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Abstract: This article presents a new analysis to determine the variation in modal dynamic character-
istics of bridge superstructures caused by hydrodynamic added mass (HAM) during progressive
flooding. The natural frequency variations were numerically and experimentally extracted in various
artificial flood stages that included dry conditions, semi-wet conditions, and fully wet conditions.
Three-dimensional finite element modeling of both subscale and full-scale models were simulated
through a coupled acoustic structural technique using Abaqus®. Experiments were performed ex-
clusively on a subscale model at a flume laboratory to confirm the numerical simulations. Finally,
an approach to quantify the directional HAM in the dominant axes of vibration was pursued using
the concept of effective modal mass. It is shown that specific vibrating modes with the largest
effective mass are strongly affected during artificial flood events and are identified as the dominant
modes. Numerical simulation shows that large directional HAM is introduced on those dominant
modes during flood events. For the full-scale representative bridge, the magnitude of the HAM along
the first structural mode was estimated to be over 5.8 times the bridge’s structural modal effective
mass. It is suggested that directional HAM should be included during the design of bridges over
streamways that are prone to flooding in order to potentially be appended to the AASHTO code.

Keywords: coupled acoustic structure (CAS); hydrodynamic added mass (HAM); finite element
method (FEM); natural frequencies (NFs)

1. Introduction

Bridge structures are considered among the most vital infrastructure elements dur-
ing and after severe weather incidents because their continued operation is necessary to
facilitate the transportation of people, goods, and aid between communities. Based on US
infrastructure reports, more than 40% of bridges have passed their designed lifespans, and
about 10% are already structurally deficient. Among the human and natural contributors
to highway bridge collapse under extreme conditions, hydraulic-related damage is a domi-
nant factor in numerous collapse mechanisms [1,2]. It was reported that more than 48% of
bridge collapses in the USA between 1989 and 2000 were due to hydraulic-related causes
with various collapse mechanisms [3-5]. Destructive hurricanes such as Ivan and Katrina
led to increased demand for investigation into these failure mechanisms; this requires
sophisticated multi-physics modeling to capture the complex loading incidents on bridges
during such extreme events. Recent experimental and numerical efforts have explored
the forces imposed on bridge deck superstructures by hurricanes and flooding [6-9], but
regulatory guidelines do not reflect the most recent findings. For example, AASHTO'’s
Guide Specifications for Bridges Vulnerable to Coastal Storms, which regulates instructions
for estimating external forces and moments on bridge structures due to potential floods or
storms [10], is based on the one-way fluid-structure interaction (FSI) theory. This means
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that external forces and moments are initially estimated with the assumption that the
bridge is a rigid body, and the resulting forces are imposed upon a structural model. This
approach neglects the mutual interactions between fluid forces and structural motions,
which arise from fluid pressures and shear stresses introduced by structural motions. In
particular, the fluid loading exerted in opposition to structural accelerations, termed hydro-
dynamic added mass (HAM), can cause tremendous changes in structural responses during
flooding and storms. HAM is among the FSI considerations absent from the AASHTO
code, which leaves inundated bridges vulnerable to excessive vibration amplitudes or
unanticipated resonances.

Fluid-structure interaction theories vary widely in their formulations and simplifica-
tions. Most common formulations assume the timescale of structural vibration to be signifi-
cantly smaller than the convective timescale of any surrounding fluid; such an approach
also assumes structural vibrations to be relatively small in amplitude. Both assumptions are
generally well suited to the structural responses of inundated bridges in moderate currents.
Under such a model, the effective dynamics of the structure in question are altered by the
kinematic and dynamic coupling of the fluid and structure. Additional hydrodynamic
pressures acting on fluid—structure interfaces develop in proportion to structural acceler-
ations, velocities, and displacements. The forces derived from these pressures are HAM,
added damping, and added stiffness. These fluid forces consequently change the natural
frequencies (NFs), modal participations, damping ratios, and, potentially, the mode shapes.
Moreover, because these hydrodynamic forces are derived from local pressure distributions,
their generalized/diagonalized forms depend strongly upon the mode shapes with which
they are associated; low-order modes with large projected areas normal to their modal
displacements tend to be most strongly affected.

The design and analysis of bridges and other critically important structures requires
accurate assessment of the dynamic structural responses, which are strongly affected by the
system modal characteristics that change so dramatically with the surrounding medium.
Coupled acoustic structural (CAS) modeling is a mature FSI technique in which the fluid
domain is approximated as acoustic elements that admit pressure and velocity modes
within the fluid domain, while the structural domain is modeled using conventional struc-
tural elements. There are established theoretical formulations for computing added-mass
quantities for simple geometries fully surrounded by unbounded fluid domains [11,12]. In
practice, the added stiffness and damping are often neglected for relatively slow-moving
fluids because their effect upon system dynamics is minimal, leaving only HAM to alter
the system’s modal parameters [13,14]. For composite materials, complex geometries and
mode shapes, and arbitrary inundation levels, estimates of HAM must be made numerically
or experimentally. For example, the added mass effects on NFs of simple geometries such
as annular, axisymmetric, and isotropic plates cannot be expressed explicitly; rather, their
properties must be investigated numerically [15].

There are several commercial software packages with CAS modeling capabilities
that can be used to simulate FSI coupling and extract eigenfrequencies and eigenmodes
for a diverse set of FSI scenarios. Applications range from a laminated composite plate
vibrating in wet conditions to earthquake-induced sloshing of liquid tanks [16,17]. For
containership structures, numerical studies show an up to 30% change in NFs as the
composition of the surrounding fluid varies [18]. The effects of varied immersion of
composite plates in a dense fluid, along with the effects of material anisotropy on HAM,
were explored by Motley et al. [19] and Kramer et al. [20], who demonstrated a reduction of
nearly 50% in NFs for steel plates and an 80% reduction for composite plates as those plates
were immersed in water. Free vibration of partially submerged surface-piercing struts in
multi-phase flow demonstrated both experimentally and numerically that HAM effects
could change the ordering of normal modes [21]. Time history analysis of a liquid storage
tank to study sloshing effects was performed under several bi-directional earthquakes
using CAS and finite element method (FEM) tools [22]. Bend-twist coupled behavior of
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a composite hydrofoil and the effect of its fiber angle were numerically investigated under
dry and wet conditions by CAS simulation [23].

The effect of HAM of hydrofoil and its trailing edge shape effect was numerically stud-
ied thoroughly [24], and a numerical CAS technique was successfully applied to simulate
the FSI of a clamped hemispherical shell structure with good agreement with experimental
results [25]. Experimental and numerical modal dynamic sensitivity analysis indicated that
the NFs of bridge piers could change up to 20% while the river stream level rises [26]. It was
proven that, for small-scale, flexible, soft structures, the experimental modal characteristics
are consistent with the numerical results in a wide frequency range [13]. However, for
larger structural models such as hydrofoils, FSI studies are frequently numerical rather
than experimental [24]. Experimental data for slender hydrofoil structures exist for very
few initial vibrating modes, with up to 7.64% error between the experimental and nu-
merical modal information [27]. Estimates of modal HAM, added stiffness, and added
damping for a hydrofoil were experimentally estimated by Harwood et al. [28], but only
as percentages of the associated structural modal properties. Base shear force, base mo-
ment, and HAM properties for immersed columns with arbitrary cross-section have been
numerically calculated [29].

While CAS simulation is a useful tool for prediction of coupled FSI, it comes at the
cost of increased computational expense, more complex simulation setup, and limitations
on its applicability, such as low flow speeds. Another simpler method for modeling the
effects of HAM is accomplished by substituting the fluid domain with structural mass
elements to produce the same mass-loading distribution that would result from a fluid-
filled domain. Equivalent systems for sloshing fluid in arbitrary-section aqueducts during
artificially seismic events were studied, and the structural time history responses were
computed during simulated events [30]. A lumped mass stick model for nuclear contain-
ment buildings based on modal characteristic properties was proposed and numerically
compared to the original FEM that showed promising results [31]. It is a common approach
to substitute the fluid domain of a reservoir tank with discrete lumped mass elements
numerically to investigate effects under vibration and stress/strain field calculations. Each
mass element is derived at each tank elevation from the pressure distributions at each
assumed vibrating mode. The equivalent system for a water-surrounded hollow bridge
pile was derived by evenly distributing discrete mass elements along the pile’s height [32].
Numerical simulation indicated an up to 23% change in NFs as the water height varied
around the pile due to the HAM. An equivalent structural system to be substituted with
a CAS problem was investigated for a piping system application with both numerical and
experimental setups [33].

The use of equivalent uniformly distributed mass to perform simplified FSI analysis is
challenged by two principal issues. The first is that fluid inertial loading is not necessarily
uniform, especially for complex flows involving multiple phases and free surfaces. The
second issue is that fluid inertial loading is directional, so treating HAM as isotropic is
generally inaccurate. The AASHTO design code does not explicitly consider the change of
medium, so there is a need for simple and efficacious predictive methodologies that can
approximate HAM effects without the need for specialized simulation. The objective of this
work is to emphasize the importance of—and the need to consider—non-uniform HAM for
bridges at risk of flooding. To accentuate the effects of medium changes during inundation
flood stages, this work presents both numerical and experimental studies performed on
a small-scale model as a validation step, followed by numerical simulation on a full-scale
model. The progression of flood events was defined as dry condition, semi-inundation, and
full inundation. A CAS solver was used to estimate variation of NFs during simulated flood
events; then a process was proposed to quantify modal HAM with the same quantity unit
as the original unit of the structural mass from the effective modal mass magnitude. The
proposed approach can compute directional HAM by using effective modal mass factors
that non-uniformly affect bridges during varying flood conditions.
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2. Materials and Methods
Governing Equations of Coupled Acoustic Structure (CAS)

2.1. Acoustic Domain Theory

The governing partial differential equation for the acoustic fluid domain (Q f) is the
well-known Helmholtz wave equation, expressed as follows [34]:

— = czvzp =0 1)

where p is the acoustic pressure and c is the speed of sound in the surrounding acoustic
domain, which can be expressed as follows:

[Kr
— i 2

where Kr and p are the bulk modulus and mass density of the fluid medium, respectively.
By assuming irrotationality of the flow, the velocity field is taken to be a conservative vector
field, expressed as the gradient of a potential function, ¢(x,y,z,t):

2 2 2 0
V=V¢p= (le+Uy]+Uzk) = &“ 3)
where V is the gradient operator; vy, vy, and v; are the velocity terms along the x, y, and
z axes, respectively; and u is the fluid displacement vector. The fluid acoustic pressure is
related to the scalar velocity potential by the unsteady Bernoulli equation,

Jd P
p=—pr50— 2ol )

If the fluid medium is further assumed to be incompressible (e.g., water), Equation (1)
is replaced by the Laplace equation to ensure continuity:

Vip=-F+ -5+ =0 (5)

In this case, the distribution of pressure inside the acoustic domain is governed by the
elliptic boundary value problem on the scalar potential ¢. For analytical coupling, it can
be advantageous to construct a modal model of the fluid and structure, where kinematic
and dynamic boundary conditions specified on the interface between the structural and
acoustic domains are used to find modal potentials under the simplifying assumption of
infinite acoustic speed. However, most numerical solvers (e.g., FEMs or boundary element
methods) retain Equation (1) for the sake of generality, using large values for the bulk
modulus to correctly approximate the acoustic speed in the fluid domain.

2.2. Coupling Solid and Acoustic Domains

CAS is multi-physics coupling analysis that contains both solid and fluid domain formu-
lations to be simultaneously solved. The discrete FEM formulation of the CAS model can be
expressed by the following asymmetric matrix formulations in homogeneous form [22,25]:

Cs] 0 Ks] —[R
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In the case of free vibration, Equation (5) is rewritten as follows:
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where u, p, M, C, K, and R are the displacement degree of freedom (DOF) vector, the
fluid acoustic pressure DOF, the mass, damping, and stiffness matrices, and the reaction
impedance, respectively. In all cases, the subscript S indicates a structural quantity and the
subscript f indicates a fluid quantity. The displacement vector u includes both structural
and fluid displacements. The coupling between the two mediums is enforced by maintain-
ing equal normal displacement/velocity (kinematic coupling) and equal normal stresses
(dynamic coupling) at the interface between the solid and fluid domains. Matrix R is critical
to the coupling of the fluid and structure by enforcing the compatibility of pressure and
displacement at the interface. Under an assumption of proportional damping, Equations
(6) and (7) may be diagonalized and a modal model may be realized by an appropriate
eigenproblem solver. In total, the solver returns the homogenous solution of Equations
(6) and (7) for N modes in terms of the nth NF (w;) and the nth eigenvector containing

$n

Ppn
aforementioned coupling formulas, it can be shown that added mass and added damping

elements of the mass and damping matrix can be expressed as follows [35]:

+ jwn +

both structural and fluid acoustic pressure modes [ } . Through manipulation of the

M, (w) = %Re Ufs jwer(x, y,z)(pn.ﬁds} (8)
Cur(w) = =Lim] [ jewog(x,,2)pn-ds] ©)

where Re, Im, 71, and s are the real and imaginary operator, normal unit vector, and whole
wet surface at the fluid and structure interfaces, respectively. Equations (8) and (9) represent
projections of the pressure fields associated with mode / onto structural mode #. It is clear
that neither HAM nor added damping elements can be expressed as spatial mass or
damping matrices because they are functions of frequency, structural mode shapes, and
velocity potential field—which is itself a solution to a boundary value problem [36,37].
It has been indicated that flood-prone bridges experience significant excitations in the
lower frequency range during flooding events, and also that the dynamic characteristics
(NFs, damping, and mode shapes) for lower modes vary much more than those of higher-
frequency modes [38,39]. Due to these facts and knowing that bridge structural systems
are stiff enough that only the first few initial modes are operationally excited, the practical
HAM consideration should be attributed to the initial structural modes.

2.3. Essential Boundary Conditions

There are three common types of boundary conditions (BCs) for CAS problems that
must be satisfied on the fluid-structure and fluid-free-surface interfaces [40]. Because all
three are used in the present simulations, they will be briefly described in this section.

2.3.1. Imposed Pressure (Dirichlet BCs)

On the free surface of the fluid domain, the pressure must be enforced to be equal to
zero. The first-order hydrodynamic pressure at any point of the fluid domain is simplified
from the unsteady Bernoulli equation:

0
p(x,y,zt) = —pfa—gto. (10)
On the free surface (I'rs), a constant pressure condition is imposed as

p(x,y,z,t) =0€Tgs. (11)
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2.3.2. Imposed Kinematics (Neumann BCs)

Within the acoustic domain, the assumption of inviscid (shear-free) flow, coupled with
a small-displacement assumption, allows the first-order perturbations on fluid pressure
and acceleration to be related anywhere in the fluid domain (f), as follows:

Vpnf:—pfufle (12)

At the fluid-solid interface, the kinematic coupling dictates that fluid and solid veloci-
ties and accelerations must be equal:

Vp - ny = —pyils € Tpgg (13)

where i and n rare the structural acceleration and the outward normal direction of the
interface surface at fluid domain, respectively. This type of BC is applied on the interface of
the fluid and the solid as the geometric compatibility condition.

Where the fluid domain is bounded by stationary wall (e.g., the rigid bottom and
side walls of a flume), the velocity and acceleration are identically zero; consequently,
Equation (13) will reduce to a zero-gradient condition at those boundaries:

ap _
5 =0 (14)

2.3.3. Imposed Impedance or Admittance (Robin BCs)

Where the acoustic domain is not physically bounded, two kinds of BCs may be
imposed in order to simulate far-field energy dissipation. These are typically either ab-
sorbing BCs or infinite element implementations, both of which require definitions of the
impedance and admittance. The level of wave energy absorption at far-field BCs can be
defined in terms of acoustic impedance (Z) or its reciprocal, admittance (A):

Z= (—pfaa(f) (—V(p~nf) - (p)/(uf : nf) (15)

A:ufnf/p (16)

At the far-field boundaries of an FSI simulation, a Robin-type BC is used to model
nonreflecting waves or absorbing BCs to minimize reflected energy effects. The detailed
implementation is available in the literature [41]. This BC plays an important role on struc-
tural responses, and therefore, its characteristic must be prudently prescribed. Impedance
and admittance BCs are based on structural size, scaling, material types, and several other
considerations to better predict real-world interaction behavior, even for large structures
like a dam reservoir [42].

3. Numerical and Experimental Implementation

As indicated in Section 2.2, there is no explicit formula or analytical derivation to
calculate added mass for complex systems such as highway bridge structures. Therefore, the
effect of fluid inertial loading can only be investigated through numerical and experimental
approaches. In this section, a prototype bridge and its small-scale physical model are
first described. Next, the numerical modeling at both scales is introduced. Finally, the
experimental approach and data acquisition system used to test the small-scale model in
various flood steps are described.

3.1. Prototype Bridge Models

The prototype bridge was selected by picking up one span of a representative composite-
deck, steel-girder bridge system, which is the prevalent type in the USA. This representative
bridge model is located near Cedar Rapids, lowa and carries US highway 30 over the Cedar
River as shown in Figure la. It has a federal ID of FHWA #33472, a span length of 45.7 m,
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and was investigated in another study as well [43]. This specific bridge has experienced
complete inundation by flood incidents during recent years, as indicated by reports at the
Iowa DOT.

Figure 1. Representative highway bridge (FHWA #33472): (a) full-scale model; (b) small-scale model.

3.2. Small-Scale Physical Model

The small-scale model of the FHWA #33472 representative bridge was constructed
at a geometric scale factor of 1:60 while observing similarity to the degree possible and
practical. A single span was constructed from an aluminum plate with girders and pinned
connections at each end. Additional masses were included along the edges of the model to
approximate the mass distribution of the protype span, shown in Figure 1b. The model was
tested in a narrow flume with a controlled water depth, described further in Section 3.4.
The construction of a small-scale model with regards to material type, added concentrated
physical masses, and structural stiffness necessary to ensure similarity is provided by
Karimpour et al. [5,43]. In-depth conceptual information regarding small-scale structural
modeling based on prototype size, type, materials, and aims of prospective experiments is
also available in the literature [14,44].

3.3. Numerical CAS Implementation

CAS simulation is one of several robust, commercially available multi-physics tools
that enable accurate simulation, prediction, and analysis of sophisticated engineering
problems [45]. Simulation of CAS can be accomplished by bounding the structural elements
with acoustic elements to comply with both solid and fluid governing equations and
coupling conditions. The commercial software Abaqus® was used to numerically estimate
the mode shapes and NFs of the systems under both dry and wet conditions [46]. The
3D liquid domain was modeled by the eight-node acoustic element type of AC3D8 with
an hourglass control option. For the small-scale bridge model, four-node shell elements
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with reduced integration points (54R) and hourglass control were used to model the bridge
deck and girders. Inertia elements of type MASS were used to model concentrated added
masses, which were attached to the small-scale physical model. The final small-scale FEM
contained 10,568 structural nodes and 143,094 acoustic nodes.

In Figure 2, the FE model of the small-scale bridge plus three dominant mode shapes
(defined as those with maximum modal participation factors) are shown in dry conditions.
Based on the FEM results, the 1st, 4th, and 17th modes are dominant and contribute the
most to vibration of the small-scale model along its vertical axis (gravitational direction).
Figures 3 and 4 show the FEM-CAS modeling of the small-scale model during the semi-
inundation and full-inundation stages, respectively. Increasing inundation conditions were
simulated by raising the height of the acoustic fluid domain until the upper acoustic bound-
ary was coincident with the deck level (semi-inundated) and completely covered the deck
by a height equal to the bridge girder depth (fully inundated). Air has a negligible mass
loading effect, so the dry portions of the models were treated as in vacuo. It can be observed
that, for conditions of both semi-inundation and full inundation, those aforementioned
modes (1st, 4th, and 17th) remain the modes with the highest modal participation factors.
This signifies that a change in the fluid medium does not significantly alter the mode shapes
or their relative participation but that it does change the NFs of the system.

For the full-scale bridge FE model, 3D shell elements (type S4R) were used to model
girders and cross beams, 3D truss elements (type T3D2) were used to simulate rebar and
stirrups embedded in the concrete deck, and 3D brick elements with reduced integration
points (C3D8R) were assigned to the concrete slab. The full-scale bridge FE model is
made up of 645,720 structural nodes and 284,962 acoustic nodes. Figure 5 shows the
FEM-CAS mesh describing the full-scale bridge, along with three dominant mode shapes.
Figures 6 and 7 show the semi-inundation and full-inundation stages of the same full-scale
model. The dominant extracted modes for the full-scale bridge are the 1st, 4th, and 9th
modes, whereas the 1st, 4th, and 17th modes were dominant for the small-scale bridge.
Perfect similarity across widely disparate geometric scales is nearly impossible to maintain;
in general, the priority is to match the lower-order modes rather than the higher-order
ones because the lower-order modes tend to participate more than higher-order modes
during structural vibration. In this particular case, the simplified geometry was suitable to
reproduce the balance of modal participation through at least the 4th mode, but not beyond
the 9th mode.

For both the small-scale and full-scale FE models, the fluid—solid coupling was en-
forced through kinematic BCs (displacement equality at the interface) as well as dynamic
BCs (pressure equality at the interface). The FE mesh size was refined through convergence
analysis in two steps. First, the solid mesh size in dry conditions was refined until the
first 10 NFs of the solid model varied by less than 1%. In the second step, the coupled
fluid-solid model in wet conditions was refined until the coupled NFs also varied by
less than 1% for the 10 initial modes. The numerical eigenfrequency extraction was done
based on the Abaqus Lanczos eigenvalue solver method in both dry and wet simulated
conditions. Linear perturbation and small displacement assumptions were considered.
Several assumptions were considered during CAS and FEM modeling in this study. The
fluid domain assumptions can be enumerated as follows: irrotational, inviscid, no material
flow, no mesh distortion, and linearly compressible fluid—albeit with a high bulk modulus.
Additionally, a nonslip condition exists at rigid (unmoving) walls. Material damping and
gravitational loading were both neglected in the structure. The properties of materials
modeled in the FEM-CAS simulations are listed in Table 1.
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Figure 2. FEM of the small-scale bridge and its dominant modes in the dry condition: (a) undeformed
FEM; (b) 1st mode shape; (c) 4th mode shape; (d) 17th mode shape. The model is colored by
normalized displacement magnitude.

Figure 3. FEM of the small-scale bridge and its dominant modes in the semi-inundated condition:
(a) undeformed FEM; (b) 1st mode shape; (c) 4th mode shape; (d) 17th mode shape.
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Figure 4. FEM of the small-scale bridge and its dominant modes in the fully inundated condition:
(a) undeformed FEM; (b) 1st mode shape; (c) 4th mode shape; (d) 17th mode shape.

Figure 5. FEM of the full-scale bridge and its dominant modes in the dry condition: (a) undeformed
FEM; (b) 1st mode shape; (c) 4th mode shape; (d) 9th mode shape. The model is colored by normalized
displacement magnitude.
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Figure 6. FEM of the full-scale bridge and its dominant modes in the semi-inundated condition:
(a) undeformed FEM; (b) 1st mode shape; (c) 4th mode shape; (d) 9th mode shape.

Figure 7. FEM of the full-scale bridge and its dominant modes in the fully inundated condition:
(a) undeformed FEM; (b) 1st mode shape; (c) 4th mode shape; (d) 9th mode shape.

Table 1. Physical properties of materials used for FEM-CAS simulations.

Characteristic Nominal Values
Material Air Water Steel Lexan Aluminum Concrete
Density (kg / m3) 1.21 998 7830 1060 2700 2300
Poisson’s ratio - - 0.3 0.38 0.33 0.2
Young’s Modulus (GPa) - 193 2.32 70 22

Bulk Modulus (GPa) 1.39 x 1074 219 160 5.8 107.8 315
Acoustic Speed (m/s) 340 14813 4520 2350 6320 3700
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3.4. Experimental CAS and Data Collections

To demonstrate the validity of the numerical simulation, a physical experiment was
executed using a small-scale model with the objective of quantifying NFs at varying
degrees of inundation in a model-scale flume. To obtain a high signal-to-noise ratio across
a broad frequency spectrum and obtain reliable mode estimates in the flume environment,
measurements were made of both accelerations and bending strains. A single waterproof
accelerometer was recorded for three roving hammer tests. In a separate trial, six strain
gauges were recorded for two roving hammer tests, with the strain measurements utilized
for feature extraction. A DEWESoft® data acquisition system (DEWE-43A model) was used
to acquire data at a sampling rate of 1000 Hz at 24-bit resolution. A low-pass filter with
cutoff frequency of 220 Hz was implemented on all channels. As shown in Figure 8, the
small-scale bridge model installed in a flume in three predefined stages similar to those
of the FEM-CAS simulation are shown in dry conditions (Dry), semi-inundation (WET-0),
and full inundation (WET-1).

Water level coincident with
bottom of bridge deck

Bridge deck and masses
completely submerged

Figure 8. Experimental setup of the small-scale bridge in the flume laboratory in progressive flood
stages: (a) dry; (b) semi-inundated; (c) fully inundated.

3.5. Experimental Modal Parameter Extraction

Output-only system identification was performed, using the frequency domain de-
composition (FDD) approach, to extract NFs and damping for individual modes. The
FDD approach is deployed as an output-only method [47-49] that expresses the response
power spectrum densities (PSDs) matrix Gxx(w) that attains the same poles as the fre-
quency response function (FRF). The singular value decomposition (SVD) of the response
PSDs matrix Gxx(w) is used to extract the system NFs and mode shape components,
as follows [43,50]:

[Goox(aw)] = [U][8][U"] 17)

where U, U, and S, are unitary matrices containing unscaled mode shape components,
the Hermitian transpose of U, and a diagonal matrix containing the scalar values of the
system poles. Figures 9 and 10 show the acceleration and strain time domain and frequency
domain results, respectively. Time-domain traces are shown in the first column of each
figure, the PSD in the second column, and the SVD in the third column, with detected
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system poles indicated by vertical dashed lines. Figure 11 summarizes the detected NFs for
each stage of inundation using strain and acceleration signals. As shown in Figure 11, there
are slight differences between the natural frequencies extracted from the strain signals and
those from the acceleration signals. Those differences, while minor, do suggest a difference
in the quality of the respective signals. In this work, the frequencies identified from
measured accelerations were used because accelerometers tend to have higher sensitivities,
better noise immunity, and better signal-to-noise ratios than strain gauges at relatively
high frequencies.

It is immediately clear that the NFs decrease with progressive stages of inundation—
a product of the HAM. There is some discrepancy between the accelerometry and strain
measurements that grows with increasing modal frequencys; this is attributed to the reduced
signal-to-noise ratio in the strain measurements at higher frequencies, which is thought to
degrade the system identification slightly.
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Figure 9. Acceleration data from experimental setup of the small-scale model for NFs extraction by
FDD and SVD. The first column (a,d,g) shows the acceleration signals for the dry, semi-inundated, and
fully inundated cases, respectively; the second column (b,e,h) shows the acceleration PSD signals for
the dry, semi-inundated, and fully inundated cases, respectively; the third column (c,f,i) shows the ac-
celeration SVD signals with detected system poles indicated by vertical dashed lines, passing through
the peaks of the SVD signals, for the dry, semi-inundated, and fully inundated cases, respectively.
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Figure 10. Strain data from experimental setup of the small-scale model for NFs extraction by FDD
and SVD. The first column (a,d,g) shows the strain signals for the dry, semi-inundated, and fully
inundated cases, respectively; the second column (b,e,h) shows the strain PSD signals for the dry,
semi-inundated, and fully inundated cases, respectively; the third column (c,f,i) shows the strain
SVD signals with detected system poles indicated by vertical dashed lines, passing through the peaks
of the SVD signals, for the dry, semi-inundated, and fully inundated cases, respectively.
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Figure 11. Comparison of NFs of the small-scale experimental model under various flood stages,
extracted from acceleration and strain signals.

4. Quantification of HAM by Modal Effective Mass

As explained earlier, the HAM of a mode is typically not a unique value because
it varies with the scaling convention used for the mode shapes. This section aims to
quantify unique modal HAM values in a unique and physically intuitive manner by
leveraging the concept of modal effective mass. The nth fundamental frequency of the dry
structural system can be expressed in terms of nth modal stiffness k, and nth modal mass
m,, as follows:

kn

dry
o =\ (18)
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Under the assumption of a nearly quiescent fluid, the fluid-added stiffness is con-
ventionally neglected, leaving only the HAM effect when the structure is immersed. The
omission of the fluid-added stiffness is not strictly valid when the structure is located at the
fluid-free surface; the changing displacement will produce a buoyant force that manifests
as a weak spring. However, the fluid-added stiffness should be of minimal importance for
relatively dense structural materials such as bridges, and in the scope of this research, its
effect was considered negligible. Therefore, the system’s nth NF can be estimated by the
following formula [13]:

wet __ le

) (19)
where m,,,, is the HAM. The reduction in NFs of the nth mode as a percentage of the dry
value is denoted by ¢, and expressed as follows:

dry — cwet

Ep = ﬂTyn x 100 (20)
n

The HAM coefficient, which is the ratio of HAM to the dry modal mass of the nth
mode, can be expressed using Equations (18) and (19) as follows:

dry 2 m
C = n — 1 - nw 21
n ( g}Et) mn ( )

Equation (21) indicates that a unique quantification of HAM requires NFs in dry and
wet conditions and a uniquely valued dry modal mass. Modal mass, however, is not
explicitly reported by FEM solvers; rather, they return modal participation factors and
effective modal mass. For the nth mode of a structural system, the nth modal participation
factor (T',;;) in the ith direction indicates how much motion in the ith global direction (X-Y-Z)
is contributed by the nth eigenvector, calculated as follows:

1
Ty = —¢nMT; (22)
My

where T; is the ith column vector of the rigid-body “influence” matrix describing the
displacement of masses resulting from a rigid-body displacement along the ith axis. The nth
modal mass is calculated by diagonalizing the spatial mass matrix with the nth eigenvector
estimated by the FEM solver:

My = Py Mgy (23)

As previously noted, the generalized modal mass (11, ) is a non-unique value with no
physical meaning because the eigenvector scaling is arbitrary depending on the method
used to approximate the eigensolution. The modal participation factor in Equation (22) can
be further exploited to cancel out the arbitrary scale factor to arrive at the uniquely defined
parameter known as effective modal mass, which possesses the same units as the physical
system mass. The nth effective modal mass of the system along the ith direction can be
estimated as follows [41]:

mt = (T Pmy (24)

Unlike the generalized modal mass (1) that introduces uniform lump mass in the
modal domain, the effective modal mass possesses physical interpretation in the spatial

eff)

domain along all 3D coordinate directions (i). Each term of the effective modal mass (m i

can be interpreted as if an acceleration in the ith global direction (X-Y-Z) is imposed on the

structure, and a percentage of the imposed inertial force equal to mi{f / Mot is attributed
to the nth mode of the system. Thus, the modes with the highest effective modal masses
contribute the most to the structural dynamic response if the input spectrum has a relatively
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uniform distribution in the frequency domain. Furthermore, the summation of effective
masses in a single direction (i) for all system modes is equal to the system’s total mass,
as follows: N

for(i=X,Y, Z): Zmi{f:M

n=1 g

where Wiy and g are the total weight of the structure and the gravitational constant,
respectively. Typically, just a few modes represent a very high percentage of the effective
mass; these modes are dubbed the dominant mode hereafter. In this study, a dominant
mode is defined as any mode for which the effective modal mass in any direction is more
than 1% of the dry structural mass. The physical interpretation and uniqueness of the
effective mass quantity makes it an excellent candidate for realizing physical HAM values.
If the effective modal mass values have been identified from FEM-CAS solver output, they
may be substituted into Equation (21) in lieu of the generalized modal mass to derive and
estimate the directional HAM as follows:

dry 2
j e
Mgy = mn{f <fgvet> -1 (26)

(25)

Table 2 presents the results of numerical and experimental features for the small-scale
model for dominant modes—determined to be the 1st, 4th, and 17th modes. The NF
column reports FEM results with experimental measurements included in parentheses
when available. The overall mass of the physical small-scale bridge model is 5.05 kg. While
effective modal mass is directional, the analysis here was limited to the vertical direction
because an overwhelming majority of the fluid dynamic pressures act on surfaces with
a vertical surface normal, and a majority of the dominant mode shapes represent vertical
displacement of the bridge surface. The percentage reduction in NFs (¢,) is reported for
both semi-inundation and full inundation.

Table 2. Experimental and numerical NFs, effective modal mass, and HAM for the small-scale model.

Dry Condition Semi-Inundation Full Inundation
D;rgii“easnt NFs (Hz) miy, (kg) NFs (Hz) en (%) HAM (kg) NFs (Hz) en (%) HAM (kg)
1st mode 1243 (127)  4.1247 (81%) 5.9 (6.3) 525 14.2 (+280%) 5.1 (5.8) 59 20.3 (+403%)
4th mode 3891 (40.5)  0.29 (5.7%) 32.7 (35.6) 15.9 0.12 (+2.3%)  29.7 (32.3) 24 0.2 (+4.1%)
17th mode 165.51 0.19 (3.7%) 103.91 372 0.29 (+5.7%) 85.1 49 0.52 (+10%)

Finally, HAM values were calculated through Equation (26), and their percentage
relative to the structure’s total mass is reported in parentheses. In contrast to the generalized
modal mass (m,) and common uniform HAM concept, Equation (26) is deployed to
compute the practical/feasible directional HAM along the most critical coordinate direction
of the system’s vibration. In the case of bridge structures, this most critical direction is
vertical, in the direction of gravity. This is a significant distinction because it means that
HAM does not act equally in all coordinate directions. Rather, the HAM in one direction can
be very large while it is negligibly small in other directions. Table 2 indicates that, for the
small-scale model, 81% of the effective modal mass in the vertical direction is contained in
the first structural mode alone. Moreover, the semi-inundation and full-inundation stages
produce HAM equal to 280% and 403% of the overall dry mass of the model, respectively.
Results of simulations of the full-scale representative bridge span are reported in Table 3.

For the full-scale model, the 1st, 4th, and 9th modes were retained as dominant
modes. It was found that the overall mass of one span bridge is about 570 metric tons.
Numerical simulation shows that up to 3.75 and 5.85 times the mass of the bridge itself
would be introduced as directional HAM in the semi-inundation and full-inundation
phases, respectively. This huge fluid inertial load along the vertical direction is associated
with very low NFs, where excitation is most likely to occur during flood and storm events,
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suggesting a dramatic increase in the risk of excessive stress/strain in primary structural
components during flooding.

Table 3. Experimental and numerical NFs, effective modal mass, and HAM for the full-scale model.

Dry Condition Semi-Inundation Full Inundation
Dominant Ml o HAM o HAM
modes NFs (Hz) (Metric ton) NFs (Hz) en(%) (metric ton) NFs (Hz) en(%) (metric ton)
1st mode 2.57 410 (72%) 1.03 60 2142 (+375%) 0.85 67 3338 (+585%)
4th mode 3.52 34.8 (6.1%) 1.64 53.4 125 (+34) 1.16 67 285 (+50%)
9th mode 7.15 56 (9.8%) 4.38 38.7 93 (+16) 3.34 53 200 (+35%)

5. Discussion and Results

The current AASHTO guidelines available for bridges subjected to flooding consider
bridges as rigid structures and use formulas to estimate the resulting fluid forces that can
be applied to the bridge. These AASHTO formulas do not include the variation in bridge
response as a result of FSI, leaving the risk of FSI resonance and excessive inertial loads
unevaluated. This article demonstrates the importance of considering the HAM effects on
bridges that are vulnerable to floods. In order to compute non-uniform directional HAM,
the effective modal mass quantity was employed as a physically meaningful quantity
to scale the added mass coefficient. The effective modal mass was found to be suitable
because it indicates how much inertial force the nth mode along the ith coordinate direction
contributes to the system’s overall physical mass. Furthermore, it has the same physical
unit as the structural mass, making the calculation more sensible for comparison.

Because its summation along individual axes for all vibrating modes must be equal
to the gross mass of the system, it becomes convenient to use it to evaluate the relative
contributions of dynamic modes under excitation incidents. This study found that a few
dominant modes of vibration of the bridge structure accounted for a very high percentage
of the total effective modal mass, meaning that they are the most inertially active responses
to excitation. About 81% and 72% of the effective modal mass are attributed to just the first
mode of bridge structures with hinge connections for small-scale and full-scale bridges,
respectively. Both small-scale and full-scale models of the representative bridge show the
same dominant modes at the 1st, 4th, and 17th modes, suggesting that similarity was
well-maintained across geometric scales, allowing us to replicate real-world scenarios in
small-scale modeling.

In the proposed approach, Equation (26) was derived to compute directional HAM
from the dry and wet NFs as well as effective modal mass under dry conditions. FEM-CAS
solvers are able to compute both NFs and modal effective mass for composite structures
such as bridges. For a small-scale bridge during the semi-inundation stage, HAM values
along the vertical axis are 280%, 2.3%, and 5.7% of the bridge’s dry mass for the 1st, 4th,
and 17th modes, respectively. During the full-inundation stage, those values are 403%,
4.1%, and 10% of the dry mass for the same modes. At full scale, which was only evaluated
using simulation, semi-inundation produced HAM values along the vertical axis of 375%,
34%, and 16% of the dry mass of the bridge for the 1st, 4th, and 17th modes, respectively.
During full inundation, those values are 585%, 50%, and 35% of the dry mass. Neither
these dynamic property variations (NF variations) nor the huge amount of non-uniform
HAM are directly considered in the AASHTO code. This omission leads to safety concerns
for bridges that are partially or fully inundated, where external excitation may promote
unanticipated resonances with much greater mass participation than in dry conditions.

While this work suggests a method for assigning a unique value to the HAM, the
re-spatialization of that mass so that it may be approximated using a distribution of point
masses in the dry model remains an area for future work. With detailed knowledge
of the mode shapes, it is possible to approximate the HAM mass matrix through the
inverse of the modal diagonalization process, but errors in the mode shape—or changes
in the mode shape with changing immersion—mean that this method will produce only
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an approximation of the spatial HAM matrix. Future work should evaluate the effects of
mode shape estimates upon the resulting mass matrix. Additionally, this methodology will
be inherently limited to cases in which the dry and wetted mode shapes are substantially
the same, so an extension of this work should evaluate the consistency of mode shapes
using the Modal Assurance Criterion (MAC) or similar metrics.

In this study, it was shown that, for heavy bridge structures, the main axis that could
be excited during a potential storm is the axis along the gravitational (heave) direction;
additionally, all bridge boundary conditions were considered as rocker bearings that
behave like hinges without lateral movement. Real bridges mostly sit on partially restricted
supports, such as pendulum, elastomeric, lead-rubber bearings, etc., rather than fixed ones,
at least at one of their span ends. Thus, they can expand freely in response to external
environmental or operational effects without producing internal stress. It is strongly
suggested that further studies be executed to consider a bridge system with roller bearings
and continuous span systems that could be displaced laterally by incoming floods, which
most likely causes unseating incidents.

Further numerical studies are required to derive a simplified formula based on re-
gression analysis that a bridge designer could use in addition to the proposed formula
for estimation of HAM of such bridges. The results of the proposed numerical approach
could help bridge designers better consider the dynamic/inertial force that is missing in
the AASHTO code for bridges over conduits and streamways.
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