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Abstract: Predictive maintenance can help infrastructure managers to reduce costs and improve
railway availability while ensuring safety. However, its accuracy depends on reliable data from
various sources, especially track measurement data. When analysing track data over time, historical
maintenance actions must be considered, as otherwise the interpretation of the data would be
misleading. This research aims to address inconsistencies in recorded maintenance data by detecting
unrecorded track works through track geometry evaluations. The main goal is to provide the
foundations for accurate descriptions of track behaviour, supporting the implementation of effective
predictive maintenance regimes. As part of the research, three different approaches are analysed
and evaluated, whereby two of them are based on cross-sectional analyses and the third one detects
track works in longitudinal track dimension. The results show that the CRAB algorithm produces
the most statistically significant results. Conversely, the cumulative track geometry-based algorithm
provides a homogeneous representation of past maintenance work and a result that is statistically
only marginally inferior. Consequently, these two methods are best suited to build the foundation
for making accurate cross-sectional conclusions about track geometry behaviour. This allows for the
verification and enhancement of existing maintenance databases.

Keywords: railways; data analysis; detection of maintenance; track behaviour; predictive maintenance

1. Introduction

The rapidly developing field of predictive maintenance is concerned with ensuring
the reliability of infrastructure systems such as railway tracks. In the railway sector, pre-
dictive maintenance aims to anticipate track failures, predict the time to an exceedance
of pre-defined threshold values, and plan maintenance measures. That helps to minimise
operational disruptions, reduce maintenance costs, and preserve the requested quality [1].
This approach relies heavily on accurate and comprehensive data, including both measure-
ment data for modelling and metadata such as asset information and maintenance records.
However, the effectiveness of predictive maintenance systems is often compromised by in-
complete or inaccurate metadata, particularly when maintenance activities are not recorded
or incorrectly documented.

In the railway sector, maintenance planning is often empirical, based on the knowledge
and experience of regional infrastructure managers. This knowledge is a highly valuable
asset that, in the best case, is combined with data-driven predictive maintenance approaches.
This requires prediction of track behaviour based on descriptive models. The detection of
unrecorded or misrepresented maintenance activities is a critical challenge in this context.
If maintenance activities are omitted from the data warehouse, the predictive models are
fed with incomplete data, leading to incorrect degradation rate calculations and ultimately
incorrect maintenance plans. This can result in either over-maintenance, which is costly, or
under-maintenance, which compromises safety and reliability [2].

The deterioration of track quality is interrupted by maintenance work, as maintenance
leads to a sudden enhancement of quality. Deterioration branches, being the foundation
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of descriptive models, must therefore be described between two maintenance measures.
Unavailable or incorrect maintenance data end in misleading descriptive models and are
discussed in several publications dealing with predictive maintenance models, though
they are not always considered. This is exemplified by the works of Wen et al. [3], An-
drews et al. [4], Guler et al. [5], and Jovanovic et al. [6], who have incorporated maintenance
data into their degradation models and maintenance planning yet have not discussed the
potential impact of unrecorded or incorrect data.

In contrast, Caetano et al. state that in their research a model for detecting changes
in geometry parameters, which is not further described, is used [7]. Furthermore, the
predictive maintenance model established is based on fixed 200 m sections, which only
permit the identification of the occurrence of a maintenance activity within the section, but
not its precise location. Audley and Andrews also coped with incomplete maintenance
and renewal records that did not meet the requirements necessary for developing track
degradation models [8]. Consequently, they employed an algorithm to ascertain the precise
date of maintenance and renewal activities, not merely the correct year. The algorithm
combines existing maintenance and renewal records with track measurement data, thereby
enabling the precise determination of the time at which the measure was undertaken within
a 220-yard section.

Sedghi et al. identified the need for an empirical determination of unrecorded mainte-
nance data for building a stochastic data-driven decision-support framework that integrates
automated prediction of track geometry degradation with planning and scheduling opti-
misation modelling [9]. It was determined that an ad-hoc improvement of the standard
deviation of the longitudinal level by 15% indicates an executed maintenance activity in a
fixed 200 m section.

Neuhold et al.’s maintenance data was also incomplete, leading to the necessity of
an algorithm to detect undocumented maintenance and renewal activities [10]. In their
algorithm, they employ a combination of outlier detection based on data points from the
modified standard deviation of the longitudinal level and a comparison of successive
quality indices. They state that if the quality between two data points increases, which
means that the modified standard deviation of the longitudinal level decreases and the data
point cannot be classified as an outlier, then a maintenance or renewal action was executed
between those two points in time.

One of the objectives of Fellinger’s thesis was to ascertain the effect of tamping on the
standard deviation of the longitudinal level in turnouts for setting up a prediction model of
turnout behaviour [11]. As the maintenance record was incomplete, he decided to complete
the input data for a dozen of turnouts by conducting exhaustive research and having
discussions with regional managers. Based on this accurate input data, he constructed a
model for detecting past maintenance activities. He uses a linear model with a prediction
interval to forecast the standard deviation of the longitudinal level of every measurement
run based on the preceding values. Maintenance is then detected with a probability in
dependence on the prediction interval if the standard deviation of the longitudinal level
was lower than the lower limit of the prediction interval. As with all of the aforementioned
algorithms, this is a cross-section-based maintenance detection. Fellinger’s method also
forms the foundation for one algorithm described later in this paper.

The literature indicates a lack of knowledge with regard to reliable methods for the de-
tection of performed, ballast-related maintenance measures and an objective performance
evaluation of the methods. Only a few publications address the quality of maintenance
data and the problem of undocumented actions on the correctness of analytical models.
Most researchers deal with missing information by making well-founded manual data
adjustments, but this is not possible for large data sets. Also, the majority of researchers
employ the improvement of quality as a criterion for determining the efficacy of track work.
However, this approach is not always sufficient, as improvements in quality within a time
series can also be attributed to the presence of poorly synchronised data or data errors.
This paper addresses the issue by proposing and comparing three methods for detecting



Infrastructures 2024, 9, 204 3 of 22

performed, ballast-related maintenance actions based on signal characteristics. By accu-
rately identifying these unrecorded actions, the proposed methods allow for the calculation
of more reliable degradation rates, enabling more accurate and stable maintenance plans.
The significance of this work lies in its potential to improve the accuracy and effectiveness
of predictive maintenance systems for railway tracks.

2. Methodology

All following considerations are based on data from the Austrian standard track
recording car. This delivers several signals, such as the longitudinal level, the track gauge,
and the alignment two to four times a year—depending on the importance of the track [12].
As mentioned before, the condition and behaviour of the track are mostly described by
the development of the standard deviation of the longitudinal level. In order to determine
accurate deterioration models, deterioration branches have to be bounded by maintenance
actions that affect the longitudinal level. Therefore, the input data for this research is the
longitudinal level in the wavelength range of 3 to 25 m, described as the D1 signal in the
European Standards [13]. For all three algorithms, it is important that the input signals
are synchronised, as they are only roughly positioned in the database. As described by
Fellinger [14], this most effectively works by shifting the measurements run with the aim
of minimising the Euclidean distance d (Formula (1)) between the measurement runs,
whereby the latest valid measurement run before a renewal or the latest measurement run
in the database, respectively, forms the reference signal.

d =

√
(x2 − x1)

2 + (y2 − y1)
2 (1)

The calculation of the Euclidean distance between two measurement points also
includes the positional value in the longitudinal track dimension described by x. As this
term is the result of the synchronisation process, it is not relevant for the calculation;
therefore, the one-dimensional distance of y between two measurement points is sufficient
for the synchronisation process. The sum of the distances DM1|M2 is then a kind of quality
index for the synchronisation of two measurement signals, M1 and M2, with a length L,
shown in Formula (2).

DM1|M2
=

√√√√ L

∑
i=1

(
yi|M1

− yi|M2

)2
(2)

When shifting one of the two measurement signals, the shift with the minimum
distance DM1|M2 can be found. This shift represents the distance in longitudinal direction
by which the signal has to be moved, most of the time lying in the range of a few meters. In
the upper part of Figure 1, two unsynchronised signals are shown. Those signals are then
synchronised through the described process, with the result displayed in the lower part of
Figure 1.
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In the following, three different approaches to detect executed maintenance actions
derived from the longitudinal level in the wavelength range of 3 to 25 m meters are
presented. Hereby, the first two algorithms are cross-section based, whereas the third
method uses the principle of the cumulative sum of the longitudinal level.

2.1. SEARCH Algorithm

The SEARCH algorithm, first described by Fellinger [11] and further developed for
the aim of this comparison, can be employed to detect unrecorded tamping actions. The
decision-making process is based on five conditions, all of which represent possible devel-
opments of the standard deviation of the longitudinal level D1. Moreover, the algorithm’s
precision can be enhanced by incorporating recorded tamping actions.

Basically, the SEARCH algorithm operates on a cross-sectional basis and can be imple-
mented across the entire line by iterating over each cross-section. For every cross section,
a loop is executed, whereby a new measurement point, including its corresponding date,
is appended to a temporary data set in each iteration. Subsequently, the five conditions,
presented in the following in numerical order, are checked to ascertain whether a tamping
action may have occurred. If this is the case, the proposed date of the action is saved. The
date is calculated via the mean of the measurement dates before and after the predicted
maintenance. Furthermore, all data points before the predicted maintenance are deleted
from the temporary data set. In the event that no condition is fulfilled, or the temporary
dataset is cleared, a new point is added to said dataset. The loop is continued until the
latest measurement is added to the temporary dataset and has been evaluated.

2.1.1. Condition/Rule 1

The application of Rule 1 is limited to cases where the temporary dataset comprises
precisely two measurement points. In the event that the second measurement point exhibits
a lower quality and a higher value than the first, no action is required, given that it is
reasonable to expect a decline in track quality over time. Conversely, if the quality of the
initial measurement exceeds the quality of the subsequent measurement by a defined value,
a tamping action is identified. The threshold value is set at 0.25 mm, which allows for
the reasonable assumption that a significant improvement can be attributed to track work
and not to an issue with the data or other influences. Rule 1, like Rules 2–4, is illustrated
graphically in Figure 2.
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2.1.2. Condition/Rule 2

Rule 2 is applied to a dataset comprising three to five data points. All data points, with
the exception of the final one, are employed in the calculation of a linear regression, which
is subsequently utilized to forecast the value of the last point. In the event that the final
point exhibits a quality improvement of greater than 0.25 mm relative to the prediction, and
the subsequent measurement point also demonstrates a quality enhancement of at least
0.1 mm in comparison to the same prediction, a tamping action is identified in advance of
the last point of the provisional dataset. Incorporating the subsequent data point serves to
reduce the probability of an outlier being erroneously identified as maintenance work.

2.1.3. Condition/Rule 3

The third rule can only be applied if a tamping action has been identified and the
initial two data points of the provisional dataset have not fulfilled any of the specified
conditions. The initial data point of the provisional set will be excluded if three conditions
are met:

• The absolute increase in quality from temporary point 1 to temporary point 2 is greater
than the absolute quality increase from the final point in the preceding deterioration
branch to temporary point 1.

• Temporary point 2 exhibits higher quality than that observed at temporary point 1.
• The absolute increase in quality from temporary point 1 to temporary point 2 is greater

than 0.05 mm.

Rule 3 is applied in order to eliminate outliers at the beginning of deterioration
branches, thereby ensuring stable regressions.

2.1.4. Condition/Rule 4

Rule 4 is similar to Rule 3, as it also demands an already detected tamping and three
measurement points in the new temporary dataset. Additionally, three conditions must
be met:

• The absolute increase in quality from temporary point 2 to temporary point 3 is greater
than the absolute quality increase from the final point in the preceding deterioration
branch to temporary point 2.

• Temporary point 3 is of a higher quality than temporary point 2.
• The absolute increase in quality from temporary point 2 to temporary point 3 is greater

than 0.05 mm.

The objective of this rule is to ensure stable regression for deterioration branches by
eliminating outliers at the start of those branches. If the aforementioned conditions are met,
the first two points of the temporary dataset will be excluded.

2.1.5. Condition/Rule 5

While Rules 1 through 4 are necessary for specific instances to ensure the proper
functionality of Rule 5, Rule 5 can be regarded as the primary rule for detecting tamping
actions. The temporary dataset must comprise a minimum of four data points, and no
other rule must have identified a tamping action. All points, with the exception of the final
one, are used to calculate a linear regression model. This is employed to forecast the value
of the final point in the temporary dataset within a confidence interval with a statistical
significance of 0.995. Consequently, it is possible to ascertain whether the measurement
point is included in the linear regression.

Should the quality of the measurement exceed the predicted value, it may be indicative
of either an outlier or the execution of a tamping action. Should the subsequent measure-
ment point also exceed the predicted quality range (confidence interval), a tamping action
will be recorded, and all points except the final one will be excluded from the temporary
dataset. In the event that the final point is identified as an outlier, it is excluded from
subsequent calculations.
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Figure 3 illustrates an exemplary dataset with its linear regression and confidence in-
terval. As is evident from this example, the predicted standard deviation is not significantly
different from the actual value. Furthermore, the stability of the regression is of importance,
as the widening of the confidence interval is dependent on the scattering of the data and
the time span between the last and the predicted point.
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2.1.6. Condition/Rule 0—Adaptation of the Algorithm

After completion of the loop, the boundaries of all deterioration branches and outliers
are known. If there are also known maintenance actions, these can be compared to the
calculated ones. Furthermore, if there is a detected and a real tamping action amidst two
measurement points, the calculated one will be overwritten by the recorded one. On the
other hand, if no measurement point has been detected, a recorded one can be added.

In case the recorded data of tamping actions can be trusted, the algorithm will function
more effectively. As Rule 0, already known maintenance actions will be included by
default, instead of comparing and adding those afterwards. Upon the addition of a new
measurement point to the temporary dataset, a verification is conducted to ascertain
whether a recorded tamping action exists between the newly introduced point and the
preceding one. If the aforementioned condition is satisfied, only the most recent data point
will remain in the temporary data set, and the corresponding recorded maintenance action
will be saved. The use of trusted tamping actions serves to enhance the algorithm, reducing
the likelihood of missed outliers, unstable linear regressions, and slightly differing, not
detectable behaviour of adjacent deterioration branches.

Figure 4 illustrates the application of the five rules to a fictional cross-section. While
Rules 1 (yellow) and 2 (blue) are applied, they never result in a detection. Conversely, Rules
3 (and 4, green) do detect an outlier, and another outlier is identified by Rule 5 (red) in
the first deterioration branch. As is the case with the majority of cross-sections, nearly all
tamping actions are detected by Rule 5.
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2.2. Cross-Section- and RANSAC-Based (CRAB) Algorithm

The second method provides the option of incorporating recorded maintenance data
into the process, in a manner analogous to that of the SEARCH algorithm. If maintenance
data is available, the period during which measurement data is available is divided into
two or more rooms, with the number of rooms depending on the number of maintenance
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activities. In the absence of maintenance data, all measurement data is treated as per-
taining to a single room. The fundamental tenets of this algorithm are derived from the
core principles of the RANSAC (Random Sample Consensus) algorithm [15], which is an
iterative method employed to estimate the parameters of a mathematical model from a
dataset that may contain outliers. The method operates by repeatedly selecting random
subsets of the data, fitting a model to them, and evaluating which model has the greatest
number of inliers. In this case, for each defined room bounded by maintenance actions
or the beginning and end of data recording, respectively, every possible combination of
two measurement points represented by the standard deviation of the longitudinal level
D1 is selected iteratively. The primary objective is not to detect outliers but to identify
individual deterioration branches, which occurs in two steps. In the first step, the two
chosen data points establish a straight line around which an interval is traversed. The size
of the interval is defined by the standard deviation of the data points in the respective room,
whereby a value of 1/3 of the standard deviation has been found to be a sensible choice.
Figure 6 shows that with an interval range of 1/3 (0.33) of the standard deviation of the
longitudinal level D1, the highest F1 score can be reached by applying the algorithm to a
calibration data set, which is further introduced in 2.3. The value by which the standard
deviation of the longitudinal level D1 is multiplied is plotted on the x-axis.
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All data points that fall within the interval are then labelled and saved in a list (green
points in Figure 7). Once all potential combinations within the designated room have
been processed, the set of data points that were most frequently identified as contiguous is
defined as a set for a segregated deterioration branch.
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Data points that fall within the specified room and which are not part of the data
set are discarded as outliers (orange points in Figure 7); those that fall outside the room
(red points) are used for the subsequent determination of a deterioration branch. To
prevent rooms with an excess of outliers from being erroneously designated as a segregated
deterioration branch, the ratio of the time span of the identified room in relation to the
labelled inliers must not exceed 1.5 times the overall inspection interval in this cross section.
If no further measuring points are available for which room affiliation can be determined,
the system will proceed with the next room initially defined by existing maintenance
activities or the next cross-section. The procedure aims to fragment the cross-section into
deterioration branches. Nonetheless, issues predominantly arise when the maintenance
interval is shortened towards the end of the service life or the enhancement in the standard
deviation of the longitudinal level subsequent to maintenance is minimal. Consequently, a
further refinement is conducted in the second step, with the outcomes of the initial step
serving as the basis for this process. In the second step, three measurement points are
always employed across the room, with the first and third measurement points establishing
a straight line. Subsequently, the vertical distance between the second data point and the
representative point on the line is calculated, as shown in Figure 8.
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It has been concluded empirically that if the distance is within half and double the
entire room’s standard deviation below the established line, maintenance was executed
prior to the second data point. If the measuring point is situated below the lower limit, the
data point is designated as an outlier. Upon completion of both steps, the algorithm returns
the detected maintenance actions for each cross-section, while the date of the maintenance
is defined as the midpoint between the two adjacent measurement runs.

For better understanding, the workflow of the CRAB algorithm is depicted in a flow
chart in Figure 9.

2.3. Cumulative Track Geometry-Based Algorithm

The third algorithm employs the cumulative track geometry index, initially proposed
by Loidolt for the assessment of turnout condition [16]. In the publication, the cumulative
sum of the root mean squares (RMS) with an influence length of 3 m is used to represent the
average track geometry quality of a turnout or parts of a turnout. For the aim of this paper,
the approach is slightly modified, and the cumulative sum of the square roots instead of
the root mean squares of the longitudinal level are used. The calculated index is called
the Cumulative Index (CI) and is defined in Formula 3. The length L of the section can be
selected arbitrarily, as will be demonstrated in the following explanations. CI is therefore
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described as a function of the position and can be seen for multiple measurement runs in
the upper part of Figure 10.

CIi =
L

∑
i=1

√
LL2

i (3)
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Figure 10. Visualisation of the CI and DCI signal for multiple measurement runs.

The local gradient of the cumulated curves reflects the track geometry quality of the
respective location, with high gradients depicting poor quality. Deviations between two
cumulated curves indicate either track deterioration or executed maintenance. In order
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to capture the gradient differences across a range of CIs for detecting maintenance, the
difference between each consecutive CI is calculated and referred to as the difference signal
(DCI). Subsequently, the DCI for each position is smoothed by calculating the moving mean
with a span of 100 metres with the objective of minimising excessive scattering. The DCI
signal is depicted in the lower part of Figure 10.

Three scenarios are presented. In Case 1, no maintenance is performed between the
two measurement runs, and track geometry deteriorates at a rapid rate as the track is
potentially approaching the end of its service life. This accelerated deterioration results
in an increase in the amplitude of the longitudinal level, which in turn leads to a positive
gradient in the DCI signal (blue). In contrast, Case 2 involves a maintenance activity
between the measurement runs, which serves to reduce the longitudinal level amplitudes.
Therefore, the CI signal after the maintenance has a lower gradient than the CI signal of
the measurement before the maintenance. Consequently, the gradient of the DCI signal
in the area where maintenance has been carried out (magenta) is negative. After a few
measurement runs, which are shown in grey, a track renewal was executed. As expected,
the CI signal of the first measurement run after the renewal (31 March 2021) has a flat
gradient. New, undamaged components result in a minimal deterioration of track geometry
and no need for maintenance. Consequently, the CI signals display gradients that are
almost identical (Case 3) and flatter than the gradients in Case 1. Furthermore, the DCI
signal also has a low but positive gradient.

In this instance, the gradient is approximated via the secant of the DCI over a length
of 100 m. The length of the secant was determined through an investigation in which
secant lengths of 50 m, 75 m, 100 m, 125 m, 150 m, 200 m, and 250 m were analysed. The
relation of true positive rate to false positive rate (Figure 11) reveals that a secant length of
100 m yields the best results, as then a good balance between a low false positive rate and a
high true positive rate can be achieved. This analysis was conducted on four sections with
comprehensive maintenance documentation, providing a ground truth that enabled the
determination of the ideal secant length.
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Figure 11. Determination of the secant length.

Given that the gradient of the DCI can now be described at each point using the secant
gradient, the subsequent step is to ascertain in which areas the gradient of the DCI signal
is negative. Given the varying gradients before and after the maxima and minima of the
DCI (as depicted in Figure 12, where the gradient before the minimum is steeper than
after), the selected range may be either too long or too short due to the secant length of
100 m. Accordingly, the precise location of the maxima and minima, which delineate the
commencement and conclusion of the maintenance section, is subsequently determined
(Figure 12).
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If the algorithm is cancelled at this point, maintenance measures are incorrectly as-
signed to an excessive number of sections. The sections are therefore subjected to a more
detailed analysis in two stages. The first step is to ascertain whether the negative slope
of the DCI is due to potentially incorrectly synchronised data. For this purpose, a signal
correlation analysis is conducted for each identified section. The final signal preceding the
identified maintenance measure must exhibit a linear correlation of at least 0.7 with one
of the two preceding measurement runs. It is assumed that no further maintenance was
carried out during this period. The process is then repeated with the initial measurement
signal following the identified maintenance activity, comparing it to the subsequent two
signals. If either the correlation value before or after maintenance is too low, the detected
section should be identified as an erroneous detection and subsequently be excluded from
further consideration. The threshold value of 0.7 was determined using the same data
set as the influence length and is based on the interpretation of Figure 13. It was ensured
that the ratio of true negatives (correctly labelled as a section without maintenance; green
curve in Figure 13) to false negatives (incorrectly labelled as a section without maintenance;
red curve in Figure 13) is high and that the number of false negatives is low, so that the
precision of the filtering is high. These requirements are best met by a correlation coefficient
of 0.7, as the number of false negatives is small up to this point and increases sharply
thereafter (red curve).
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Secondly, the steepness of the DCI must also be taken into account when considering
the result. To achieve this, the difference between the highest and lowest points of the
DCI for the specific maintenance section is calculated and related to the length of the
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maintenance section. This allows for the consideration of the overall reduction in the
longitudinal level. The value of 700 has proven to be an appropriate choice when applied
to the previously described test data set. This was determined using the ROC curve, the
progressions of the negative and positive curves, and the F1 score (Figure 14). The ROC
curve in Figure 14b illustrates that the optimal threshold value should be situated within
the range of 600 to 1000, as evidenced by the comparable distances to the diagonal in this
range. Additionally, Figure 14a demonstrates that the F1 score exhibits minimal growth
from a threshold value of 700 onwards, whereby the enhancement in the F score up to 700 is
considerable. This is further corroborated by the comparison of true negatives (dark green)
and false positives (light red) in Figure 14c, which also indicate a flattening of both curves
at this value. One evaluation alone would not allow a clear statement to be made about
the most appropriate value, but when the results of all three evaluations are considered
collectively, it becomes evident that the value of 700 is the most appropriate.
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Once all the mentioned steps have been completed, the algorithm generates a list of
identified maintenance tasks, including the commencement and conclusion of each section,
as well as the estimated date. In contrast to the preceding two algorithms, the definition of
maintenance work is not cross-section based but rather line wide.

For better understanding, the workflow of the CTG-based algorithm is depicted in a
flow chart in Figure 15.
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2.4. Method Performance Comparison

The three algorithms described are applied to four track sections in the network of the
ÖBB-Infrastruktur AG, all of which have an average age of around 20 years. Apart from
that, the sections have the following boundary conditions:

• Section 1: The first section has an average daily load of approximately 85,000 gross
tons and is predominantly composed of concrete sleepers on 60E1 rails, extending for
approximately 12 kilometres. The area encompasses 12 turnouts, 17 bridges, and two
station areas.

• Section 2: In contrast to the first section, the second section has an average load of only
17,000 gross tons per day. Approximately 2/5 of the 60E1 rails are installed on concrete
sleepers, while an equal number are installed on wooden sleepers. The remaining rails
are installed on concrete sleepers with under sleeper pads. The section includes six
turnouts, 26 bridges, two short tunnels, and four station areas. The total length of the
section is 11 kilometres.

• Section 3: The third section, spanning approximately 10 kilometres, is primarily
composed of 60E1 rails on concrete sleepers. The track is subjected to a gross tonnage
of approximately 50,000 per day. The section incorporates 10 turnouts, 25 bridges, and
3 station areas.

• Section 4: The fourth section, which extends approximately five kilometres, is primarily
composed of 60E1 rails on concrete sleepers. The track bears a load of approximately
67,000 gross tons per day and encompasses nine bridges, one station area, and no
turnouts within the specified region.

The selection of sections is based on the consideration of enabling a comparison of
sections with disparate loads and expected deterioration. The evaluation is based on data
from the Austrian track recording car dating back to 2003 (Section 4), 2005 (Section 1), 2006
(Section 2), and 2012 (Section 3). The data necessary for the evaluation are the longitudinal
level D1, which describes the vertical track geometry in the wavelength range from 3 to
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25 m (used for the CTG-based algorithm), and the sliding standard deviation of this signal
with an influence length of 100 m for the SEARCH and CRAB algorithm. For the recording
of the track geometry, the Austrian track recording car utilises an inertial measurement unit
(IMU) paired with an optical track gauge measurement system and a navigation system.
The measuring principles and data output of the track recording car comply with European
regulations (EN 13848) [13]. The modified maintenance database serves as the reference
case for assessing the precision of the algorithms. Therefore, the recorded maintenance
work was augmented and corrected with manually recorded sections through a process of
visual inspection of the measurement signals and the TQIs derived from them.

In order to evaluate the three algorithms, the following metrics will be employed:
precision, recall, and F-score. The classifications required for this analysis (true positive,
true negative, false positive, false negative) are determined on a cross-sectional basis. Recall
is defined as the number of true-positive results divided by the total number of elements
that actually belong to the positive class. The precision for a class is the number of true
positives divided by the total number of elements labelled as belonging to the positive class.
As it is not reasonable to use recall and precision as the sole criteria, the two parameters are
combined using the F-score. The formula for the F-score is:

F-Score = 2 ∗ (precision ∗ recall)
(precision + recall)

(4)

3. Results

Figure 16 illustrates that, with the exception of Section 2 (Figure 16b), the CRAB algo-
rithm (shown in yellow) demonstrates the most optimal performance. This can be derived
from the fact that the F-score of the CRAB algorithm is highest in Section 1 (Figure 16a:
0.78), Section 3 (Figure 16c: 0.85), and Section 4 (Figure 16d: 0.76) compared to the other
methods. In Section 2 (Figure 16b), the suboptimal recall, in particular, results in a relatively
low F-score (0.62) of the CRAB algorithm. This section has the lowest average loading
and therefore the lowest expected deterioration rate. In all sections, the SEARCH algo-
rithm (shown in red) exhibits the least favourable performance, particularly in the first
two sections.

When all sections are considered together, a similar picture emerges (Figure 17). The
performance of the CRAB algorithm is the best, closely followed by the cumulative track
geometry-based algorithm (CTG, shown in orange). The SEARCH algorithm performs
worst, achieving an F-score of just 0.53. The other two algorithms achieve an F-score of 0.74
and 0.76, respectively, whereby they differ primarily in terms of precision.

Given the suboptimal performance of the CRAB algorithm in Section 2, it is reasonable
to devote further attention to this section. Figure 18a illustrates the maintenance procedures
that were actually carried out in Section 2 as grey horizontal lines. Furthermore, the
maintenance tasks identified by the three algorithms are displayed in the heat maps
in Figure 18b–d as horizontal lines in magenta. The colours of the heat map represent
the magnitude of the standard deviation of the longitudinal level D1 with an influence
length of 100 m. As time progresses, the standard deviation of the longitudinal level D1
increases as track quality decreases. Following a tamping process, the standard deviation
of the longitudinal level D1 exhibits a sudden drop, resulting in a colour shift in the heat
map. The low recall rate of the CRAB algorithm can be attributed primarily to the fact
that the algorithm only recognizes the continuous tamping measure in 2007 in specific
sections. This is attributable to the slight enhancement in track geometry resulting from
the tamping process, coupled with low deterioration rates after the tamping operation.
This is where the most significant issue with the CRAB algorithm becomes evident: In
cases where deterioration rates are constantly flat, it is not possible to differentiate between
deterioration branches, given that minor changes in quality result in data points from
multiple branches being classified as inliers. Consequently, it is not possible to distinguish
between the deterioration areas. Therefore, especially for low-deterioration sections, the
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performance would be improved if executed maintenance and renewal recordings would
be included. Nevertheless, for comparing the algorithms, no recordings are considered. As
can be observed, the CRAB algorithm also incorrectly identifies individual cross-sections
and short sections with a detected maintenance action (Figure 18c). In contrast, the CTG-
based algorithm provides a more uniform representation of the identified maintenance
(Figure 18d). However, three major maintenance sections between data breaks 18,000 and
27,000 are not detected at all. In this section, the SEARCH algorithm primarily encounters
difficulties in correctly detecting maintenance work at the beginning of the time series,
which can be seen from the large number of erroneously detected track works from 2007 to
2010 (Figure 18b). Furthermore, in many isolated cross sections, maintenance is detected
erroneously. This in turn resembles a very non-homogeneous and implausible picture
of maintenance.
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In contrast to the findings of Section 2, all algorithms in Section 3 (Figure 19b–d)
demonstrate favourable performance values. This can be supported by comparing the
results of the algorithms in Figure 19b–d with the actual track works in Figure 19a. While
the SEARCH algorithm also incorrectly identifies maintenance work on numerous isolated
cross-sections, it accurately recognises the bulk of the actually performed major main-
tenance works (Figure 19b). The CTG-based algorithm correctly identifies the obvious
maintenance works (Figure 19c). However, it incorrectly identifies one long section as a
maintenance section, as the measurement values are absent in this area (position 19,000
to 32,000, year 2015). The CRAB algorithm also correctly identifies all major maintenance
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works (Figure 19c). However, the precise location of the commencement and conclusion of
the maintenance work may not be accurately determined, which means that the precision
is somewhat smaller than 1.
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In order to transform the aforementioned findings into quantifiable data, it is necessary
to ascertain whether the maintenance work recorded in each maintenance section can be
accurately identified by the algorithm. An actual executed activity is deemed to be detected
if track work is identified in at least 50% of the cross-sections within the maintenance section.
The outcome of this assessment is presented in Figure 20, which illustrates the results for all
algorithms and sections. In the first step, only the maintenance sections that were also part
of the infrastructure manager’s database are evaluated. This demonstrates that the CRAB
algorithm effectively identifies the majority of track work in sections 3 (all sections detected)
and 4 (22 of 24 sections detected), while the result in sections 1 (44 of 78 sections detected)
and 2 (20 of 22 sections detected) is less optimal. Therefore, a further examination of Section
2 is conducted to ascertain how this outcome was attained: While the CRAB algorithm
correctly identifies all evident track works, as described by Figure 19, numerous short track
works are not discerned. Nevertheless, these are incorporated into Figure 20, irrespective
of their length. This results in a considerable number of undetected track work sections. In
comparison to the CRAB algorithm, the CTG-based algorithm is unable to identify a greater
number of track works in any given section. However, across all sections, the CTG-based
algorithm is still more effective than the SEARCH algorithm in detecting recorded track
works. Once more, the significant discrepancy between Sections 2 and 3 is evident. The
CTG-based algorithm identifies all track works in Section 3 in a manner analogous to the
CRAB algorithm. The SEARCH algorithm misses one of 19 sections. In Section 2, however,
both the SEARCH algorithm and the CTG-based algorithm are incapable of detecting more
than half of the recorded track works. This is also due to the aforementioned numerous
short track works in Section 2.

Nevertheless, it would be erroneous to consider the detection of recorded maintenance
actions as the primary objective. Indeed, it is more prudent to concentrate on unrecorded
track works. As illustrated in Figure 21, the number of unrecorded track works exhibits
considerable variability across the sections. Nevertheless, the CRAB algorithm can be
employed to identify the majority of unrecorded track works in each section, thereby
enhancing the informative value of the existing database. The CTG-based algorithm
demonstrates comparable performance. Furthermore, the SEARCH algorithm is also
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ranked last in this evaluation, as there is no section in which the SEARCH algorithm detects
more track works than the other two algorithms.
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4. Discussion

Up to now, the methodologies that have been developed are all based on cross-
sectional, simplistic approaches that are unable to achieve the desired level of precision.
Therefore, for enhancing predictive maintenance regimes, reliable methods to detect un-
recorded maintenance works are required. As evidenced by the results, the CRAB algorithm
and the CTG-based algorithm are the most effective of the proposed algorithms for the
detection of unrecorded track works. The CRAB algorithm demonstrates superior perfor-
mance in the majority of analyses. It bears repeating that the three algorithms are based
on disparate principles. The SEARCH algorithm and the CRAB algorithm are capable
of detecting track works on a cross-sectional basis. It should be noted, however, that the
surrounding cross-sections are not included in the detection directly. However, both algo-
rithms employ the standard deviation of the longitudinal level D1 with an influence length
of 100 m to detect track works. This approach ensures that the development of the track
geometry quality of neighbouring cross-sections is incorporated into the detection process
over the influence length. Consequently, the detection of track works extends beyond their
actual length, which in turn results in a reduction in the performance indicators described.
The CTG-based algorithm differs from the other two algorithms in that it analyses the
longitudinal level D1 longitudinally. As with the other two algorithms, it is often the case
that the detected maintenance sections are longer than their true length. This is due to the
asynchrony of the DCI signal at local minima and maxima and the lack of clarity regarding
the definition of these points.

Since the performance of the CRAB algorithm and the CTG-based algorithm are
decent but based on completely different principles and thus susceptible to different errors,
a combination may further improve the results. In addition, recorded track work that
has not been included in the evaluation of the algorithms can be considered as input
variables. This improves the performance, especially for cross-section-based algorithms,
as the data set is already divided in advance. The prerequisite for this is that the recorded
track work data is trustworthy. Moreover, it is of paramount importance that the quality
of the measurement data is of a high standard. It is of particular importance that the
same measurement system, or at the very least a measurement system that is capable of
reproducing the same results, is used for all measurements. Future research should address
a meaningful combination of the approaches. One possibility would be to employ the
CTG-based algorithm with stricter thresholds to identify a preliminary detection of the
track works. Building on this, the CRAB algorithm can utilise these track works that have
been detected with a high degree of probability as input parameters to achieve an even
more precise result based on cross-section. Overall, the algorithms permit the identification
of unrecorded maintenance activities with varying degrees of reliability. However, the
specific type of maintenance performed is not currently considered. Future research may
investigate whether the detected measures correspond to tamping, ballast bed cleaning, or
a track renewal.

5. Conclusions

In conclusion, the CRAB algorithm is the most effective at identifying unrecorded
tracks at the cross-sectional level. Conversely, the CTG-based algorithm offers the benefit
of achieving a more ‘homogeneous’ mapping. This allows for the maintenance database to
be updated more efficiently. Future research should aim to combine the two approaches
in order to further improve the model accuracy and the results. As track geometry data
and behaviour typically differ from country to country, testing the algorithms in different
countries is another way to improve and deepen the research. Furthermore, more data
sources could be integrated for enhancing the algorithms. For instance, other measurement
signals may be employed for the purpose of detecting ballast-related or even other types
of maintenance. In any case, both methods are able to significantly improve the quality
of the input data for descriptive models and thus contribute to predictive maintenance
regimes with a variety of advantages. To illustrate, the utilisation of increasingly brief
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track closures can be employed in a more efficacious manner with the implementation of
targeted maintenance measures. This yields notable benefits in terms of operational and
economic efficiency.
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