaged (P.A.) images, every image used for DIC analysis is generated by
extracting and merging every ten frames of every second of the video. These (P.A.) images
were developed by averaging every pixel in the image using a customized MATLAB code [18].

3. Pixels’ Averaged (P.A.) images, every image is composed of 20 times the correspond-
ing frames of every test’s second.

4. The optimum Pixels’ Averaged (P.A.) images are further processed with the Image
Erode (I.E.) function developed by the OpenCV Python function used for speckle pattern
enhancement (I.E.) [19].

2.1. Pixel Averaging (P.A.)

The Pixel Averaging (P.A.) technique is a digital image processing method utilized to
enhance videos and images damaged by random noise. In general, the pixel average or
image averaging is utilized to remove the blurring of an image or video frame to provide
smooth and sharp edges and reduce noise. The computational algorithm computes the
arithmetic mean of the image’s grey intensity values of every corresponding pixel of the
averaged frames. As a result, when the average of the image pixels is computed, the
signal components will have a more decisive influence over the summation than the noise
components. As shown in Figure 1, the pixel averaged (P.A.) image noise (red-blue pixels)
is less than the standard image. The mathematical formulation for this technique can be
expressed in Equation (1):

A(N, x, y) =
1
N
·∑ N

i=1 I(i, x, y) (1)
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where: A: averaged intensity values of the image pixels, N: number of averaged images
(frames), I: pixel intensity value of the ith frame at the (x, y) location coordinates, i: the
frame index, and x, y: column and row coordinates of the image matrix, respectively.

It is worth noting that the (P.A.) technique is time independent such that merging of (n)
number of images in this work does provide the same number of images used for standard
DIC analysis as it initially extracts (n) counts the number of frames. However, it is essential
to point out that using the (P.A.) technique is suitable for static loading applications such
that the rate of strain change between the merged frames is negligible. Otherwise, in the
case of high-strain rate applications, a ghosting effect is expected in the averaged images as
motion is anticipated between the frames.

2.2. Image Eroding (I.E.)

Image Erode is one of the computer vision OpenCV python library kernels primarily
used for microorganisms’ detection in biological images as well as utilized for interstellar
object identification in astronomical images. As the name indicates, the Erode function
works similarly to soil erosion to erode the boundaries of the foreground entities in digital
images. The Erode kernel usually operates on binary and grayscale images requiring a
dual input, the original image and the structuring kernel. The Erodes kernel usually works
opposite its sister, the dilation kernel.

In the form of a grayscale erode, the kernel should have a height. The grayscale erosion
of H(x, y) by I(x, y) is defined by Equation (2):

(H 	 I)(x, y) = min
{

H
(
x + x′, y + y′

)
− I

(
x′, y′

)
|
(
x′, y′

)
∈ JI

}
(2)

JI. is the domain of the kernel I, and H(x, y) is supposed to be +∞ outside the image
domain. x, y: column and row coordinates of the image matrix, and x′, y′: column and row
relative coordinates of the kernel [20].

Mostly, the grayscale erode is applied with a flat Kernel (I(x, y) = 0). The grayscale
erosion is corresponding to a local-minimum operator shown by Equation (3):

(H 	 I)(x, y) = min
{

H
(
x + x′, y + y′

)
|
(
x′, y′

)
∈ JI

}
(3)

The binary erode of H(x, y) by I(x, y), denoted H θ I, is identified as the set operation
H 	 I = {k|(Ik ⊆ H}. In other words, it is the set of locations k, where the kernel moved to
location k overlap only with the foreground pixels in H [20].

The Erode and the Dilation functions are illustrated in Figure 2. As Figure 2c shows,
the Erode kernel shrinks the white color letter “i” size shown in Figure 2a in the black and
white image as it calculates the local minimum over the kernel area. Then, the scanning
Erode kernel replaces the image pixels under the overlapping kernel with a minimum pixel
value. More information about this kernel can be found in the computer vision OpenCV
documentation [21]. In this work, the DIC requires high-contrast intensity images expressed
in the field through randomly painted black speckle patterns over a white background.
The image Erosion approach seems a perfect treatment for poorly painted surfaces and
low-contrast images where it can be used to enhance, sharpen, and increase the size of the
black speckles in the image domain.
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3. Experimental Setup

The Digital Image correlation technique was utilized through an experimental cam-
paign of three concrete arches tested by a Universal Tensile Machine (UTM) at the Heavy
Structure & Strong Floor Laboratory, University of Sains Malaysia (USM). Three simply
supported concrete arches were tested under a three-point bending loading to determine
the arches working horizontal and vertical strains under the load. The load was applied
manually using a hydraulic jack and 50 kN load cell at a monotonic rate of 1 kN increment.
The arch surface was painted using white water-based paint, and then a black speckle
pattern was realized through black paint sprayed over the white base. The test setup is
illustrated in Figure 3. The black speckles were sprayed inconsistently to simulate the
condition of non-trained in-field applications. In addition, three Linear Variable Differential
Transformer LVDTs were used to measure the arch deflection at the middle (one vertical
LVDT) and the quarter (one horizontal and one vertical LVDT), as shown in Figure 3. The
Samsung DSLR camera has a 16 MP resolution with a video setting adjusted for indoor
image acquisition. The camera was placed 80 cm from the arch surface, having a height
similar to the arch. The camera was turned on 30 min before starting the test to avoid the
errors produced by the camera heating [22]. The video setting was set to 25 frames per
second at 1080 P resolution. Three groups of images were extracted (1, 10, 20) frames per
every second from every video captured for each specimen. The extracted images were
uncompressed with a TIFF format.
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Image averaging was implemented by taking every (10 or 20) frames and then merging
(averaging) their pixels to a single image using a MATLAB code developed by the author.
Next, the new optimized averaged pixel images were digitally eroded to increase the size
of the speckle patterns. The eroding process was implemented to the (P.A.) images using
the OpenCV-Python library, namely a (3 × 3) erode-dilation kernel. The Pixel Averaging
(P.A.) and Image Erode’s (I.E.) pre-processing procedures are illustrated in Figure 1.

A GOM correlates DIC software was used for the DIC analysis of the three cases;
Standard Image (S.I.), Pixel Averaged (P.A.), and Image Erode (I.E.) images developed in
this research [23]. Similar DIC parameters were used for all three cases, a subset size (facet
size) of 40 × 40 pixel and a subset distance (point distance) of 20 pixel for both surface and
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point components. Similar surface and point component locations were selected for all
cases for results comparison. The differential strain between the two parallel horizontal
extensometers of each sample (as shown in Figure 3) was considered to avoid other 2D-DIC
issues related to the sample or camera out-of-plane movement, as shown in Figure 4.
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4. Results and Discussion

The computed parameters were (1) the differential strain Diff(εx) (Figure 4) between
two horizontal extensometers in the middle of the arch and (2) the correlation between the
two extensometers through finding the coefficient linear least square (R2). The results of
the maximum differential strain Diff(εx) against the number of averaged images, Diff(εx)
range between the maximum and minimum Diff(εx) values, and the coefficient of least
square (R2) of the differential strain Diff(εx) are presented in Table 2. The differential
strain Diff(εx) values for each image case of the three tested arches are also respectively
shown in Figures 5–7. The correlation between the two extensometer strain values from
the DIC analysis of all image cases and arch samples is shown in Figures 8–10. The effect
of image averaging on the initial guess of the correlation algorithm and strain variation
is illustrated in Figure 11. The Image Erode (I.E.) effect on the strain variation compared
to the non-eroded Pixel Averaged images is shown in Figures 5–7. The (I.E.) effect on the
speckle pattern density and surface component quality is shown in Figure 12.

Table 2. Differential strain Diff(εx), strain variance, and (R2) of the extensometers.

Arch B1 B2 B3

Number of
averaged
images

1 10 20 20E 1 10 20 20E 1 10 20 20E

Max. differential
strain Diff(εx) % 0.056 0.025 0.034 0.043 0.02 0.03 0.034 0.043 0.074 0.037 0.035 0.03

Diff(εx) range 0.018 0.012 0.001 0.000 0.054 0.007 0.001 0.000 0.000 0.000 0.000 0.013
Diff(εx) variance

(%decrease)
7.5 × 10−4

(0%)
1.4 × 10−4

(−81%)
0.8 × 10−4

(−90%)
1.1 × 10−4

(−85%)
9.4 × 10−4

(0%)
3.6 × 10−4

(−61%)
3.5 × 10−4

(−63%)
4.0 × 10−4

(−57%)
4.9 × 10−4

(0%)
0.9 × 10−4

(−81%)
0.8 × 10−4

(−83%)
0.9 × 10−4

(−81%)
Coefficient (R2)

(Ex1vsEx2)
0.66 0.94 0.96 0.93 0.91 0.99 0.98 0.96 0.46 0.90 0.92 0.91
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Figure 5. Differential strain Diff(εx) between (Ex1–Ex2) at mid-section of arch B1, for 1 image,
10,20(P.A.) images and Image Erode.
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Figure 8. Strain values correlation of two horizontal extensometers (Ex1 & Ex2) at the middle section
of arch B1: (a) 1 image, (b) 10 images, (c) 20 images.
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Figure 9. Strain values correlation of two horizontal extensometers (Ex1 & Ex2) at the middle section
of arch B2: (a) 1 image, (b) 10 images, (c) 20 images.
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Figure 10. Strain values correlation of two horizontal extensometers (Ex1 & Ex2) at the middle section
of arch B3: (a) 1 image, (b) 10 images, (c) 20 images.
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It is difficult to provide accurate and reliable strain values from the DIC analysis due
to the high strain variation provided by the one-image cases, as shown in Figures 5–7 (the
red series). Likewise, Figures 5–7 show that the 10 and 20 averaged image cases have lower
differential strain variations than the one image cases of all arch samples. The differential
strain Diff(εx) trend increases (tension bending) as the load grows with time. Therefore,
the strain disparity of the one-image case can be attributed to the random light noise
and not the actual material deformation. Table 2 presents the maximum differential strain
Diff(εx), which is defined as the last Diff(εx) value recorded during the test. It is shown from
Figures 5–7 and Table 2 that the maximum Diff(εx) for all samples approaches a specific
strain range (~0.034) when the number of averaged images increases. It is reasonable to
have comparable Diff(εx) values for the arch samples as they are made from the same
concrete mix, cured under the same conditions, and tested under the same loading protocol.
The Diff(εx) range is defined as the difference between the highest and lowest Diff(εx) of
each image case of all samples. Equally, the range of maximum Diff(εx) reduces among all
samples when averaged images are used for the DIC analysis. To clarify, when 20 averaged
images are compared to the strain range (0.02–0.074) of the one image cases, all arch samples
had maximum Diff(εx) values ranging between (0.034–0.035), as shown in Table 2. In fact,
the range of maximum Diff(εx) (0.054) of the one image cases is almost three times the
Diff(εx) value (0.02) of the one image sample of arch B2, as shown in Table 2.

Table 2 also shows that Diff(εx) variance decreases up to 90% (in the case of sample
B1) when the number of averaged images of each sample increases to 20. Overall, the
strain variance decreases when the number of averaged images used for every stage of
DIC analysis increases. The variance diminution is attributed to the extensometer subset’s
initial guess (correlation peak) position being closer to the subset’s actual location for the
averaged image than the single image. The clarification is presented in Figure 11, which
shows two consecutive stages of a single image and ten averaged images extensometer
subsets. The close correlation peak estimation is credited to the high contrast and random
noise reduction, providing speckles with more consistent grey intensities in the averaged
images, as shown in Figure 11.

The change of the coefficient (R2) value (from 0.46 to 0.90, in the case of sample B3)
implies a substantial improvement of the linear model representation when ten averaged
images are utilized compared to the single image, as shown in Table 2. However, only a
marginal increase in the (R2) values (from 0.90 to 0.92, in the case of sample B3) is observed
between (10–20) images, as shown in Table 2. Likewise, the growth of the (R2) values of all
arch samples when averaged images are used is reflected through the solid linear correlation
trend between the two selected extensometers, as shown in Figures 8b, 9b and 10b, compared
to the scattering shown in Figures 8a, 9a and 10a. However, Figures 8c, 9c and 10c show an
inappreciable enhancement of the linear correlation trend compared to Figures 8b, 9b and 10b.
The strong correlation in Figures 8b, 9b and 10b and Figures 8c, 9c and 10c provides further
evidence of the minimization of strain variance.

It is worth noting that the strain values of each extensometer vary from one sample
to another, as shown in Figures 8–10. The differences are produced by the lab testing
circumstances, such as sample or camera movement. Therefore, selecting the differential
strain Diff(εx) between the two extensometers should provide error-free of these influencing
factors, as shown in Figure 4. In summary, it is shown that the variance reduction and the
improvement of (R2) establish the positive impact of the Pixel Average (P.A.) technique on
the accuracy of the acquired strain values. Thus, the 20 averaged images provide the most
consistent Diff(εx) values and will be further used for the Image Erode (I.E.) cases.

The Image Erode (I.E.) approach requires grey images; therefore, the Pixel Average
(P.A.) images are converted to grayscale images using the Open-CV(COLOR_BGR2GRAY)
function. The Image Erode (I.E.) cases are derived from the 20 averaged images and pro-
cessed with a (3× 3) erode kernel for speckle enhancement. The (I.E.) samples of (B1 and B2)
show a (26%) increase in the maximum differential strain Diff(εx) than their corresponding
(P.A.) cases. Figures 5 and 6 show that the (I.E.) Diff(εx) values are consistently higher than
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the (P.A.) Diff(εx) values which are attributed to the interpolation bias of the correlation
subset. The correlation bias is initiated when the speckle size is expanded, making the
initial guess tend to a specific region due to the high correlation provided by that region.
The findings agree with the “image smoothing” approach suggested by Pan et al., 2013 to
reduce the correlation bias error [2]. Table 2 shows that the eroded images have a slightly
higher variance (around 5%) than their corresponding 20 averaged images. Table 2 shows a
slight decrease in the (R2) values due to the variance development. The variance increases
in the (I.E.) images because of bias boosting of the subset due to speckle size enlargement.
However, the quality of the surface pattern shows an enhancement compared to the (P.A.)
images due to the weak correlation between the speckles, as shown in Figure 12. The
Image Erode’s (I.E.) primary objective is not to reduce the light variation but to enhance the
contrast and increase the density of the poor speckle patterns. The Erode images provided
more distinguishable speckle patterns, which helped to recognize microcracks and strain
concentration regions in low-contrast images.

5. Conclusions

This work proposes two pre-processing methods to provide on-desk solutions for
the Digital Image Correlation (DIC) random light noise problem. Two DIC’s significant
challenges during the application, the high data variations and poor speckled surfaces, were
treated using simple image processing techniques. The two approaches were developed
using special computer software, Pixel Averaging (P.A.), developed with MATLAB code
and Image Erode (I.E.) using OpenCV Python image processing package. The (P.A.) method
was applied to the standard images captured while testing three simply supported concrete
arches under a three-point bending flexural loading. Twelve cases were developed based on
Standard Image (S.I.), Pixel Averaging (P.A.), and Image Erode (I.E.) to critically characterize
and compare the maximum differential strain Diff(εx), Diff(εx) variance and its coefficient
of linear least square (R2).

The Pixel Averaging (P.A.) technique provided consistent differential strain Diff(εx)
values with a variance reduction of up to (90%) when averaged images were used for DIC
analysis compared to the standard images. The coefficient of linear least square (R2) has
also considerably increased from 0.46 to 0.90 (in the case of sample B3), which implies a
substantial improvement of the linear model representation when ten averaged images are
utilized compared to the single image. However, only a slight improvement of the (R2)
value when twenty averaged images are used compared to the ten image cases.

The (I.E.) led to a slight increase in the Diff(εx) variance due to the correlation bias
of the extensometers’ subset. The Image Erode (I.E.) approach provided qualitatively
enhanced speckles with a highly consistent DIC surface component. The high surface
component quality enables early crack detection by distinguishing the microcrack paths
even when using low-contrast images.

The research highlights the importance of both approaches’ potential for DIC appli-
cations in the field where light conditions and test setups are challenging to control. The
presented results encourage other image-enhancing approaches for more reliable data acqui-
sition using the DIC technique. Finally, the image merging with the DIC technique can also
be expanded to fields other than structural monitoring where the light and environmental
conditions impede the use of the DIC technique.
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