Investigating Concrete Properties Using Dielectric Constant from Ground Penetrating Radar Scans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Concrete Samples and Tests
2.2. GPR Scanning
2.3. Data Processing
2.4. Repeatability
3. Results
4. Discussion
5. Conclusions
- A relationship does exist between dielectric constant and material properties for normal-weight concrete.
- Dielectric constant is a weak indicator of compressive strength in normal-weight concrete ( = 0.76).
- Density and porosity’s relationships with dielectric constant are mostly inconclusive ( = 0.64 & = 0.52).
- Not all mix designs are applicable to each material property relationship.
- Dielectric constant can be used to determine mix design type.
- The method is repeatable in a controlled environment.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GPR | Ground penetrating radar |
SCM | Supplementary cementitious materials |
AA | Alkali-activated concrete mix |
HPC | High-performance concrete mix |
References
- 2021 Report Card for America’s Infrastructure. 2021. Available online: https://infrastructurereportcard.org/ (accessed on 5 November 2022).
- Prakash, R. Non-Destructive Testing Techniques; New Age International: New Delhi, India, 2012. [Google Scholar]
- Benedetto, A.; Pajewski, L. Civil Engineering Applications of Ground Penetrating Radar; Springer Transactions in Civil and Environmental Engineering; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Everett, M.E. Near-Surface Applied Geophysics; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Morris, I.M.; Kumar, V.; Glisic, B. Predicting material properties of concrete from ground-penetrating radar attributes. Struct. Health Monit. 2020, 20, 147592172097699. [Google Scholar] [CrossRef]
- Senin, S.; Hamid, R. Ground penetrating radar wave attenuation models for estimation of moisture and chloride content in concrete slab. Constr. Build. Mater. 2016, 106, 659–669. [Google Scholar] [CrossRef]
- Lai, W.; Kou, S.; Tsang, W.; Poon, C. Characterization of concrete properties from dielectric properties using ground penetrating radar. Cem. Concr. Res. 2009, 39, 687–695. [Google Scholar] [CrossRef]
- Lai, W.L.; Kind, T.; Wiggenhauser, H. A study of concrete hydration and dielectric relaxation mechanism using ground penetrating radar and short-time Fourier transform. EURASIP J. Adv. Signal Process. 2010, 2010, 317216. [Google Scholar] [CrossRef] [Green Version]
- Dérobert, X.; Villain, G. Development of a multi-linear quadratic experimental design for the EM characterization of concretes in the radar frequency-band. Constr. Build. Mater. 2017, 136, 237–245. [Google Scholar] [CrossRef]
- Chung, K.; Yuan, L.; Ji, S.; Sun, L.; Qu, C.; Zhang, C. Dielectric characterization of Chinese standard concrete for compressive strength evaluation. Appl. Sci. 2017, 7, 177. [Google Scholar] [CrossRef] [Green Version]
- Bungey, J.; Milliard, S.; Grantham, M. Testing of Concrete in Structures; Taylor and Francis: London, UK, 2006. [Google Scholar]
- ASTM. ASTM C 39 Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens; ASTM International: West Conshohocken, PA, USA, 2021. [Google Scholar] [CrossRef]
- Safiuddin, M.; Hearn, N. Comparison of ASTM saturation techniques for measuring the permeable porosity of concrete. Cem. Concr. Res. 2005, 35, 1008–1013. [Google Scholar] [CrossRef]
- Komarov, V.V. Handbook of Dielectric and Thermal Properties of Materials at Microwave Frequencies; Artech House: Boston, MA, USA, 2012. [Google Scholar]
Base Mix | Normal Weight Concrete | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Additives | Flyash (FA) | Slag (SL) | None (CF) | Paste Only (P) | ||||||||
Curing Condition | E | C | H | E | C | H | E | C | H | E | C | H |
w/c ratio | 0.41 | 0.41 | 0.41 | 0.41 | ||||||||
average density (pcf) | 150 | 149 | 150 | 132 | ||||||||
average porosity | 0.048 | 0.049 | 0.062 | 0.098 | ||||||||
average strength (MPa) | 46.6 | 35.8 | 43.0 | 55.8 | ||||||||
Base Mix | High Performance Concrete | Alkali Activated Concrete | ||||||||||
Additives | Flyash (FA) | Slag (SL) | None (CF) | N/A | ||||||||
Curing Condition | E | C | H | E | C | H | E | C | H | E | C | H |
w/c ratio | 0.34 | 0.34 | 0.28 | 0.40 | ||||||||
average density (pcf) | 152 | 150 | 153 | 136 | ||||||||
average porosity | 0.039 | 0.036 | 0.022 | 0.099 | ||||||||
average strength (MPa) | 37.6 | 37.3 | 53.8 | 34.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taylor, J.M.; Morris, I.M. Investigating Concrete Properties Using Dielectric Constant from Ground Penetrating Radar Scans. Infrastructures 2022, 7, 173. https://doi.org/10.3390/infrastructures7120173
Taylor JM, Morris IM. Investigating Concrete Properties Using Dielectric Constant from Ground Penetrating Radar Scans. Infrastructures. 2022; 7(12):173. https://doi.org/10.3390/infrastructures7120173
Chicago/Turabian StyleTaylor, Jonathan M., and Isabel M. Morris. 2022. "Investigating Concrete Properties Using Dielectric Constant from Ground Penetrating Radar Scans" Infrastructures 7, no. 12: 173. https://doi.org/10.3390/infrastructures7120173
APA StyleTaylor, J. M., & Morris, I. M. (2022). Investigating Concrete Properties Using Dielectric Constant from Ground Penetrating Radar Scans. Infrastructures, 7(12), 173. https://doi.org/10.3390/infrastructures7120173