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Abstract: Moisture-induced damage is a serious problem that severely impairs asphaltic pavement
and affects road serviceability. This study examined numerous variables in asphalt concrete mixtures
to assess their impact on moisture damage resistance. Mix design parameters such as the asphalt
content (AC) and aggregate passing sieve No. 4 (PNo. 4) were considered as variables during this
study. Additionally, hydrated lime (HL) was utilized as a partial substitute for limestone dust (LS) filler
at 1.5% by weight of the aggregate in asphalt concrete mixtures for the surface layer. This study also
investigated the potential enhancement of traditional asphalt binders and mixtures by adding nano-
additives, specifically nano-silica oxide (NS) and nano-titanium dioxide (NT), at rates ranging from 0%
to 6% by weight of the asphalt binder. To quantify the moisture damage resistance of the asphalt concrete
mixes, two types of laboratory tests were employed: the tensile strength ratio (TSR) and the index of
retained strength (IRS). The former characterizes moisture damage using tensile strength, whereas the
latter uses compression strength. The physical properties of the asphalt binder, such as its penetration,
softening point, and ductility, were also evaluated to identify the effects of the nanomaterials. The
results indicated that variations in the mix design variables significantly affected the moisture damage
resistance of the asphalt concrete mixtures. The maximum improvement values were obtained at the
optimum asphalt content (OAC) and PNo. 4 (mid-range + 6%) with TSR values of 80.45 and 82.46 and
IRS values of 74.39 and 77.14, respectively. Modifying asphalt concrete mixtures with 1.5% HL resulted
in improved moisture resistance compared with mixtures without HL (0% HL) at each PNo. 4 level,
reaching superior performance at PNo. 4 (mid-range + 6%) by 4.58% and 3.96% in the TSR and IRS
tests, respectively. Additionally, both NS and NT enhanced the physical properties of the asphalt binder,
leading to substantial enhancements in asphalt concrete mixture performance against moisture damage.
A 6% dosage of NS and NT showed the best performance, with NS performing slightly better than NT.
TSR was increased by 14.72 and 11.55 and IRS by 15.60 and 12.75, respectively, with 6% NS and NT
compared with mixtures without nanomaterials (0% NM).

Keywords: moisture damage; nano-silica; nano-titanium; asphalt concrete; tensile strength ratio;
index of retained strength

1. Introduction

The challenge for the road pavement construction sector is to design and construct
superior-performing asphalt materials to satisfy the growing demand for increased axle
loadings and fluctuations in climate conditions that contribute to pavement distress such
as moisture damage, fatigue cracking, and rutting [1]. These kinds of distress impair the
lifespan and performance of flexible pavements [2]. Moisture-induced damage to the
asphalt concrete surface course is a principal reason for premature pavement failure [3].
Therefore, it is essential to understand the mechanism of moisture damage and to find an
appropriate mix of aggregate and asphalt cement to address this issue. Moisture damage
can typically be categorized into two main mechanisms: (a) loss of adhesion and (b) loss
of cohesion. Loss of adhesion occurs when water seeps between the aggregate and the
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asphalt, stripping away the asphalt film. Loss of cohesion happens when the asphalt
concrete mastic softens. These mechanisms are interconnected, so a pavement affected
by moisture damage may display these effects in combination [4–11]. Several studies
have indicated that the driving load leads to a negative-pressure pumping action that
continuously scours the interface between the asphalt and aggregate, accelerating the
stripping of the asphalt layer from the aggregate surface. Further expansion of interior
microcracks and weak contact surfaces in asphalt concrete mixtures contributes to the
degradation of their physical and mechanical properties, leading to water damage and
other road surface problems. Therefore, cohesive failure at the asphalt–asphalt interface
and adhesion failure at the asphalt–aggregate interface are likely to occur [12–16].

Many variables affect moisture damage in asphalt pavements. Some of these variables
are related to the asphalt mix design and the quality of the materials that form the asphalt
concrete mixtures, such as aggregates and asphalt cement [17]. The physical and chemical
characteristics of these components seriously impact asphalt concrete efficiency in resisting
moisture damage [18–20]. Several studies have been conducted to investigate the ability of
mix design variables to mitigate the effects of moisture damage. These studies are outlined
in Table 1.

Table 1. A review of using mix variables for asphalt mixes.

Variables Description Results References

Asphalt content

AC: 4.3%, 4.8%, and 5.3%

The mixes with OAC performed better at
withstanding moisture damage under the
compressive strength test and double-punch
shear test.

[21]

OAC and OAC ± 0.5%

Increased AC above the optimum level reduced
the friction (interlocking) between aggregate
particles, resulting in a drawback in asphalt
concrete mixture performance.

[22]

Two-level content (4.2% and 5.2%) A lower AC proved to be more effective in
withstanding asphalt mixture distress. [23]

OAC and OAC ± 0.6%
The findings indicated that the mixes formed with
OAC and OAC + 0.6% meet the required moisture
damage resistance (TSR ≥ 80%).

[24]

Aggregate gradation

Two aggregate types (slag and granite) with
fine and coarse gradations

Mixtures with a finer gradation tended to be less
susceptible to moisture damage than mixes with a
coarser gradation.

[25]

Dense bituminous macadam and
bituminous concrete were utilized with

three different gradations (finer, coarser, and
normal) for each mix.

The mixes with fine gradations (upper limit) were
better than the mixes with medium or lower
gradations regarding Marshall properties, tensile
strength ratio, and permanent deformation for
both types of mixes.

[26]

Lower limit, mid-range, and upper limit
gradations were attempted.

Lower gradations demonstrated better
performance in terms of moisture damage and
permanent deformation.

[27]

A coarse mix and a fine mix of aggregates
were chosen to create the overall structure.

This study inferred that finer-gradation blends
exhibit greater resistance to moisture damage in
comparison with coarser-gradation combinations.

[28]
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Table 1. Cont.

Variables Description Results References

HL addition by weight
of the filler

HL The results indicated significant improvements in
aggregate bonding and mixture strength. [29,30]

HL
The addition of 2.5% HL can significantly improve
asphalt mixtures’ resistance to water, freezing, and
thawing cracks.

[31]

HL
HL can interact with asphalt functional groups to
create a waterproofing compound that effectively
reduces moisture in mixtures.

[32]

HL

Three different sizes of HL were used: micro-,
sub-nano-, and nanoscale. This investigation
showed a significant correlation between the size
of the HL particles and the asphalt mixtures’
ability to mitigate distress.

[33]

HL and cement kiln dust
The mixes containing HL and cement kiln dust
had a higher tensile strength ratio than those with
no additions.

[34]

Cement, brake pad powder, LS, and HL HL performed better on pavements in terms of
withstanding moisture damage. [35]

Flexible pavement failures can be effectively controlled with proper construction
techniques and materials that outperform conventional materials [36]. One of the most
effective techniques for improving asphalt concrete’s performance properties is employing
different additive materials, such as polymers, fibers, and nanomaterials (NMs) [37–40].
Modifiers generally enhance the mixture’s properties, reducing moisture damage, fatigue,
low-temperature cracks, permanent deformation, and aging resistance, thereby improving
the overall performance of the mixture [41–44].

Nanotechnology is a highly adaptable and inventive technology in the material in-
dustry, with applications in a wide range of fields [45,46]. Nanomaterial manufacturing
reduces the dimensions from normal to nano-size, altering the surface structures, surface
energies, and physicochemical characteristics of the original materials. A nanoparticle
is marked by at least one dimension that is smaller than 100 nm [40,47,48]. Reducing a
material to the nanoscale significantly increases the surface-area-to-volume ratio, which
enhances the surface energy of the particles. This increased surface energy arises because
a larger proportion of atoms is exposed on the surface compared with bulkier materials,
leading to higher reactivity and stronger interactions with surrounding materials. As a
result, nanoparticles exhibit improved bonding capabilities with asphalt binders, mak-
ing them effective in mitigating various asphalt concrete distresses, including moisture
damage [47,48]. Owing to their distinctive properties such as high surface area, durability,
dispersion ability, and chemical purity, nanomaterials have been studied extensively for
their potential to enhance asphalt performance. These studies are outlined in Table 2.

Table 2. A review of research using NS and NT for asphalt concrete mixes.

NM NM Percent (% by Weight of
Asphalt) Results References

NS 0, 2, 4, 6
The optimal dosage for enhancing the mixture’s performance was
4% NS, and the results indicated that NS considerably reduces
sensitivity to oxidative aging.

[45]

NS 0, 2, 4, 6

The viscosity of the modified bitumen with 6% NS was significantly
increased compared with that of the neat asphalt. Additionally,
storage stability improved at the same percent, which preserved the
binder stability at high temperatures.

[49]

NT 0, 3, 6 NT strengthened the adhesion between the aggregate and asphalt.
Moreover, the asphalt pavement distress was reduced. [50]
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Table 2. Cont.

NM NM Percent (% by Weight of
Asphalt) Results References

NS 0, 0.1, 0.3, 0.5

SEM images revealed a uniform distribution of the NS throughout
the asphalt matrix.
The 0.3% NS dosage had better moisture damage resistance, with
an increment of 26.25% compared with the non-NS asphalt mixture.

[51]

NT 0, 2, 4, 6, 8, 10

The bitumen’s consistency properties (penetration and softening
point) were greatly enhanced. NT increased the modified asphalt
binder stiffness.
Samples including NT increased the mixture’s resistance to water.

[52]

NS 0, 0.2, 0.4, 0.7, 0.9 Indirect tensile strength and compressive strength were greatly
improved when employing NS as an anti-stripping agent. [53]

NS 0, 0.2, 0.4, 0.7, 0.9 Incorporating NS increased the asphalt mixture’s resistance to
moisture sensitivity at various air void contents (4%, 5%, and 6%). [54]

NT 3, 6, 9, 12, 15
The asphalt binder’s mechanical and rheological characteristics
were improved by adding the photocatalytic semiconductor
nano-TiO2.

[55]

NT 0, 1, 2, 3, 4, 5

The stone–mastic asphalt’s mechanical characteristics were
improved by incorporating 3% NT.
There was a 3% to 5% NT optimum value in enhancing the
consistency properties of bitumen (penetration and
softening point).

[56]

NT 0, 1, 3, 5, 7

Viscosity was increased and bituminous sensitivity was decreased
with the inclusion of NT.
Adding 5% NT improved the physical characteristics of the asphalt
and its resistance to fatigue cracking and rutting.

[57]

The literature review reveals a significant gap in understanding the combined effects
of mix design variables and modifiers on moisture damage resistance in asphalt concrete
mixtures. Previous studies have not fully explored how parameters such as asphalt content
(AC) and aggregate gradation (PNo. 4) along with additives like hydrated lime (HL),
nano-silica oxide (NS), and nano-titanium dioxide (NT) interact to influence moisture
damage resistance. This research addresses this gap by systematically evaluating the effect
of these factors on the moisture damage resistance of the mixtures. Moisture damage
was determined by utilizing two types of tests: the tensile strength ratio and the index of
retained compressive strength. This study also investigated the effect of NS and NT on the
physical properties of traditional asphalt binder, including penetration, softening point,
and ductility, providing valuable insight into possible enhancements of asphalt concrete
mixtures using these nanomaterials, hydrated lime, and mix design variables, allowing the
design and construction of more durable and longer-lasting asphalt pavements.

2. Materials
2.1. Asphalt Cement

Asphalt cement (40–50) of penetration grade was utilized, which is a common type for
paving roads in Iraq. It was acquired from Baghdad’s Al-Daurah refinery. Table 3 displays
the asphalt cement’s physical properties, which are within the specification limits set by
the State Commission of Roads and Bridges [58].
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Table 3. Physical properties of asphalt.

Test Units ASTM
Designation Result SCRB

Specification

Penetration 1/10 mm D5 44 40–50

Ductility cm D113 138 ≥100

Softening point (ring and ball) ◦C D36 52 -----

Kinematics viscosity, at 135 ◦C Pa.s D2170 450 ≥400

Flash point (Cleveland open cup) ◦C D92 249 ≥232

Specific gravity ----- D70 1.03 -----

Residue from thin-film oven test.

Retained penetration of original (%) 1/10 mm D5 63 >55

Ductility cm D113 76 >25

2.2. Aggregate

The aggregate was crushed quartz obtained from the AI-Nibaie quarry, located north-
east of Baghdad. The coarse and fine aggregates were sieved and recombined following the
mid-range gradation for the Type IIIA mix with a nominal maximum size of 12.5 mm, which
is used for wearing course pavement as per SCRB specifications [58]. Figure 1 displays
the aggregate gradation curve. Additionally, two other gradations were considered as mix
design variables in this work based on the tolerances recommended by SCRB specifications:
the first represents a fine gradation, including mid-range passing sieve No. 4 plus 6%, and
the second represents a coarse gradation, including mid-range passing sieve No. 4 minus
6%. The findings of the routine testing to assess the aggregates’ physical characteristics are
displayed in Table 4.
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Table 4. Physical properties of aggregates.

Test ASTM
Specification Result SCRB

Specification

Coarse aggregate

Bulk specific gravity C127 2.610 -----

Apparent specific gravity C127 2.642 -----

Water absorption C127 0.54 -----

Los Angeles abrasion % C131 16. 6 30 max

Fine aggregate

Bulk specific gravity C128 2.651 ------

Apparent specific gravity C128 2.684 ------

Water absorption C128 0.723 -------

2.3. Mineral Filler

Limestone dust (LS) was utilized as the primary filler type, representing 7% of the
total aggregate weight, which is the mid-range specified by the SCRB [58]. Additionally,
hydrated lime (HL) was used as a substitute for LS at a rate of 1.5% by weight of the aggre-
gate, based on recommendations stated in SCRB to enhance moisture damage resistance.
The physical characteristics of HL and LS, obtained from the Karbala governorate’s lime
factory, are shown in Table 5.

Table 5. Physical properties of LS and HL.

Material Property Limestone Dust Hydrated Lime

Specific gravity 2.72 2.42

Passing No.200 (%) 93 98

Surface area (m2/gm) 244 398

Scanning electron microscopy (SEM) images at 1000× magnification, as displayed
in Figure 2, visually compare the crystalline structure and the surface morphology of LS
and HL. LS has an irregular shape with a smooth surface. In contrast, HL particles appear
granular, with a rough surface texture. The roughness of the HL particles increases the
surface area, which can improve the mechanical interlocking within the asphalt mixture.
This enhanced interlocking ability contributes to the increased cohesion and stability of the
asphalt concrete, potentially leading to improved resistance against moisture damage.
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2.4. Nanomaterials Additives

The nanomaterials NS and NT were used in this study owing to their distinct properties
in enhancing the asphalt mixture’s performance. NS usually has a significant surface area
and better dispersion abilities, while NT has high purity and very low opacity. Table 6
illustrates the physical properties of these nanomaterials.

Table 6. Nanomaterial physical properties.

Properties
Nanomaterials

NS NT

Chemical formula SiO2 TiO2

Appearance White powder White powder

Average particle size, nm 25~60 20~55

Specific surface area, m2/gm 190~250 120~160

Purity, % 99.8 99.9

Meting point, ◦C 2030 1730

Bulk density, g/mL 0.08 0.51

Molecule wt., g/mol 60.08 85.42

The SEM images at 120 kx magnification, as displayed in Figure 3, were employed to
examine the crystalline structure and surface morphology of the nanomaterials used in
this study. The SEM image of NS shows agglomerated spherical particles that are highly
dense and rather homogeneous, with a large surface area. Depending on their structure,
NS particles may possess an enormous contact surface, which stiffens the binder. On the
other hand, the SEM image of NT reveals that uniform spherical particles typically appear
in cluster form. The surface structure of NT provides an even surface area, making it easier
to mix with asphalt binder, which can result in a homogeneous dispersion in the mixture.
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Energy-dispersive X-ray (EDX) spectra of the nanomaterials were also obtained, as
shown in Figures 4 and 5. Tables 7 and 8 provide a summary of the elemental compositions
of each material. EDX spectra were obtained from specific regions on the surface of
the nanoparticle material to determine the nanomaterial composition and surface atom
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distribution. As demonstrated in Figure 4, SiO2 showed high-intensity peaks of silicon
(Si) and oxygen (O), illustrating the nature of pure SiO2 nanoparticles. According to the
EDX analysis, the elemental percentages of Si and O were 42.7% and 56.6%, respectively.
The EDX analysis of TiO2 nanoparticles detected Ti, O, S, Si, Mg, Ca, and V elements, as
shown in Figure 5. According to the results, the weight percentages of Ti and O were
comparatively higher than those of the other elements because of the structure of their
nanoparticles, with percentages of 39.4% and 57.1%, respectively.
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Table 7. EDX element results of NS.

Element Atomic % Atomic % Error Weight % Weight % Error

Si 29.9 0.1 42.7 0.1

O 69.7 0.4 56.6 0.3

Ca 0.0 0.0 0.7 0.0

Ci 0.3 0.0 0.1 0.0

Table 8. EDX element results of NT.

Element Atomic % Atomic % Error Weight % Weight % Error

Ti 18.2 0.1 39.4 0.2

O 79.2 1.3 57.1 0.9

Mg 1.2 0.1 1.3 0.1

Si 0.5 0.0 0.6 0.0

S 0.4 0.0 0.5 0.0

Ca 0.4 0.0 0.6 0.0

V 0.2 0.0 0.5 0.1
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2.5. Nanomaterials Addition Method

A high-speed shear-mixer system (HSMS) was utilized to blend the nanomaterials
with asphalt cement at specific speeds, temperatures, and durations to ensure that all
the nanomaterials were distributed effectively. Table 9 presents the parameters of the
nanomaterial addition method.

Table 9. Nanomaterial mixing conditions.

Nanoparticles Temperature, ◦C Time, min Speed, rpm Percent

NS 150 ± 5 60 3000 (2%, 4%, and 6%)

NT 155 ± 5 30 3500 (2%, 4%, and 6%)

3. Experimental Tests
3.1. Physical Binder Test

To ascertain the performance and consistency of the asphalt cement, a series of binder
tests was conducted to assess the physical properties (with and without nanomaterials).
The penetration test, in compliance with ASTM D5, provides insight into the binder’s
consistency through the use of a standard needle that penetrates the binder under specific
conditions. The softening point test was performed following ASTM D36, indicating the
flowability of asphalt at high temperatures. Additionally, the ductility test (ASTM D113)
demonstrated the flexibility of the asphalt binder to elongate without breaking.

3.2. Marshall Test

The Marshall test was carried out following ASTM D6926. A batch weighing 1150 g
and containing various percentages of aggregate and filler was mixed according to the
aggregate gradation requirements. The aggregate blend was heated in a container for
two hours at approximately 150 ◦C. Concurrently, the asphalt cement (4–6%) with an
increment of 0.5 percent was heated at 155 ◦C for two hours to attain a viscosity of 170 cSt,
as indicated in Figure 6. The materials were then mixed thoroughly for two minutes at
155 ◦C. The mixture was placed into cylindrical molds with a diameter of 100 mm and a
height of 63 mm, and then heated for 10 min at 145 ◦C, corresponding to a viscosity of
280 cSt as per Figure 6. Specimens were compacted at both ends with 75 blows on each end
using a Marshall hammer to simulate high-traffic conditions (>106 ESAL). The specimens’
resistance to plastic flow was measured using the Marshall apparatus following ASTM
D6927. The air content and void content in the mineral aggregate were also estimated
based on the bulk-specific gravity (ASTM D2726) and the theoretical maximum specific
gravity for each mixture (ASTM D2041).
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3.3. Indirect Tensile Strength Test

ASTM D4867 was used to assess the moisture susceptibility of the asphalt concrete mix-
tures. Specimens of each mix were prepared using the Marshall approach and compacted
per face to reach 7 ± 1% air voids. Six specimens of each mix were prepared. They were
then split into two groups: three control specimens tested at 25 ◦C, and three conditioned
specimens exposed to a freezing and thawing cycle by conditioning at −18 ± 2 ◦C (16 h)
and then 60 ± 1 ◦C (24 h), before conducting the tensile test at 25 ◦C. The compressive
load in the indirect splitting tensile test was applied at a rate of 50.8 mm/min along the
axis of the cylindrical specimens. These specimens failed by splitting along the vertical
direction in the cross-sectional plane. The tensile strength was computed according to
Equation (1). The tensile strength ratio (TSR), Equation (2), is the ratio of the tensile strength
of the conditioned specimens (ITSc) to that of the controls (ITSd).

ITS =
2000 × Pmax

πtD
(1)

TSR =
ITSc
ITSd

(2)

Here, ITS is the indirect tensile strength (kPa), Pmax is the maximum tensile load (N), D is
the specimen diameter (mm), and t is the specimen thickness (mm). The TSR is the tensile
strength ratio (%).

3.4. Compression Strength Test

The compression strength loss of the compacted asphalt concrete mixture specimens
caused by water action was measured following ASTM D1075. Cylindrical specimens with
dimensions of 100 mm × 100 mm were prepared following the procedure in ASTM D1074.
The mixture was poured into the cylindrical mold in two layers and then subjected to an
initial stress of 1 MPa, which was then increased to 20.7 MPa for two minutes to reach a
specimen height of 100 mm. Six specimens were prepared of each mix. After that, they
were split into two groups; the first group (dry specimens) was tested at 25 ◦C. The second
group (wet specimens) was submerged in a water bath at 60 ◦C (24 h), then taken out and
placed in another water bath at 25 ◦C (2 h), before testing by applying an axial load with a
rate of 50.8 mm/min. The maximum compression load was recorded, and the compressive
strength was obtained by dividing the load by the specimen cross-sectional area. The index
of retained strength (IRS) was evaluated based on Equation (3):

IRS =
CSw

CSd
× 100 (3)

Here, CSw is the wet compressive strength and CSd is the dry compressive strength, both
in units of kPa.

Table 10 summarizes the mixing ratios and tests covered in this study.
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Table 10. Mixing ratios and tests.

Variables Mixtures Tests

Asphalt content

OAC − 0.5%

Modified binder tests:
Penetration test (ASTM D5)

Softening point test (ASTM D36)
Ductility test (ASTM D113)

Asphalt concrete tests:
Tensile strength ratio test

(ASTM D4867)
Index of retained strength test

(ASTM D1075)

OAC

OAC + 0.5%

Aggregate gradation
(PNo. 4)

Mid-range −6%

Mid-range

Mid-range + 6%

Hydrated lime at PNo. 4
levels

0% HL + PNo. 4 (mid-range −6%)

0% HL + PNo. 4 (mid-range)

0% HL + PNo. 4 (mid-range + 6%)

1.5% HL + PNo. 4 (mid-range −6%)

1.5% HL + PNo. 4 (mid-range)

1.5% HL + PNo. 4 (mid-range + 6%)

Nano-silica

0% NS

2% NS

4% NS

6% NS

Nano-titanium

0%NT

2% NT

4% NT

6% NT

4. Results and Discussion
4.1. Impact of Nanomaterials on Asphalt Physical Properties

Both NS and NT affected the physical properties of the asphalt. The general trend
indicated a reduction in the penetration value, an increase in the softening point, and a
decrease in ductility. Figure 7a illustrates that as the NM content increased, the penetration
value decreased. The reductions in the penetration value for NS at 2%, 4%, and 6% were
11.36%, 20.45%, and 34%, respectively, compared with the neat asphalt (0% NM). A similar
pattern was observed for NT, with reductions of 6.81%, 13.63%, and 25%, respectively, at
the same concentrations. NS displayed a more pronounced stiffening effect than NT, likely
due to its higher specific surface area. Figure 7b shows that the addition of NS and NT to
the asphalt positively affected the softening point. NS exhibited a greater increase than NT
compared with neat asphalt, with increments of 3.84%, 9.61%, and 15.38% at 2%, 4%, and
6% NS, respectively, and 1.92%, 5.76%, and 11.53% at the same respective concentrations of
NT. This trend suggested that both NS and NT enhanced asphalt’s stiffness.

Figure 7c illustrates the ductility of asphalt with varying NM contents. Increasing
NS and NT contents led to reductions in ductility by 7.97%, 14.49%, and 23.91% for NS
and by 5.07%, 10.86%, and 17.39% for NT at 2%, 4%, and 6%, respectively. The decrease in
ductility could be related to the reduced ability of the neat asphalt to elongate when NS
and NT were dispersed within it. All results are consistent with findings reported in the
literature [59–64].
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Figure 7. Effect of nanomaterials on physical characteristics of asphalt: (a) penetration, (b) softening
point, and (c) ductility.

4.2. Marshall Test

The optimum asphalt content (OAC) for the asphalt mixture was computed using the
Marshall mix design method. Five different asphalt concentrations were tested, ranging
from 4% to 6% (by weight of the total mix) in increments of 0.5%. The OAC was determined
by averaging the three asphalt contents that yielded maximum stability, maximum bulk
density, and 4% air voids. Figure 8 displays the mix design results of the asphalt mixture.
The OAC was found to be 4.9%. At this content, all the examined Marshall properties
(voids in total mix, VTM; voids in mineral aggregates, VMA; and voids filled with asphalt,
VFA) were within the specified limits [58]. The main aim of this study is to explore the
effect of certain mix variables and modifiers on the mixture’s ability to resist moisture
damage. Therefore, the OAC of 4.9% determined for the control mix was maintained for all
other types of mixtures rather than optimizing the mix design for each mixture type.
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Figure 8. Marshall mix design results.

4.3. Indirect Tensile Strength Results
4.3.1. Effect of Mix Variables

Three asphalt contents of OAC, OAC − 0.5%, and OAC + 0.5% as well as three
aggregate gradations with PNo. 4 equal to mid-range (59%), mid-range −6% (53%), and
mid-range + 6% (65%) were used as mix variables in this study. Figure 9 illustrates the
effect of AC on the tensile strength test. The mixture prepared with OAC (4.9%) had the
highest tensile strength (both conditioned and unconditioned mixes). Consequently, the
TSR also had the maximum value (80.45%) compared with mixtures prepared with other
asphalt contents, meeting the minimum requirement of 80% specified in AASHTO T283.
Insufficient AC led to impaired aggregate bonding. On the other hand, AC above the
optimum level may lead to a thicker asphalt film around the aggregate and decrease the
stiffness of the mixture because of the easy sliding of the aggregate particles against each
other. The results are in agreement with those in [21,24].
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Figure 9. Effect of AC on (a) ITS and (b) TSR.

Figure 10 illustrates the impact of PNo. 4 on the tensile strength test. The ITS values
improved when PNo. 4 increased, i.e., the fine aggregate fraction increased. The fine
skeleton of aggregate with a high percentage of PNo. 4 resulted in a comparable increase
in conditioned and unconditioned tensile strength. Furthermore, the TSR increased by
2.53% and 2.49% when PNo. 4 increased from 53 to 59 and from 59 to 65, respectively. The
improved resistance to moisture damage with increasing PNo. 4 is likely due to better
particle packing and reduced permeability, as the fine aggregate helps fill the voids between
the coarse aggregate particles. This results in a denser structure that enhances the overall
stability of the mixture. These outcomes are consistent with those obtained in [28,65].

Infrastructures 2024, 9, x FOR PEER REVIEW 14 of 24 
 

  
Figure 9. Effect of AC on (a) ITS and (b) TSR. 

Figure 10 illustrates the impact of PNo. 4 on the tensile strength test. The ITS values 
improved when PNo. 4 increased, i.e., the fine aggregate fraction increased. The fine skel-
eton of aggregate with a high percentage of PNo. 4 resulted in a comparable increase in 
conditioned and unconditioned tensile strength. Furthermore, the TSR increased by 2.53% 
and 2.49% when PNo. 4 increased from 53 to 59 and from 59 to 65, respectively. The im-
proved resistance to moisture damage with increasing PNo. 4 is likely due to better parti-
cle packing and reduced permeability, as the fine aggregate helps fill the voids between 
the coarse aggregate particles. This results in a denser structure that enhances the overall 
stability of the mixture. These outcomes are consistent with those obtained in [28,65].  

   
Figure 10. Effect of PNo. 4 on (a) ITS and (b) TSR. 

4.3.2. Effect of Modifiers  
Hydrated lime (HL) of a regular size, nano-silica oxide (NS), and nano-titanium di-

oxide (NT) were used as the modifiers in this study. Figure 11 shows the effect of HL on 
the tensile strength test at three different percentages of PNo. 4, indicating that the values 
of ITS and TSR improved in mixtures incorporating 1.5% HL as a partial replacement for 
LS. The TSR value increased by 2.93% at PNo. 4 (mid-range −6%), 3.62% at PNo. 4 (mid-
range), and 4.58% at PNo. 4 (mid-range + 6%) compared with the mixes containing only 
LS. Since HL particles have a high surface area, their ability to stiffen the asphalt matrix 
(asphalt cement and filler) is improved, leading to improved resistance to the tensile stress 
mobilized within a plane perpendicular to the diametral loading axis. Meanwhile, increas-
ing PNo. 4 caused an additional improvement in tensile strength resistance against mois-
ture damage, with the optimum value of TSR (86.24) at PNo. 4 (mid-range + 6%) + 1.5%HL. 
The results agreed with those in [29,33,66]. 

755

922 885990

1146 1123

0

200

400

600

800

1000

1200

1400

OAC-0.5 OAC OAC+0.5

IT
S,

 k
Pa

AC,%ITSc ITSd

76.26
80.45 78.8

0

20

40

60

80

100

OAC-0.5 OAC OAC+0.5

TS
R,

%

AC,%

809
922

1110
1031

1146

1346

0

200

400

600

800

1000

1200

1400

1600

mid-range-6 mid-range mid-range+6

IT
S,

 k
Pa

PNo. 4,%ITSc ITSd

78.46
80.45

82.46

50

60

70

80

90

100

mid-range-6 mid-range mid-range+6

TS
R,

 %

PNo. 4,%

(a) 
(b) 

(b) (a) 

Figure 10. Effect of PNo. 4 on (a) ITS and (b) TSR.

4.3.2. Effect of Modifiers

Hydrated lime (HL) of a regular size, nano-silica oxide (NS), and nano-titanium
dioxide (NT) were used as the modifiers in this study. Figure 11 shows the effect of HL on
the tensile strength test at three different percentages of PNo. 4, indicating that the values
of ITS and TSR improved in mixtures incorporating 1.5% HL as a partial replacement
for LS. The TSR value increased by 2.93% at PNo. 4 (mid-range − 6%), 3.62% at PNo. 4
(mid-range), and 4.58% at PNo. 4 (mid-range + 6%) compared with the mixes containing
only LS. Since HL particles have a high surface area, their ability to stiffen the asphalt
matrix (asphalt cement and filler) is improved, leading to improved resistance to the tensile
stress mobilized within a plane perpendicular to the diametral loading axis. Meanwhile,
increasing PNo. 4 caused an additional improvement in tensile strength resistance against
moisture damage, with the optimum value of TSR (86.24) at PNo. 4 (mid-range + 6%) +
1.5% HL. The results agreed with those in [29,33,66].
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Figure 11. Effect of HL on (a) ITS and (b) TSR.

Based on the results displayed in Figure 12, the ITS of the mixtures modified with
NS and NT was greater than that of the mixture without nanomaterials (0% NM). The
ITSd improvement percentages at 2%, 4%, and 6% NS were 20.15%, 24.17%, and 28.09%,
respectively; the corresponding percentages for NT were 16.40%, 22.33%, and 26.96%. The
ITSc increased by 27.22%, 36.33%, and 46.96% for NS and by 21.25%, 32.75%, and 41.64%
for NT at 2%, 4%, and 6%, respectively. Moreover, the optimum improvements in the TSR
value for NS and NT were at 6% by 14.72% and 11.55%, respectively, compared with the
mixture without nanomaterials (0% NM). The high specific surface area of NS, as shown
in Table 6 (190~250 m2/gm), allowed it to perform slightly better than NT in enhancing
resistance to moisture damage. The extra fineness of NS leads to stronger adhesion between
the aggregate particles and asphalt caused by increased asphalt cement stiffness, which
minimizes the effect of stripping under the influence of moisture. This is similar to the
findings of previous research [52,67–69].
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Figure 12. Effect of NMs on (a) ITS and (b) TSR.

4.3.3. Statistical Analysis

An analysis of variance (ANOVA) was conducted using Minitab software v17 to
provide additional verification of the impact of the mix variables and modifiers on the
moisture damage resistance of the asphalt concrete mixtures. p-values and f -values were
employed to assess the significance of each factor, which is necessary for evaluating the
significance of the variables and interpreting their reciprocal interactions. The outcomes of
this analysis are based on the effect of the mix variables and modifiers on tensile strength, as
reported in Table 11. The p-value falls below the significance level (α = 0.05), and the f -value
exceeds the f -critical value, which indicates that the outcomes are statistically significant.
NS is the most significant factor due to its highest f -value, followed by NT, HL, PNo. 4,
and AC.
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Table 11. ANOVA results for the tensile strength test.

Source DF Adj SS Adj MS f -Value p-Value f Critical

PNo. 4 2 22.473 11.237 60.92 0.004 9.27

AC 2 12.544 6.272 34.00 0.009

HL 1 14.920 14.920 80.89 0.003

NS 3 116.644 38.881 210.79 0.001

NT 3 75.925 25.308 137.21 0.001

Error 3 0.553 0.184

Lack-of-fit 2 0.553 0.276 * *

Pure error 1 0.000 0.0000

Total 14 291.679

4.4. Index of Retained Strength Test Results
4.4.1. Effect of Mix Variables

The variation in mix design variables in relation to the asphalt content and aggregate
gradation can influence the compressive strength test. Figure 13 illustrates the effect of
AC on the compression strength test. As the AC increased from OAC-0.5% to OAC, the
CSd and CSw improved by 5.18% and 9.57%, respectively. When the AC was increased
from OAC to OAC + 0.5%, it led to a slight drop in compressive strength in both dry and
wet conditions, by 4.06% and 5.81%, respectively. This decline was due to softening of
the asphalt mixture at AC above the optimum level. The results indicate that the mixture
with OAC had the greatest value of IRS and that mixtures with variable asphalt content
(OAC-0.5% and OAC + 0.5%) were unsusceptible to moisture since the IRS values were
greater than 70%, as set by ASTM D1075.
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Figure 13. Effect of AC on (a) compressive strength and (b) IRS.

Figure 14 compares the effect of PNo. 4 on the compression strength test. When the
rates of PNo. 4 increased, the CSd and CSw were enhanced. Therefore, the IRS increased
by 2.59% and 3.69% when PNo. 4 increased from mid-range − 6% to mid-range and from
mid-range to mid-range + 6%, respectively. The mixture prepared with a fine gradation
(mid-range + 6%) had the highest moisture resistance owing to the fine particles’ ability to
fill the pores within the coarse aggregate skeleton, leading to enhanced adhesion between
the asphalt cement and aggregate.
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Figure 14. Effect of PNo. 4 on (a) compressive strength and (b) IRS.

4.4.2. Effect of Modifiers

To mitigate failure caused by moisture, it is desirable to use anti-stripping additives
such as HL, NS, and NT. Figure 15 illustrates the effect of HL on the compression strength
test. The outcomes revealed that using HL increased the dry and wet compressive strength
more than did mixtures (0% HL) with different PNo. 4 levels. The Cw was lower than the
Cd, which clarified the impact of moisture on mixes that exhibit moisture damage. The
improvements in the IRS were 2.52 at PNo. 4 (mid-range − 6%), 4.20 at PNo. 4 (mid-
range), and 3.96 at PNo. 4 (mid-range + 6%). The improved performance can be primarily
attributed to the chemical reactions between HL and the asphalt binder and aggregate,
wherein calcium ions (Ca++) in HL neutralize acidic components in the binder, improving
adhesion and reducing moisture susceptibility. In addition, increasing the percentage of
PNo. 4 led to better particle packing, which effectively resisted moisture damage. The
results agreed with those in [66,70–73].
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Figure 15. Cont.
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Figure 15. Effect of HL on (a) compressive strength and (b) IRS.

Figure 16 represents the relationship between the NMs (types and content) and the
compression strength. The results indicate that incorporating NS and NT into the asphalt
binder increased the values of both dry and wet compressive strength. This attribute led to
a corresponding rise in the value of the IRS; the optimum increases in the IRS were obtained
with 6% NS and NT, at 15.6% and 12.75%, respectively, relative to the 0% NM mixture. This
improvement may be due to the physical properties and shape of these NMs, which had an
essential effect on the interaction with the asphalt binder. Modifying the asphalt binder
with NS and NT decreased the penetration grade shown in Figure 7, which led to stiffening
the binder and enhancing the mixture’s resistance against moisture damage.
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Figure 16. Effect of NMs on (a) compressive strength and (b) IRS.

4.4.3. Statistical Analysis

An analysis of variance (ANOVA) was conducted to identify the significant variables
that influenced the compressive strength test. As shown in Table 12, the f -value demon-
strated a statistically significant difference between the variables, which was higher than
the f -critical for all cases, and the p-value was lower than the threshold for statistical signif-
icance (α = 0.05). The ANOVA revealed the accurate significance of the variables, and the
results indicated that the optimum significance was for NS, followed by NT, PNo. 4, HL,
and AC.

Table 12. ANOVA results for the compressive strength test.

Source DF Adj SS Adj MS F-Value p-Value F-Critical

PNo. 4 2 27.553 13.777 73.03 0.003 9.27

AC 2 7.226 3.613 19.15 0.02

HL 1 12.322 12.322 65.32 0.004

NS 3 128.155 42.718 226.46 0.000

NT 3 91.226 30.408 161.20 0.001

Error 3 0.566 0.188

Lack-of-fit 2 0.566 0.283 * *

Pure error 1 0.000 0.000

Total 14 320.873

Table 13 displays the optimal resistance against moisture damage based on the two
types of tests used in this work to quantify the moisture damage resistance in relation to
the mix variables and modifiers.
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Table 13. The maximum moisture damage resistance in mixtures.

Mixture Type TSR IRS

Mix variables

Mixture at OAC 80.45 74.39

PNo. 4 (mid-range + 6%) 82.46 77.14

Modifiers

PNo. 4 (mid-range + 6%) + 1.5% HL 86.24 80.20

6% NS 92.30 86

6% NT 89.75 83.88

5. Conclusions

This study investigated the effects of mix design variables, such as the asphalt content
and aggregate gradation (percent passing sieve No. 4), and modifiers, including hydrated
lime (HL), nano-silica oxide (NS), and nano-titanium dioxide (NT), on the moisture damage
resistance of asphalt concrete mixtures. Moisture damage was characterized using two
types of indicators: the tensile strength ratio (TSR) and the index of retained strength (IRS).
The following conclusions were drawn from the comprehensive laboratory experiments.
While these findings provide valuable insights, further field studies are necessary to validate
them and ensure their applicability in real-world pavement engineering practices.

1. Mix variables, particularly the asphalt content (AC) and aggregate gradation, sig-
nificantly influenced moisture resistance. The optimal asphalt content (OAC) led
to improved performance in TSR and IRS tests, with values of 80.45% and 74.39%,
respectively. Fine gradation (mid-range + 6%) provided the best results for the TSR
(82.46% at 0% HL and 86.24% at 1.5% HL) and IRS (77.14% at 0% HL and 80.20% at
1.5% HL) due to the dense structure and enhanced particle interlocking.

2. Substituting 1.5% HL for LS filler improved moisture resistance compared with
mixtures without HL (0% HL), at each PNo. 4 level. The TSR increased by 2.93%
at PNo. 4 (mid-range −6%), 3.62% at PNo. 4 (mid-range), and 4.58% at PNo. 4
(mid-range + 6%), while the IRS increased by 2.52%, 4.20%, and 3.96%, respectively.

3. The inclusion of nanomaterials (NS and NT) improved the physical properties of the
asphalt binder by reducing penetration, raising the softening point, and decreasing
ductility. SEM analysis showed that NS particles have a densely packed structure with
a large surface area, which contributes to significant improvements in stiffness and
resistance to moisture damage. NT particles, on the other hand, displayed spherical
cluster shapes that facilitated homogeneous dispersion in the mixture.

4. NM additives significantly enhanced the mixture’s performance against moisture
susceptibility, as revealed by the TSR and IRS test results. A 6% dosage of NS and NT
showed the best performance, with NS performing slightly better than NT. Optimal
TSR values of 92.30 and 89.75 and IRS values of 86 and 83.88 were obtained with 6%
NS and NT, respectively.

5. The ANOVA results provided valuable insights into the variables that had a significant
impact on resisting moisture damage. In this study, both mix variables and modifiers
were statistically significant with respect to the tensile strength and compression
strength tests. It was observed that NS had the highest level of significance, while AC
had the lowest significance compared with other variables.

Overall, this study’s findings clearly demonstrate that proper mix design along with
modifiers, particularly nanomaterials and hydrated lime, significantly affects moisture
damage in asphalt concrete mixtures. However, these findings are based on systematic
laboratory work; practical engineering application is crucial for promoting the actual
performance of asphalt pavements.
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