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Abstract: A detailed modelling approach to represent masonry at the meso-scale is proposed, based
on the discrete element method, considering the nonlinear behavior of the joints and the units. The
fracture of units is represented by the bonded-block concept, in which a random network of potential
cracks is created, allowing the progressive development of failure mechanisms. For simplicity, only
the 2D case is presented, but the extension to 3D is straightforward. A key component of the proposed
model is a framework for a joint or interface constitutive model, including the post-peak softening
range, taking into account the experimental fracture energies. In this model, the softening curves in
tension or shear are defined by piecewise linear segments, calibrated to reproduce the most common
masonry constitutive models. The essential issues involved in the application of bonded-block
models to masonry are examined, namely the block shape, either Voronoi polygons or triangles; size;
deformability; and the influence of the main constitutive parameters. Uniaxial compression tests are
analyzed in detail. The simulation of a well-known experiment of a brick panel under shear shows
the good performance of the proposed approach. The investigation results demonstrate the model’s
capabilities and provide guidelines for its application.

Keywords: masonry; meso-scale modelling; discrete elements; interface constitutive models

1. Introduction

Masonry is a heterogeneous material composed of units, such as bricks, stones, or
blocks of various materials and shapes, bonded together with or without mortar. The local
source of materials, the construction techniques and the age of the constructions makes
for a great diversity of structural types and performance. In common, the discontinuous
nature of these structures and the low tensile strength of the materials (units and binders)
create a complex nonlinear behavior. It is to be expected that different conceptual models
can be used to analyze the mechanical response of masonry. The purpose of the analysis
is important in the selection of the most appropriate idealization. Models can be used
in the design of new structures, the assessment of existing ones, the evaluation of the
need for reinforcing historical constructions, and other situations. Whether the aim is the
examination of the ultimate capacity or in-service performance, different tools of analysis,
possibly with different underlying assumptions, may be chosen for each type of structure.
Elaborate models always require more extensive material characterization, so the available
experimental information always limits the complexity of the idealization. A wide class of
numerical models has been applied successfully to masonry, as discussed in various critical
review studies (Lourenço [1]; Roca et al. [2]; D’Altri et al. [3]).

The scale of the analysis is important in the choice of model. The global response of
large constructions is usually better addressed with equivalent continuum models (“macro-
models”) using the finite element method (FEM) [1]. An explicit representation of the joints,
as in the designated “micro-models”, is often possible in the study of panels, walls, or
smaller buildings. For large structures, the computational demands increase, but these
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more detailed models are increasingly applied to more complex problems. Both the finite
element method (FEM) and the discrete element method (DEM) can address this type
of model, in which the blocky structure of masonry is reproduced. DEM belongs to a
broad class of models that view the structure as a set of blocks in mechanical interaction.
Its power and versatility has been demonstrated in many applications to masonry (e.g.,
Sarhosis et al. [4]). It is conceptually linked to other discrete approaches, which have
been devised to extend the scope of classical limit equilibrium methods, often tailored
to specific problems, namely rigid block analysis, macro-blocks, FEM/DEM and related
techniques (e.g., Milani et al. [5]; Caliò et al. [6]; Chiozzi et al. [7]; Baraldi et al. [8]). The
DEM class also includes more elaborate numerical idealization, namely addressing block
internal deformation and fracture, thus blurring the frontier between FEM and DEM. The
point contact representation, a key feature to efficiently address the large displacement
range, generally differentiates DEM codes (Lemos [9]). DEM models, as with all detailed
numerical models, may require significant computational resources, thus limiting the size
of structures that can be analyzed. The separate representation of unit and joint behavior is
also more demanding in terms of input material parameters. Various alternative approaches
were proposed to provide more a efficient analysis of larger structures. In the FEM field, the
combination of micro- and macro-models to simulate different parts of the same structure
is shown to be a very effective tool (Funari et al. [10]). The automation of procedures
to identify the multiple domains of analysis is an important aspect of these multi-scale
modelling techniques (Driesen et al. [11]).

At a finer scale of analysis, models of lab tests and small assemblages allow for a de-
tailed representation of each component. These are models that are intended to investigate
fundamental aspects of behavior, providing insights into the outcome of experiments. An
active field of research is the study of rock fracture with bonded-particle models, a class
of DEM models in which random assemblies of circular or spherical particles are used
to simulate uniaxial or triaxial tests of rock specimens (Potyondy and Cundall [12]). An
application of particle models to a masonry stone wall was presented by Azevedo et al. [13].
The use of polygonal blocks instead of circular particles, while increasing computational
demands, provides a closer representation of the structure of geomaterials. Random net-
works of potential cracks are used to define the possible paths of fracture propagation
through the solid material. An early example of use of random assemblies of polygonal
blocks to define the potential fracturing paths in a concrete beam was presented by Lorig
and Cundall [14]. Vonk [15] addressed the detailed modelling of concrete compression tests
using triangular and polygonal blocks. More recently, these block models, designated as
“bonded-block models (BBM)”, have been more extensively used in fracture studies of rock
and other geomaterials (Garza-Cruz and Pierce [16]; Lorig et al. [17]). A random network
of cracks creates blocks, shaped as triangles/tetrahedra or as Voronoi polygons/polyhedra
(Herbst et al. [18]), through which the fracture process progressively develops (Yoon &
Hazzard [19]).

In masonry, these detailed analyses at the meso-scale may address the fracture and
breakage of the units or the mortar–unit interaction, mainly focusing on the analysis
of lab experiments or structural components. Pina-Henriques and Lourenço [20] used
FEM models for these detailed analyses. In the DEM context, Sarhosis and Lemos [21]
showed that bonded-block models are capable of reproducing the observed behavior
of mortared joints in tension and shear. The compressive failure of a brick stack was
also addressed, representing both the units and the mortar by bonded-block assemblies.
Chen et al. [22] modelled brick triplet tests, using Voronoi block assemblies to examine the
fracture propagation in the mortar and mortar–brick interface. Baratucci et al. [23] modelled
the same type of test under cyclic loads. Pulatsu et al. [24,25] employed 3D bonded-block
models to study the fracture behavior of masonry prisms and wallettes. Bretas et al. [26]
applied a similar concept to the safety analysis of masonry dams.

From its original development by Cundall, DEM attempted to represent the physi-
cal reality by means of assemblies of particles or blocks using the simplest constitutive
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assumptions for the mechanical interaction between them (Cundall [27]). In masonry
applications, Mohr–Coulomb models are the most common, with the breakage of bonded
contacts following a brittle failure model (e.g., [21]). It is widely recognized that a closer
representation of fracture processes can be achieved with constitutive models displaying
post-peak weakening, in tension or shear, in such a way that the fracture energies are taken
into account. The widely used joint model proposed by Lourenço and Rots [28] includes an
exponential softening regime. Joint constitutive laws with softening developed by Macorini
and Izzudin [29], other authors for FEM models, and Pulatsu et al. [24,25] for DEM models
will also be discussed.

In the present paper, the concept of bonded-block models for the detailed analysis of
masonry at the meso-scale is examined. The fundamental assumptions for these models
are presented and analyzed in a comprehensive manner, followed by a discussion of the
various options available, which are tested in a set of numerical simulations. A novel
general framework for joint constitutive laws incorporating post-peak weakening and
the normal and shear directions is proposed. It is shown that it can reproduce the key
aspects of masonry joint behavior, while also being able to represent the fracture processes
in the bonded joint network inside the units. The results of a series of numerical simula-
tions of unit failure under compression provide an assessment of the main variables in
a bonded-block model, including the geometrical patterns and constitutive parameters.
Several random block generations for each case are compared, to evaluate the variability of
results. Numerical and computational issues, namely efficiency questions, are also critically
examined. Finally, an application to a shear brick panel, previously analyzed by various
authors with other numerical models is presented and the performance of the proposed
approach is discussed.

2. Bonded-Block Models for Meso-Scale Analysis of Masonry

The designation “bonded-block model” has been employed in rock mechanics [16]
through comparisons with the bonded-particle models, based on spherical particles [12]. In
the masonry literature, “detailed micro-model” has also been applied to similar approaches,
as in Sarhosis and Lemos [21], where the essential concepts of this type of meso-scale
representation are presented.

2.1. Block Geometry and Mechanics

The DEM bonded-block model is composed of discrete blocks, separated by discon-
tinuity surfaces of two types: (i) the real masonry joints and interfaces; (ii) the random
network of discontinuities that define the potential cracks inside the units and the mortar.
Figure 1a shows the case in which both the unit and the mortar are divided into Voronoi-
shaped polygonal blocks, hereafter named “inner-blocks”, which are initially bonded. The
real discontinuities in this case are the mortar–unit interfaces. The random cracks are
assigned the strength of either the intact material of the unit or the mortar. A simplified
version is shown in Figure 1b, where only the unit is divided into bonded inner-blocks.
The brick-to-brick joint, which could be dry mortared, is represented by the corresponding
joint constitutive model. This option is mainly intended to reduce the computational effort,
in cases where the masonry joints have a well-known behavior.

Voronoi patterns resemble the grain structure of many rocks, as used by Lan et al. [30],
in which inner-blocks correspond to different minerals; other block shapes have also
been used. Figure 1c shows a triangular inner-block structure generated by a Delaunay
algorithm, which corresponds to connecting the centers of adjacent Voronoi polygons.
An alternative procedure is to subdivide each Voronoi polygon into radial triangles. If
the Voronoi polygons are intended to mimic a grain structure of a rock material, the
radial joints can be assigned different properties from the peripheral joints, allowing the
distinction between inter-grain and intra-grain cracking (Gao and Stead [31]). More often,
the inner-block shape is simply intended to provide a network of potential cracks with
random orientations. Voronoi shapes typically lead to cracking patterns that resemble
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the observed tensile cracking in masonry units. Tetrahedral inner-blocks, generated by a
Delaunay triangulation algorithm, have also been used [16]. The triangular or tetrahedral
patterns provide a network of potential cracks with more continuity, as many planes
meet at the nodes, so the shear strength is generally lower, as discussed in the following
calibration examples.
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Figure 1. Representation of masonry units and mortar joints by means of polygonal elements (a).
Representation of units by Voronoi inner-blocks (b); or triangular inner-blocks (c).

The inner-blocks can be assumed to behave as rigid blocks, thus concentrating all
the system deformation in the joints. A more versatile representation allows the blocks to
deform, which can be achieved with an internal division into elements (or zones), which are
standard uniform strain finite elements, triangular or tetrahedral. The interaction between
inner-blocks follows the standard DEM representation using point contacts. Typically,
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2-point contacts are present at the ends of each edge, as shown in Figure 2. However, if
a finer internal element mesh is used, the edge will have more contacts, and thus a more
refined representation of the distribution of the contact stresses. The contact mechanics will
be addressed in the next section.
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2.2. Micro- and Macro-Properties

The input material parameters that govern the mechanical behavior of inner-blocks and
their interfaces will be designated as “micro-properties”. These have to be selected in such
a way that the global response matches the experimental behavior of the masonry materials,
which will be referred to as “macro-properties”. The deformability of the unit depends
on the inner-block moduli and the stiffnesses of the joints between them. Globally, the
random-shaped block system should match the experimental moduli of the unit material.
Various options can be adopted for the split of the deformation between blocks and joints.
If the inner-blocks are rigid, all of the deformability is given by the joints. At the other
extreme, if the inner-blocks are assigned the unit Young’s modulus, the joints will require a
very high stiffness, which may damage the computational efficiency. Intermediate solutions
are possible, as will be analyzed below (ref. Section 4).

Similar considerations apply to the mortar material if it is also discretized into inner-
blocks (Figure 1a). A simplified representation of the mortar joint as a zero-thickness
interface (Figure 1b), the type of joint models used in the standard simplified micro-
modelling approach, can be applied with the joint stiffnesses assigned to the experimental
values for mortared or dry joints [1]. Rigid or elastic inner-blocks are the common choices.
In principle, non-elastic (e.g., elasto-plastic) inner-blocks can be used, but the extra number
of parameters required makes this choice too complex, losing the main advantages of the
bonded-block concept.

The discretization of the unit into inner-blocks provides a potential fracture network
of fictitious random fractures. The mechanical response of the unit is, to some extent,
dependent on the pattern and size of the inner-blocks. In general, a calibration procedure
is required to provide the properties of the various model components (inner-blocks
and fictitious joints) that correctly reproduce the experimental behavior of each material
or interface.

The first step is to reproduce the elastic response. For the units, the unit Young’s
modulus needs to be matched, by splitting its deformability into inner-block moduli and
joints. For a rigid block system, a first approximation can be obtained using a joint normal
stiffness kn given by:

kn = E/d (1)

where E is the unit Young’s modulus and d is the average spacing. For random patterns,
this approximation has to be verified by a numerical test, and some calibration is usually
required to meet the target value, E. The Poisson’s ratio (ν) shows a large dependence on
the ratio between joint shear and normal stiffness, ks/kn, increasing with this ratio. A first
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approximation of the joint shear stiffness, for rigid block models, assumes a ratio equal to
the ratio G/E, between shear modulus and Young’s modulus of the material:

ks = G/d (2)

For a given block system, a numerical test can provide an approximation closer to the
desired Poisson’s ratio of the unit material. When deformable blocks are employed, the
total unit deformability will depend on both the joints and the inner-blocks. Different ratios
can be adopted, as exemplified in Section 4.

Bonded-block models typically assume that blocks are rigid or elastic, thus the material
strength is a function of the joint properties. In bonded-particle models, the calibration
of strength parameters is a key step, as the sample strength is dependent on the particle
sizes. For a given particle size, the contact micro-properties are chosen to match the known
material macro-properties, using numerical tests following established procedures [12]. In
the present bonded-block models with joint softening laws that incorporate a given fracture
energy, the dependence on inner-block size can be reduced, but not totally eliminated, as the
block size and contact discretization are typically not fine enough, given the computational
constraints, to provide an accurate fracture propagation analysis. The size effect issue is
analyzed in Section 4.

The calibration procedure can be performed by numerical simulation of elementary
loading tests on a sample of the BBM (bonded-block model) with the block pattern and
size that will be used in the global model. Uniaxial tension, uniaxial compression and,
potentially, biaxial compression tests can be undertaken. The tensile strength can be
calibrated by simulating a uniaxial tensile test. If the fracture energy is respected, the micro-
and macro-properties are typically not very different, so the experimental tensile strength
is often assigned to the joints between inner-blocks. The uniaxial compression test is the
critical test for masonry structures, and it will be examined in detail in Section 4. For a
Mohr–Coulomb type of model, this test will provide the cohesion and the friction angle of
the BBM joints which reproduce the experimental uniaxial compression strength.

2.3. DEM Solution and Numerical Issues

The present bonded-block model was implemented in the discrete element code
UDEC (Itasca [32]). This code follows Cundall’s DEM approach, employing a dynamic
time-stepping algorithm to solve either quasi-static or dynamic problems. By introducing
artificially high damping, the dynamic algorithm can be made to converge with the static
solution, either an equilibrium state or a failure process, a procedure known as dynamic
relaxation (Cundall [32]). The progressive updating of block and contact locations allow
the analysis to continue into the large displacement range. When deformable blocks are
used, the algorithm performs the time integration of the equations of motion of the nodes
(or grid-points) that define the block geometry in Figure 2, which can be expressed as:

m
..
u + Fd

( .
u
)
+ Fe(u) + Fc(u) = Fa (3)

where m is the nodal mass; u is the nodal displacement vector;
.
u and

..
u are the nodal

velocity and acceleration vectors; Fd
( .
u
)

is the damping force vector, a function of the nodal
velocities; Fe(u) is the nodal forces equivalent to the internal element stresses, a function of
the nodal displacements; Fc(u) is the forces from the contacts on the adjacent edges; and
Fa is the external applied loads. The element and contact forces applied to the node are
calculated according to standard interpolation procedures. The damping force may have
several forms. Viscous damping can be adopted, as is the usual case in dynamic analysis.
For quasi-static processes, however, viscous damping displays a high degree of dependence
on system elastic properties, requiring adaptive algorithms to control the parameters for an
efficient solution. A better performance and a smoother convergence to the solution can be
achieved with Cundall’s “local damping” [33], a non-viscous energy dissipation procedure
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in which the magnitude of the damping force is proportional to the nodal out-of-balance
force, while its direction always opposes the nodal velocity:

Fd = −α |Fu| sign
( .
u
)

(4)

where Fu stands for the nodal unbalanced force vector and sign
( .
u
)

is a vector of unit
components with the sign of the nodal velocity components. The parameter α is typically
assigned a value in the vicinity of 0.8, which is shown to produce an efficient convergence
to the solution in most cases [32].

The equations of motion are solved by an explicit finite-difference algorithm, which
is very appropriate for simulating a large displacement range, as the contact types and
locations are updated as the system evolves. The main disadvantage is that it is only
conditionally stable, requiring small time steps. To obtain a better performance, it is
advisable to avoid large values of joints stiffness or element moduli, as will be discussed in
Section 4. A very stiff block may be better represented as a rigid block, while joint stiffness
should be limited to values that are physically reasonable.

3. A Framework for Joint Constitutive Models with Post-Peak Softening
3.1. Constitutive Models for Masonry Joints and Interfaces

Constitutive models for joints in masonry structures are generally based on the concept
of a zero-thickness interface, in which the deformation is characterized by the difference
in displacements across the interface, designated as interface or joint displacements. The
interface displacements are typically expressed in terms of normal and shear components,
and the constitutive model provides the corresponding normal and shear stresses, as
a function of the displacements and possibly other state parameters. Various authors
proposed constitutive relations to reproduce experimental data, using elasto-plastic (e.g.,
Lourenço and Rots [28]) or damage concepts (e.g., Gambarotta and Lagomarsino [34]).
A post-peak weakening curve, typically with an exponential shape, is introduced in the
normal and shear behavior, the area under the curve representing the fracture energies in
the tension and shear modes. The softening rate can be scaled to match the experimental
values of fracture energies for masonry materials (Lourenço [35]). Some models also
introduce a nonlinear curve in the compressive branch in order to simulate the failure of
the material under high compression.

These constitutive models with post-peak softening (or displacement weakening) have
been implemented in FEM codes by various authors using interface elements (e.g., Macorini
and Izzuddin [29]). In DEM codes, they have been used less often, as the Mohr–Coulomb
model with a brittle failure after peak is the most common idealization. Resende et al. [36]
implemented a joint model with linear softening in tension and shear in the code 3DEC, ap-
plied to concrete and rock fracture problems. More recently, several authors began applying
softening laws in DEM models. Pulatsu et al. [24] proposed a model with linear or polyno-
mial tension-softening curves. This model was extended by Pulatsu et al. [25] by adopting
a shear softening behavior following linear and exponential laws and validated against
tests on masonry brick wallets, and by Pulatsu et al. [37] to include yielding in compression,
according to a linear softening law. Yuen et al. [38] proposed a damage–plasticity model for
masonry joints, implemented in a discrete finite element context. Bisoffi-Sauve et al. [39]
developed a constitutive model for the analysis of mixed mode fracture of mortar joints,
also for a DEM code.

In the present BBM model, a general framework is proposed, which is intended
to encompass various types of softening curves, extending the model developed by
Resende et al. [36]. A piecewise linear approximation is employed for the softening in
tension and shear, which has the ability to approximate the exponential curve or other
shapes, even with a limited number of segments. It is shown in the examples below that
a softening curve defined by two segments, i.e., a bilinear representation, provides an
acceptable approximation for many problems. BBM models represent compressive failure
through the progressive cracking and slip of the random joint network; therefore, the
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present constitutive model assumes elastic behavior in compression. The inclusion of
compressive failure in a joint constitutive model provides a very appealing solution in
a small displacement analysis. When collapse mechanisms are followed into the large
displacement range, however, the progressive overlap of the block edges tends to pose
numerical difficulties.

3.2. Proposed Constitutive Framework Based on a Piecewise Linear Weakening

The proposed constitutive framework is intended to cover the various types of joints
present in the BBM model, including real joints represented as zero-thickness interfaces,
as well as the potential cracks between inner-blocks in the units or in the mortar. The
model comprises an elastic range, followed by a post-peak weakening curve, defined by
a set of linear segments until the residual state is reached. Post-peak curves, either in
tension or in shear, are defined by pairs of non-dimensional parameters (Figure 3): the
joint displacement ratio, defined as the ratio of the displacement (in the normal or shear
direction) over the peak elastic displacement and the joint strength ratio, defined as the
ratio of the strength above residual level over the difference between the peak and residual
strengths. The fracture energy in the post-peak stage is measured by the area under this
curve. Once the peak strength is defined, the post-peak points can be scaled to achieve the
desired fracture energy.
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Figure 3. Non-dimensional post-peak weakening behavior defined by linear segments: joint strength
ratio vs. joint displacement ratio.

3.3. Tensile Behavior

Under normal stresses, the behavior is assumed to be linear elastic in compression,
and for tensile stresses, below the peak tensile stress. The normal stress trial increment,
assuming elastic response, is calculated as:

∆σn = kn ∆un (5)

where ∆un is the normal displacement increment and kn is the joint normal stiffness. The
stress increment is added to the existing normal stress and corrected if it exceeds the current
tensile strength.

In tension, the peak normal elastic displacement is:

unp =
tp

kn
(6)

where tp is the peak tensile strength.
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The normal displacement ratio is defined as a function of the peak elastic displacement as:

un =
un

unp
(7)

where un is the total joint normal displacement.
Once the tensile stress exceeds the peak tensile strength, the softening law of Figure 3

is applied as a function of the joint normal displacement until the residual tensile strength,
typically zero, is reached. The resulting evolution of the tensile normal stress as a function
of the joint normal displacement ratio, shown in Figure 4, is given by:

t(un) = tr + t(un)
(
tp − tr

)
(8)

The strength input parameters are the peak tensile strength tp, the residual tensile
strength tr, and the non-dimensional post-peak curve t(un) of Figure 3. The normalized
softening curve is defined by a table of pairs (un, t), where un starts at 1 at peak, and t drops
from 1 at peak to zero at the residual state. Alternatively, the fracture energy in mode I,
herein designated as Gn, may be prescribed and a typical shape of post-peak curve selected,
as exemplified in the following section.

An important component of the constitutive law is the unloading and reloading be-
havior, namely for cyclic loading (e.g., Oliveira and Lourenço [40]). However, even for
monotonous loading, in a numerical simulation, there are always regions undergoing
unloading, and occasional minor numerical unloading–reloading events, which have to be
dealt with in a consistent manner. In the present model, after the peak unloading and reload-
ing, the curves are assumed to go through the origin without permanent deformations, as
generally assumed.
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Figure 4. Tensile behavior. Joint normal strength ratio vs. joint normal displacement ratio.

3.4. Shear Behavior

In shear, a Mohr–Coulomb failure criterion is used, defined by the peak and residual
values of cohesion and friction angle. A dilation angle can also be prescribed. The behavior
is elastic in shear until the peak envelope is reached. The shear stress trial increment is
calculated as:

∆σs = ks ∆us (9)

where ∆us is the shear displacement increment and ks the joint shear stiffness. The shear
stress increment is added to the existing shear stress, and then corrected according to the
failure criterion.
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The peak shear elastic displacement for a cohesive-only joint is:

usp =
cp

ks
(10)

where cp is the peak cohesive strength. The nonlinear behavior starts as the shear stress σs
reaches the peak Mohr–Coulomb envelope:

|σs| = cp − σn tan(ϕ) (11)

where σn is the normal stress, assumed negative in compression, and ϕ is the friction angle.
The shear displacement ratio is defined as:

us =
us

usp
(12)

where us is the total joint shear displacement. The softening law is applied to the cohesion
as a function of the joint shear displacement until the residual state is reached. The shear
stress softening curve, shown in Figure 5, is given by:

c(us) = cr + c(us)
(
cp − cr

)
(13)

where cr is the residual cohesion, and the non-dimensional softening law of Figure 3 is
applied to the cohesion c(us).

The friction angle in masonry joints is typically assumed not to change in the post-
peak range. However, if different peak and residual values of friction are used, the same
softening ratio may be applied for friction and cohesion, as assumed, for example, by
Lourenço and Rots [28].

The strength input parameters are the peak and residual cohesive strengths, cp and cr,
and the friction angle. The normalized softening curve is defined by a table of pairs (us, c),
where us takes the value of 1 at peak and c goes from 1 at peak to zero at the residual state.
Alternatively, the fracture energy in mode II, herein designated as Gs, may be prescribed,
and a typical shape of post-peak curve selected, as exemplified in the following section.
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In shear, unloading and reloading are assumed to follow the elastic joint stiffness, with
permanent deformations, as shown in Figure 5. It is possible to generalize this behavior by
considering a reduction in the stiffness in the unloading and reloading branches (e.g., [34]).

An issue that still requires further research is the coupling between normal and shear
weakening processes. In the present model, following Lourenço and Rots [28], a coupling
between damage occurring in tension and shear is assumed; therefore, the post-peak
strength ratio is taken at every step as the minimum of the current tensile and cohesive
strength ratios.

3.5. Post-Peak Curves

Exponential post-peak weakening curves are often assumed to be a good approxima-
tion of the experiments in masonry joints [25,28,41]. This curve shape can be approximated
by the piecewise linear framework in various manners. Four types of curves are shown in
Figure 6, all with the same fracture energy as the exponential curve, which is also shown:
a simple linear weakening law, two bilinear curves, and a trilinear curve. They lead to a
better progressive match for the target. The two bilinear curves differ in the value where
they reach the residual state. The parameters that provide the energy equality for the four
cases are given in Table 1 for the normal direction. The displacement ratio values are a
function of the parameter (Bn) and are equal to:

Bn = 2 Gn
tp − tr

unp
(14)

which governs the displacement ratio value at which the residual state is reached for the
linear softening case, where Gn is the fracture energy in mode I. In the shear direction, the
definitions are analogous, using cohesive strength instead of tensile strength, and mode II
fracture energy. A comparison of the effects of these approximations on the response of the
uniaxial compression test is presented below.
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Table 1. Definition of the piecewise linear post-peak weakening curves in Figure 6.

Linear Bilinear A Bilinear B Trilinear
Points un t un t un t un t

1 (peak) 1 1 1 1 1 1 1 1
2 1 + Bn 0 1 + Bn/3 1/2 1 + Bn/2 1/3 1 + Bn/3 1/2
3 - - 1 + 4Bn/3 0 1 + 3Bn/2 0 1 + 2Bn/3 1/4
4 - - - - - - 1 + 5Bn/3 0

A simple comparison of the bilinear A curve with the experimental results of a shear
test under 3 levels of normal stress (Van der Pluijm [42]) is shown in Figure 7, where the
fracture energies follow Lourenço and Rots [28].

Infrastructures 2022, 7, x FOR PEER REVIEW 12 of 26 
 

 
Figure 6. Approximation of exponential curve by 4 segmented curves with equal fracture energy. 

Table 1. Definition of the piecewise linear post-peak weakening curves in Figure 6. 

 Linear Bilinear A Bilinear B Trilinear 
Points 𝐮ഥ𝐧  𝐭 ̅ 𝐮ഥ𝐧 𝐭 ̅ 𝐮ഥ𝐧 𝐭 ̅ 𝐮ഥ𝐧 𝐭 ̅

1 (peak) 1 1 1 1 1 1 1 1 
2 1 + Bn 0 1 + Bn/3 1/2 1 + Bn/2 1/3 1 + Bn/3 1/2 
3 - - 1 + 4Bn/3 0 1 + 3Bn/2 0 1 + 2Bn/3 1/4 
4 - - - - - - 1 + 5Bn/3 0 

A simple comparison of the bilinear A curve with the experimental results of a shear 
test under 3 levels of normal stress (Van der Pluijm [42]) is shown in Figure 7, where the 
fracture energies follow Lourenço and Rots [28]. 

 
Figure 7. Comparison of experimental shear softening curves (Van der Pluijm [42]) with the 
approximation by a bilinear model. 

  

0.0

0.2

0.4

0.6

0.8

1.0

Jo
in

t s
tr

en
gt

h 
ra

tio

Joint displacement ratio

linear

bilinear A

bilinear B

trilinear

expon.

1 1+Bn
1+2Bn

Figure 7. Comparison of experimental shear softening curves (Van der Pluijm [42]) with the approxi-
mation by a bilinear model.

4. Analysis of the Influence of the Governing Parameters in Bonded-Block Models
4.1. Compressive Failure Simulations

In a bonded-block model, as discussed above, the parameters that govern the random
joints between inner-blocks have to be calibrated in order to achieve the correct behavior of
the material, either the masonry unit, or the mortar. Calibration tests are performed on a
small sample of the numerical representation of the material, created with the inner-block
patterns and a size that will be used in the complete model. An elementary stress field is
applied to the numerical sample, and the micro-properties are adjusted until the desired
macro-properties are obtained. This section will focus on the failure under compressive
stresses. The parameters that define the bonded-block model will be examined in turn,
in order to clarify their influence on the response of the numerical model. In the next
section, the base model for the uniaxial compression test is presented. Then, a series of
parametric studies can highlight the role of the governing parameters. First, the inner-
block deformability, size and shape, followed by the micro-properties of the joints between
them are discussed. In these simulations, several random generations of block geometries
with similar parameters are performed; typically, four runs are used to obtain a mean
value, which allows for an assessment of the variability of results. Mechanical properties,
however, are assumed to be uniform in the sample. Random distributions of properties
may be equally introduced, obeying the experimentally measured variations, to increase
the realism of the representation (e.g., Sarhosis et al. [43]).

4.2. Base Model

The base model for the calibration tests under uniaxial compression is shown in
Figure 8. The numerical sample has dimensions 130 mm × 280 mm. A Voronoi pattern of
inner-blocks with an average dimension of 10 mm is generated, creating a system of about
400 blocks. Two rigid blocks are added to provide the boundary conditions.
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In the base model, rigid blocks were used, a comparison with deformable block models
being presented in the next section. The joint properties are listed in Table 2. The joint
stiffnesses were calibrated to provide a global Young’s modulus of 10 GPa and a Poisson’s
ratio of 0.2. This was verified by measuring the sample deformations at a vertical strain of
2.5 × 10−3, for which the model is essentially in the linear range.

The tensile strength was assumed to be 3.5 MPa, and the cohesion and friction angles
were estimated to obtain a uniaxial compression strength in the order of 35 MPa. The
cohesion was set at 10 MPa, with a null residual value, and the friction angle at 25 de-
grees, assuming no dilation. The post-peak curves were based on the bilinear A model of
Figure 6, scaled to obtain fracture energies of 0.09 and 0.50 N/mm, in mode I and mode
II. With these valuesm, the residual state is reached with joint normal displacement of
6.8 × 10−5 m in tension and a joint shear displacement of 1.3 × 10−4 m for shearing under
zero normal stress.

Table 2. Joint properties of base model.

Joint Property Value

Normal stiffness kn 1326 GPa/m
Shear stiffness ks 552 GPa/m

Tensile strength tp 3.5 MPa
Residual tensile strength tr 0

Peak cohesion cp 10.0 MPa
Residual cohesion cr 0

Friction angle φ 25◦

Fracture energy mode I Gn 0.09 N/mm
Fracture energy mode II Gs 0.50 N/mm

The tests were performed by applying a vertical velocity to the loading block at the
top, while keeping its horizontal displacement and rotation fixed. The base block was
also fixed. The joints between the platen blocks and the inner-blocks were assigned a
purely frictional behavior with a very low friction angle of 2 degrees. The applied velocity
was 5 × 10−3 m/s, which provided a slow loading of the sample in a quasi-static manner.
The load velocity was determined by a convergence study, being progressively reduced
until no change in peak stress was observed; local damping was used. The applied stress
was calculated by measuring the vertical reaction at the loading block. The reaction at
the base block was also monitored and it was found to be very similar, showing that the
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simulation proceeded slowly, with the fracturing starting from a fairly uniform stress state
in the sample.

For the model shown in Figure 8, the peak strength was 35.3 MPa at a vertical strain
of 3.6 × 10−3. Figure 9 shows the applied stress versus the vertical strain. A brittle post-
peak response typical of masonry units is obtained. Figure 10 shows the failure mode,
showing the dominant vertical cracks, which were formed first, followed by the progressive
separation of the blocks and lateral expansion.
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Figure 10. Failure model under vertical compression.

An insight into the progression of the failure process can be gained by monitoring the
increase in the damage in the contacts. If we define a damage indicator as the percentage
of the loss of strength, starting at 0 at peak and reaching 1 at the residual state, Figure 11
shows the number of contacts with damage greater than or equal to 0.1, 0.5 and 0.90. We can
see that small amounts of damage start at low vertical strains and increase slowly. Contacts
with damage above 0.5 only start to grow at 3 × 10−3, near the peak. The curve for damage
above 0.90 is only noticeable very close to the peak. At peak stress, many contacts reach the
residual state (damage of 1), and the number increases rapidly after the peak, denoting a
fairly brittle failure mode. Figure 12 shows the contacts with damage levels above 0.9 for
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two stages of loading, corresponding to vertical strains of 3.5 × 10−3, just before the peak,
and 3.7 × 10−3, after the peak. The figures illustrate the process of coalescence of vertical
cracks into longer fractures, leading to the axial splitting failure mode shown in Figure 10.
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Figure 11. Fraction of contacts with damage levels equal or above 0.1, 0.5, and 0.9 vs. vertical strain.
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In order to measure the variability of the results due to the random nature of the block
system, three other models were created using different seeds to generate the Voronoi
system with the same block size. These three runs led to peak strengths of 34.0, 36.0
and 36.6 MPa, a mean value of 35.5 MPa, with an average deviation from the mean of
0.83 MPa (2.3%).

4.3. Block Deformability

The use of rigid blocks, as in the base model, has the advantage of simplicity and
computational efficiency. However, deformable block models provide a more satisfactory
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representation of the strain field, also allowing the determination of internal stresses. In
UDEC, deformable blocks are simulated by an internal mesh of triangular finite elements (or
zones). Coarse meshes were used in this study, simply triangulating the Voronoi polygons.

The objective is to reproduce the unit deformability, so the Young’s modulus of the
zones and the joint stiffnesses have to be calculated to give the desired global Young’s
modulus. Three cases were considered in which the inner-block deformation accounts
for 30%, 50% and 90% of the total elastic deformation. Of course, it would be possible to
assign the total deformability to the inner-blocks, but this would imply a very high joint
stiffness, which is inefficient in explicit algorithm codes such as UDEC. The 90% case is
considered close enough. As in the rigid block case, trial joint stiffnesses was estimated
and then corrected by a full simulation. Poisson’s ratios close to 0.20 were obtained for
all cases. The properties used and the macro-properties obtained are listed in Table 3.
The elastic properties are well-matched. Peak strengths are given for the base model and
the mean value of four random generations. The compressive strength shows a small
increase with the increase in block deformability, about 8% from rigid blocks to a case of
90% deformability from the blocks. However, the results show that it is possible to obtain a
target value of sample strength with different splits of deformability between inner-blocks
and joints.

Table 3. Joint stiffness used in 3 cases and results sample for deformability and strength.

Input Micro-Properties Macro-Property Results
Normal

Stiffness
(GPa/m)

Shear Stiffness
(GPa/m)

Inner-Block
Young’s

Modulus (GPa)

Global Young’s
Modulus

(GPa)

Peak Strength
(MPa)

(Base Model)

Peak Strength
(MPa)

(Average of 4 Models)

Rigid 1326 552 - 9.97 35.3 35.5
30% 1894 789 33.3 9.98 36.4 37.2
50% 2652 1105 20.0 9.97 36.8 37.7
90% 13,259 5525 11.1 10.03 38.3 39.7

4.4. Block Size

In the standard bonded-particle analysis, typically using circular particle and brittle
failure contact models, the calibration of the contact strength for the chosen particle size is a
key step, following well-documented procedures [12]. Potyondy and Ivars [44] indicate that
25 to 50 particles along the cross-section of the numerical sample are required to minimize
the size effect on strength. In the present case of polygonal blocks with joint constitutive
models allowing the specification of fracture energies, the dependence on block size is
reduced but not eliminated. An accurate fracture propagation analysis would require a fine
contact discretization along the joints, which is not possible for models with many blocks.
In this study, only two contacts are used along each joint between inner-blocks.

The results of runs with 5 and 20 mm Voronoi blocks, in addition to the 10 mm case
of the previous section, are summarized in Table 4, for the case of rigid blocks and 50%
deformability in the blocks. The number of blocks in the three models is: 110, 400 and 1500.
Therefore, there is a significant increase in model resolution and computer run times.

The results show a decrease in strength as the block size is increased, about 15%
between the extreme cases, with a block size increased by a factor of 4. It may be concluded
that the calibration of micro-properties is a recommended step, using the block size selected
for the complete model.
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Table 4. Compressive strength of specimen for 3 Voronoi block sizes.

Mean
Strength

(MPa)

Average
Deviation

(MPa)

Mean
Strength

(MPa)

Average
Deviation

(MPa)

Mean
Strength

(MPa)

Average
Deviation

(MPa)

Block size 5 mm 10 mm 20 mm
Rigid 38.4 0.86 35.5 0.83 33.2 1.0

50% block
deformability 40.0 1.2 37.7 1.5 34.7 1.1

4.5. Block Shape

An alternative to the Voronoi inner-block shape is the use of triangular blocks. A
triangular block pattern can be obtained by splitting each Voronoi polygon into triangles,
formed by adding a central node and connecting to the polygon nodes (Gao and Stead [31]).
An alternative procedure is to create a Delaunay triangulation, which consists essentially
in connecting the centers of adjacent Voronoi polygons. This option has been used by
Garza-Cruz and Pierce [16] and Lorig et al. [17]. It was also applied in the present study.

Figure 13 shows the triangular pattern of inner-blocks and the final collapse of the
model, showing two well-defined inclined fractures. The triangular pattern favors the
development of more continuous fractures, where shearing is more likely to take place,
unlike the Voronoi pattern, in which the fractures are composed by step segments, therefore
acquiring a geometrical “roughness”, as shown in Figure 10 above. As a result, for equal
joint properties, the triangular block pattern is weaker. Table 5 compares the compressive
strength for Voronoi pattern with the triangular pattern. The cases of rigid blocks and
blocks with 50% of the global deformability are shown, for the base model and the mean of
four random generations. It can be seen that to obtain strength values in a similar range,
the joint friction angle of the triangular block models must be increased, in this case from
25◦ to 35◦.
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Table 5. Comparison of compressive strength (MPa) for Voronoi and triangular block models.

Block Shape Friction Angle Rigid Blocks 50% Block Deformability
Base Model Mean 4 Models Base Model Mean 4 Models

Voronoi 25◦ 35.3 35.5 36.8 37.7
Triangular 25◦ 27.4 27.5 28.5 28.7
Triangular 35◦ 35.3 34.1 34.5 35.1

4.6. Shear Strength Properties

Figure 14 displays the results of a few parametric studies assessing the influence of
the shear strength parameters of the joints for equal values of tensile strength and fracture
energies (as in the base model). It can be seen that the peak cohesive strength and friction
angle change substantially the overall strength. Note that changing the cohesive strength
by maintaining the same fracture energy is not realistic in practice, as it implies that the low
cohesion case displays a longer post-peak curve. This is somehow reflected in the curve
for the lower cohesion value in the figure, which approaches the other curves for higher
friction angles.
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Figure 14. Compressive strength for different values of joint friction angle and joint peak cohesion
(in MPa).

4.7. Fracture Energy

The influence of the fracture energies on the compressive strength of the base model
sample is depicted in Figure 15. Bilinear post-peak softening was used, as in the base model.
Keeping the other parameters unchanged, the fracture energies in mode I (Gn) and mode II
(Gs) were multiplied by factors of 2, 5 and 10, both independently and jointly. It may be
noticed that the shear behavior has a dominant effect. The tensile failure of the joints is the
key to the initiation of vertical cracks, but the path to total collapse is then governed by the
shear properties.

4.8. Shape of Post-Peak Curve

The four types of post-peak curves in Figure 6 were trialed for the base model proper-
ties, i.e., keeping the fracture energies unchanged. Table 6 shows the resulting compressive
strengths. It can be seen that the effect is relatively small, given the variability of the
results already discussed. Evidently, the trilinear curve is the closest approximation to the
exponential softening, so it may be considered the best choice. The bilinear curve results
are, however, fairly close to those of trilinear curve. The linear softening option gives a
strength 6% higher than the trilinear case, showing a larger deviation from the other cases.
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Table 6. Compressive strength (MPa) for different post-peak curve shapes.

Linear Bilinear A Bilinear B Trilinear

36.9 35.3 35.3 34.9

4.9. Computational Parameters

The numerical simulations were performed assuming a quasi-static mechanical be-
havior. UDEC solves this type of problem by employing a dynamic algorithm in which
damping provides the energy dissipation that prevents vibratory motion and the onset of
dynamic response. Local damping and the non-viscous damping for explicit codes, was
employed given its ability to provide a smooth response, often superior to adaptive viscous
damping (Cundall [33]). In the compressive failure runs, the base block was fixed and
the top rigid block was given a uniform vertical velocity, while preventing horizontal and
rotational motion. The value of the applied velocity is an important parameter, which has to
be determined by numerical trial and convergence studies. For computational efficiency, it
is desirable that it be as high as possible, but it should not induce dynamical effects during
loading. In the base model, a velocity of 0.005 m/s was used, while the time step, calculated
by the code, was 1.3 × 10−6 s. As the time scale in these quasi-static runs is fictitious, the
practical result showed that about 44,000 steps were required to apply a vertical strain
increment of 0.001. The selected applied velocity was determined by running a series of
trial simulations with progressively lower velocities until no change in peak strength was
noticed. The values of applied stress reported herein were obtained by monitoring the
vertical reactions in the top block. It is also advisable to monitor the reaction in the fixed
base block and to compare the two curves. If the two reactions are different, an average
value is likely a better indicator of the stress state within the model. In the runs performed,
top and base reactions were practically similar.

5. Application: Brick Panel in Shear

The shear tests of brick panels performed by Vermeltfoort and Raijmakers [45], shown
in Figure 16, have been used by various researchers to validate their numerical models. The
simulation of these experiments was also trialed with the present Voronoi bonded-block
model. The brick specimens had a length of 990 mm and height of 1000 mm and were
composed of 18 brick layers, the top and bottom ones being fixed to steel beams. In the
tests, the panels were first preloaded with a vertical top pressure, pv = 0.3 MPa for J4D and
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J5D and pv = 2.12 MPa for J7D, and a horizontal load Fh was then applied in the plane of
the walls at the top edge under displacement control up to collapse.

Lourenço and Rots [28] presented the first numerical simulation of the tests employing
the simplified micro-modelling approach. Each brick was modelled by elastic finite ele-
ments with a vertical joint in the middle to simulate possible tensile splitting. The masonry
joints were modelled with the constitutive models proposed in their paper. Compressive
failure was simulated at the joints with an elasto-plastic cap model, which was important
for representing the crushing of the highly overstressed brick at the left lower corner. Ma-
corini and Izzuddin [29] applied a 3D finite element model in which nonlinear behavior
was assigned to interface elements obeying a constitutive model based on work-softening
multi-surface plasticity. Different properties were assigned to the mortar joints and to the
vertical interfaces that simulated brick cracking. D’Altri et al. [46] addressed the same
experiments adopting a detailed micro-modeling methodology in which both units and
mortar were discretized into solid finite elements. Brick–mortar interface elements were
incorporated. The materials and the interfaces displayed non-elastic behavior according
to plastic-damage constitutive laws. Therefore, representations of increasing complexity
have been applied to this problem, providing a closer approximation of the experimental
curves, but also increasing the computational demands and need for meaningful input
material parameters. Pulatsu et al. [37] simulated the same tests with a DEM model, using
a simplified micro-modelling approach, in which only the mortared joint and a vertical
crack in the middle of the bricks were included. A joint model with softening laws was
used, which also simulated the compressive failure of the units.
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Figure 16. Shear test of brick panel (Vermeltfoort and Raijmakers [45]).

The present bonded-block model employed a Voronoi discretization of the units, but
not the mortar. The mortar joints were represented without thickness as in the simplified
micro-modeling approach. In this problem, this option was considered sufficient to account
for the dominant shearing along the horizontal joint planes. The additional complexity in
this model is the division of the bricks into inner-blocks in order to simulate the tensile
failure in the region around the main diagonal of the panel, as well the cracking induced
by the high compressive stresses in the toe block for the high vertical stress case. The
inner-blocks were assumed elastic. The nonlinear behavior of the units was represented by
the simple joint constitutive model with softening, as already described. The UDEC model
is shown in Figure 17, composed of about 3600 Voronoi-shaped blocks, with an average
size of 20 mm.
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A model with deformable inner-blocks was selected, in which 90% of the unit defor-
mation was accounted for by the blocks and the remainder by the fictitious joints inside
the units. The block Young’s modulus was 18.6 GPa, and the Poisson’s ratio was 0.15.
The joint material properties, listed in Table 7, follow the data provided by Vermeltfoort
and Raijmakers [45], as well as additional data used in the numerical simulations by the
researchers cited above [28,29]. In particular, the tensile and cohesive strengths used for
the mortar joints in the tests with different vertical stresses, as well as the fracture energies,
follow Macorini and Izzuddin [29]. The post-peak weakening assumed a bilinear shape, as
in the bilinear A option in section above.

Table 7. Input joint properties for shear panel model.

Mortar Joints
pv = 0.3 MPa

Mortar Joints
pv = 2.12 MPa Intra-Unit Joints

Normal stiffness (GPa/m) 82 82 8350
Shear stiffness (GPa/m) 36 36 3630
Tensile strength (MPa) 0.16 0.25 2.0
Peak cohesion (MPa) 0.224 0.375 0.8

Residual cohesion (MPa) 0 0 0.2
Friction angle (degrees) 36.9◦ 36.9◦ 22◦

G I (N/mm) 0.018 0.018 0.080
G II (N/mm) 0.125 0.050 0.030

The horizontal load was applied by a velocity at the top blocks; while the bottom row
of blocks was fixed. The curves of applied force against the horizontal displacement are
compared with the experimental data in Figure 18. The test with a lower vertical stress (J4D
and J5D) involves a larger rotational motion, with the opening of a diagonal crack from top
right to bottom left. The numerical simulation accurately matches the experimental curve.
For the test with a vertical stress of 2.12 MPa (J7D), more cracking of the units is observed,
with the global force curve dropping significantly from the peak, which is reasonably
attained in the numerical model. In Figure 19, the displacement contours highlight the
path of cracked joints in the numerical simulation, involving the opening of vertical mortar
joints and many cracks through the units, in the vicinity of the main failure path, which
agrees with the behavior observed in the test.
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It may be concluded that for the simulation of these experiments, the mortar joints can
be adequately represented by the zero-thickness hypothesis, saving the extra computational
cost of the discretization of the mortar into Voronoi blocks. This alternative is however
available, and it is shown to be important in other tests, such as the compression of the
brick stack analyzed in [21].

6. Conclusions

An enhanced understanding of the behavior of masonry structures requires insights
into its essential governing mechanisms. The interaction between experimental work and
detailed numerical modelling is the key to advancing this understanding, ultimately aiming
to improve the predictive capabilities of engineering models. The bonded-block model
approach is a promising tool for the analysis of masonry at the meso-scale. It shares the
discrete element underlying proposition of modelling systems of geomaterials by means
of complex assemblies of blocks and contacts which obey simple constitutive laws. In the
masonry models presented, non-elastic behavior is confined to the discontinuities, either in
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real joints or potential crack networks through units and mortar, thus mirroring the discrete
nature of fracture. This approach allows the progressive damage and failure processes
in masonry structures to be studied. The proposed constitutive framework, based on the
Mohr–Coulomb failure criterion and representing the post-peak range by a piecewise linear
approximation, has the flexibility to encompass experimental data, taking into account the
energy criteria of fracture mechanics.

The main options available to build bonded-block models have been examined, fo-
cusing on the simulation of the uniaxial compressive failure of masonry units. Block
geometrical patterns and deformability assumptions were compared, and the influence of
main joint material parameters assessed. Voronoi-shaped polygonal blocks have shown a
good performance in the simulation of realistic cracking patterns for uniaxial compression
tests. It was shown that while deformable blocks are more versatile and realistic, rigid
blocks can also be used with reasonably good results. The comparison with the shear
panel experiments shows the ability of the bonded-block approach to represent the fracture
and breakage of the units without requiring excessive model refinement, and using sim-
ple constitutive laws, easily calibrated to match experimental data. In assemblages with
mortared joints, a decision has to be made on whether the mortar needs to be discretized
into inner-blocks, which substantially increases the computational costs. In many cases, as
in the shear panel analyses presented, the Voronoi inner-blocks may be employed only in
the units, while the mortared joints follow the standard interface constitutive models.

The comparison of various randomly generated assemblies using the same geometrical
and mechanical properties showed that the dispersion of results is not excessive. It is always
advisable to run several instances of a model for more representative results, but a small
number seems acceptable for practical purposes. Some dependence of the results on
the inner-block size was found, possibly linked to coarse contact discretization, which is
inevitable in systems with many blocks. Therefore, there is a need to calibrate the micro-
properties for the selected block pattern and size in order to obtain the desired experimental
macro-properties of the masonry materials.

The block-bonded model was presented here in 2D for simplicity, but the extension
to 3D is straightforward. The computational costs, however, increase substantially, thus
limiting the size of the systems that can be addressed in practice. An issue deserving
further investigation is the effect of block shape, namely the performance of triangular or
tetrahedral inner-blocks, for which various generation procedures are available. In addition
to the random geometries, the use of random distributions of material properties to achieve
a more realistic simulation of specimen sets is also worthy of attention [43].
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