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Abstract: The development of sustainable infrastructure is essential to address the challenges of
climate change and reduce CO2 emissions. The use of alternative materials, such as agro-industrial
ashes and silica fume, emerges as a promising option to enhance the durability of concrete and
diminish its environmental impact. These materials can partially replace conventional cement, con-
tributing to the construction of more sustainable infrastructure without compromising performance,
even under adverse environmental conditions. In this study, we present an analysis of the use of
sugarcane bagasse ash (SBA) and silica fume (SF) as a 15% cement replacement. The behavior of these
materials was investigated under coastal conditions, analyzing climatic variables and degrading gases
such as CO2, CH4, and N2O. Electrochemical techniques were employed to measure corrosion rate
and potential, in addition to conducting carbonation and compressive strength tests. The mixtures
with a 15% addition of SBA and SF showed improvements compared to conventional mixes. SBA
reduced the corrosion rate by 25% and increased compressive strength by 12% after 150 days, while
SF enhanced carbonation resistance by 20% and compressive strength by 25%. The incorporation of
SBA and SF provides significant durability in coastal environments, contributing to the sustainability
of infrastructure exposed to adverse weather conditions.

Keywords: infrastructure; alternative materials; corrosion; sugarcane bagasse ash; silica fume

1. Introduction

Historically, infrastructure has been essential for human development, providing sys-
tems that drive both social well-being and economic growth. These systems range from the
supply of potable water and wastewater management to the enhancement of connectivity,
even in tourist and marginalized areas [1–3]. Traditionally, the concept of infrastructure
encompasses all human activities that promote human capital and are fundamental in
social sectors (education, health, culture, and finance) and economic sectors (energy, water
supply, sewage, and transportation) [4]. However, conventional infrastructure construction
has generated significant environmental impacts due to the extraction of materials and
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greenhouse gas emissions, particularly attributable to concrete. This material is responsible
for approximately 8% to 9% of global anthropogenic greenhouse gas emissions [5].

In response to these environmental impacts, much research has focused on developing
sustainable alternatives that reduce dependence on nonrenewable raw materials and lower
the carbon footprint of concrete. Among the most studied options are fly ash [6–8] and silica
fume derived from industrial processes [9,10], materials known for their high pozzolanic
activity and their capacity to improve the strength and durability of concrete. Additionally,
in recent years, the use of agro-industrial waste has been explored, such as biomass ash
from bamboo leaves, palm trees, elephant grass, rice husks, olive waste, wheat straw, corn
cobs, and sugar cane [5]. These materials can be used as a partial replacement for aggregates
or as supplementary cementing additions, contributing to a reduction in cement content in
concrete and, consequently, a decrease in carbon emissions associated with its production.

Given the concern over environmental contamination risk stemming from the accumu-
lation of agro-industrial waste, its utilization through sustainable technologies can convert
these wastes into valuable resources [11]. The implementation of sugarcane bagasse ash
(SBA) and silica fume (SF) has proven to be an effective option for enhancing the quality
of both the natural environments and built infrastructure. Agro-industrial wastes have a
high potential for utilization due to their varied chemical composition [12,13], and multiple
possibilities for their reuse as partial substitutes for hydraulic cement have been observed,
positively impacting the strength and durability of concrete.

Of particular interest is SF, which stands out for its high pozzolanic activity and
elevated silica content. This allows it to significantly improve the strength and durability of
concrete, especially in reinforced concrete applications, where its structure of fine particles
with sharp edges increases its reactivity with the hydration products of Portland cement,
promoting a greater concentration of solids, enhancing mechanical properties, and reducing
porosity in the concrete matrix [14,15]. These properties are beneficial for concrete in
aggressive environments, where greater corrosion resistance is required.

Recent studies have incorporated SBA and SF into concrete mixes, demonstrating
significant improvements in durability and compressive strength. For example, Abdalla
et al. (2022) [16] observed that a 10% replacement SBA offered the highest strength com-
pared to mixes with 20%, 30%, 40%, and 50%, as well as the control mix. Furthermore,
this proportion showed better performance under high-temperature conditions. Similarly,
Landa-Ruiz et al. (2021) [17] found that mixes with additions of 10% to 20% SBA and
SF achieved up to 90% greater strength compared to control mixes. In addition to these
findings, Farrant et al. (2022) [18] emphasized that using ash in proportions below 30% not
only improves compressive strength but also increases permeability, a critical property for
preventing sulfate attack in aggressive environments.

Although research demonstrates the benefits of using SBA and SF as cement substi-
tutes in simple and reinforced concrete, further investigation is needed regarding their
performance in aggressive environments, such as coastal zones. These regions present
unique degradation conditions due to the presence of chlorides and sulfates, which pose
particular challenges to the durability of concrete. For instance, Landa-Ruiz et al. (2021) [19]
evaluated reinforced concretes with additions of 10% SBA and SF exposed to a magnesium
sulfate (MgSO4) solution, demonstrating their resistance under these conditions. Likewise,
Neto et al. (2021) [20] investigated the influence of the additions on chloride permeability,
while Wu et al. (2022) [21] demonstrated the potential of SBA to enhance concrete durability
against sulfuric acid (H2SO4) attacks. These studies represent significant progress toward
the development of resilient infrastructures; however, it is necessary to broaden research
toward other degrading agents present in coastal environments and areas facing greater
environmental impacts.

Climate change intensifies the risks to these infrastructures, particularly in coastal
urban areas, where effects such as increased energy demand for building cooling, health
problems in vulnerable populations (such as the elderly and low-income individuals), and
reduced availability of water for consumption and hydroelectric power generation are
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anticipated [22,23]. Additionally, the displacement of vulnerable infrastructure due to
extreme environmental conditions contributes to forced migration, further compromising
the stability and resilience of affected areas. Coastal protection infrastructures, such as
breakwaters and freshwater reserves in wetlands and aquifers, face critical risks due to
saline intrusion (see Figure 1). The durability and sustainability of these infrastructures,
both current and future, largely depend on their geographic location and the specific
environmental vulnerability of each area.
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Figure 1. Effect of coastal environment on reinforced concrete infrastructure for community needs.

Therefore, this research evaluates performance in terms of corrosion, carbonation, and
compressive strength in concrete mixtures modified with SBA and SF. Two types of mixtures
were designed as follows: one with 15% SBA and another with 15% SF as substitutes for
Portland Composite Cement (CPC 30R). For the corrosion test, carbon steel reinforcements
bar AISI 1018 were subjected to a curing period of 28 days and a hardening period of 302
days in an environment of corrosive gases, including CO2, CH4, and N2O; these gases
contribute to the chloride-induced deterioration process, as illustrated in Figure 2.
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2. Materials and Methods

The project begins with the specimen preparation phase, which includes mold fabri-
cation, material characterization, mixture preparation, and specimen curing. The second
phase involves placing the specimens in the exposure area, in this case, Boca del Río,
Veracruz, Mexico (Figure 2). The third phase of the project has a series of deterioration
techniques, including electrochemical corrosion techniques (corrosion potential and rate),
carbonation depth (by the phenolphthalein method at 1% in alcohol) [24], and mechanical
tests (compressive strength). The fourth phase contemplated taking a climatic series from
this study area, which includes the following: precipitation, relative humidity, wind speed,
wind direction, and temperature.

The manufacture of concrete specimens was carried out in accordance with NMX-
C-159-ONNCCE-2004 at the facilities of the Instituto Tecnológico Superior de Misantla.
Mixtures were designed according to the ACI 211.1 standard [25]. In addition, the char-
acteristics of the mixture of gravel, sand, and cement were determined, as well as the
treatment or processing of the residues to be used, such as sugarcane bagasse ash and silica
fume. A water-cement ratio (w/c) of 0.56 was used. The cement employed was ordinary
Portland cement resistant to sulfates (OPC), the gravel used was 19 mm silica, and the
sand was river sand. The silica fume was ELKEM brand, while the sugarcane bagasse ash
was extracted from a sugar mill in Mahuixtlán, Veracruz. The slump was 10 cm, and the
specimens were cured for 28 days in potable water at room temperature (24 ◦C). Likewise,
two types of specimens were used: plain concrete specimens of 15 × 15 × 30 cm and
reinforced specimens of the same dimensions, but with four bars of 9.5 mm with concrete
coverings of 15, 20, and 30 mm; 2 per covering [26]. Subsequently, the curing of the concrete
specimens was performed using water at ambient temperature of 24 ◦C, as mentioned in
the NMX-C-148 ONNCCE standard.

The incorporation of high amounts of silica fume (10 and 15%) in high-performance
concrete mixes (w/cm ratio of 0.35) tends to require high dosages of superplasticizers. The
high demand for superplasticizers is attributed to the very fine particle size of the silica
fume, which causes part of the superplasticizer to be absorbed on its surface. In this type of
mixture, silica fume increases the compressive strength by 21% compared to the control
at 28 days of age. However, the development of strength in mixtures with silica fume is
insignificant after 90 days [27].

Sugarcane bagasse ash was used as agro-industrial waste. This ash is the byproduct
of the combustion of sugarcane bagasse, which results from the grinding of sugarcane
for sugar production in the sugar mills of the country at elevated temperatures ranging
from 700 ◦C to 900 ◦C. The sugarcane bagasse ash (SBA) residue is collected both from
the bottom of the boiler and as fly ash. This material is considered pozzolanic by some
researchers due to its high concentration of SiO2 [28]. Among its outstanding characteristics
are ultrafine particles, which are obtained through grinding processes. Applications of SBA
include obtaining glass-ceramic materials, as adsorbent material for chromium (III) ion
removal, as bedding material for broiler chickens, and as an additive to Portland cement,
among other uses [29].

Regarding the reinforcing steel of the concrete specimens (beams), the steel bars were
protected with epoxy material at the ends, leaving 30 cm2 of free steel, in order to force the
interaction with the aggressive agents through the lateral face of the concrete specimens.
Six plain concrete specimens and six reinforced concrete specimens (three for each w/c
ratio) were placed in the exposure stations [30].

Placement of Concrete Specimens

The concrete specimens were placed on the roof of the faculty of Civil Engineering
at the Universidad Veracruzana, Boca del Río campus, Mexico, with the following UTM
projection coordinates: Zone 14 Q 803,326.31 m east, 2,121,715.45 m north (Figure 3). The
specimens were placed at strategic points in the two study areas. Figure 4 shows the
placement of the mentioned study specimens. It was decided to place them on a rooftop to
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ensure as homogeneous exposure as possible, since at ground level, neighboring buildings,
vegetation, or other external factors could negatively affect the results of the research. In
contrast, placing them on the roof allows the weathering factors to be more representative of
real-world conditions. This arrangement ensures that the cylinders are impacted uniformly
from all directions, making full use of the specimen area.
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3. Results and Discussions

The project exposure days were defined based on the current information from the
meteorological and pollutant stations in the state of Veracruz. It has been recommended
that at least 100 days of exposure be observed to notice any corrosion progress, although
this is contingent upon the compressive strength of the initial design (see Table 1). This
information will be utilized for the publication of a scientific article; thus, it is presented in
a formal and technical language to meet the standards for approval in a scientific journal.
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Table 1. Assessment of the duration of exposure to environmental conditions.

Study Materials Used Type of Exposure Duration of
Exposure Key Results Conclusions

Ahmad et al. (2022)
[31] Silica Fume Exposure to

weather 90 days

Improvement in
compressive
strength and

durability

Silica fume
enhances

durability in
aggressive

environments.

Alvarenga et al.
(2024)
[32]

Bagasse Ash Cycles of moisture
and dryness 120 days

Reduction in
cracking and

improved
mechanical

performance

Bagasse Ash
contributes to the

stability of
concrete.

Singh et al. (2024)
[33]

Silica Fume and
Bagasse Ash

Exposure under
extreme climate

conditions
180 days

Increased
resistance to

chloride attack

Combined
mixtures optimize

concrete
properties.

Andrade et al.
(2020)
[20]

Bagasse Ash Exposure to water
and sun 300 days

Low permeability
and reduced water

absorption

Bagasse ash
enhances water

resistance.

Yavuz et al. (2024)
[34] Silica Fume Exposure to

freezing cycles 60 days
Superior freeze

and thaw
resistance

Recommended for
cold climates,

increases concrete
lifespan.

Harilal et al. (2023)
[35]

Silica Fume and
Bagasse Ash

Exposure to coastal
environments 90 days

Protection against
corrosion in saline

environments

Suitable for coastal
areas, improves

durability.

3.1. Potential (Ecorr) and Corrosion Rate (Icorr)

Corrosion rate measurements were taken for approximately 302 days. The standard-
ization used to determine corrosion potentials and rates was carried out according to the
UNE-EN ISO 16773-2:2017 [36]. These measurements were carried out on three types
of mixtures: silica fume, sugarcane bagasse ash, and conventional mixture, each with a
different type of steel (AISI 1018 and galvanized rebar). The results show that the AISI 1018
steel in the conventional mixture presents a higher corrosion rate, while the galvanized
steel in the mixture with silica fume shows a lower corrosion rate. However, the differences
in the values are not significant since they are all in the zone of negligible values, as shown
in Figure 5.

The zones in the steel-related specimens show that no significant de-passivation has
occurred, as they fall within the negligible range according to the pre-established corrosion
potentials, as shown in Figure 6. However, the corrosion rate indicates that AISI 1018 carbon
steels tend to behave uniformly in conventional mixtures. In the case of mixtures with
sugarcane bagasse ash, the rates are closer to negligible corrosion values. Considering the
exposure time, it is likely that this mixture will experience negligible to low-level corrosion
in the coming years, based on the observed trend. Furthermore, mixtures with sugarcane
bagasse ash show favorable performance in combination with galvanized steel, so a 15%
cement substitution could offer a significant cost benefit. It is also important to analyze the
adhesion of chloride particles to the steel, as this is highly dependent on the winds in the
area. Therefore, it is recommended to install weather stations or specific measuring devices
to monitor the intensity and movements of air mass.
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So far, much of the infrastructure near the beach in Boca del Río and Veracruz is
surrounded by seawalls and infrastructure such as hotels, shopping malls, and some
government buildings. Each of these structures is built with steel-reinforced concrete, high-
lighting the importance of the corrosion results and the evaluation of the mixtures used.

3.2. Carbonation Depth

The behavior of the sugarcane bagasse ash mixture has been consistent with the
research expectations, and when compared with previous studies carried out by other
authors [37,38], a progressive increase in the carbonation depth was observed. However,
this increase has not been uniform, due to the varying climatic conditions that contribute to
carbonation and structure deterioration throughout the exposure period. This has resulted
in variations in the bimonthly results compared to the expected average.

In this research, as shown in Figure 7, during the first months of exposure, the speci-
mens exhibited a slight resistance to carbonation, with only a few millimeters of carbonation
depth. By the end of the period, the carbonation depth reached 12 mm. This suggests that
the mix could be suitable for this context, since, according to the construction regulations
for the Federal District and the durability manual for concrete structures in Mexico, the
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minimum coverings recommended for reinforcing steel in aggressive environments, such
as urban–marine areas, are 5 cm.
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The mixture with silica fume demonstrated the best performance in this study, consis-
tently showing a tendency to surpass other mixtures in carbonation depth evaluation from
the first months of exposure. During the initial four months, there were barely any recorded
changes, but over time, the deterioration became evident, although less pronounced than
in the control specimens.

The climatic conditions, particularly during the February–March and April–May
bimesters of 2019, favored a slight increase in carbonation depth, attributable to humidity
and CO2 emissions that facilitate the penetration of particles into the pores of the specimens.

The control specimen, made with conventional concrete, exhibited greater deteriora-
tion compared to the experimental mixtures, reaching critical levels of carbonation that
severely affected the top portion of the specimens. It is estimated that the reinforcing steel
would not be compromised, provided that a minimum cover of 5 cm is maintained accord-
ing to prevailing regulations. Failure to adhere to this requirement would considerably
increase the risk of deterioration and collapse.

3.3. Correlation Analyses

For a comprehensive analysis of the studied parameter data, we will highlight the
graphs that integrate climatic conditions with levels of SO2, CO2, and carbonation. To
develop and compare the climatic data of the coastal zone of Veracruz, bimonthly data
were obtained, including maximum, minimum, and average annual temperatures, wind
speed, humidity, and precipitation.

All this information was gathered from the IPCC and the National Institute of Ecology
and Climate Change portals. This situation allows us to interpret the effects on the con-
crete or the exposure of the specimens. In March, the CO2 index was elevated, reaching
approximately 175 ppm, as shown in Figure 8. Despite this, the amount of sulfates was
not high enough to damage the concrete matrix. Given this situation, the hypothesis that
temperature is not directly related to CO2 or SO2 emissions could be maintained. However,
the rates of these gases and salts, which cause corrosion in steel or concrete, tend to be
random, as increases in pollutants occur intermittently.
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To determine the correlations, the relationship between CO2 and temperature was first
evaluated, starting with a normality test based on the number of data points. The results
indicated that there is a normal distribution between the CO2 and temperature variables.
Subsequently, the correlation was performed using the Pearson coefficient, obtaining a
value of 0.02214 with a confidence interval of −0.5855 to 0.6139, indicating the absence of
correlation. Similarly, the correlation between temperature and SO2 was evaluated, but
since the data set did not follow a normal distribution, the Spearman coefficient was used.
The result was 0.07925, with a confidence interval of −0.5608 to 0.660, also indicating no
correlation between temperature and SO2.

Temperature does not greatly influence carbonation, as illustrated in Figure 8. In the
first approach, carbonation could be considered a chronological and irreversible degrada-
tion process, and the only possible outcome is to mitigate or reduce its effect on the concrete
matrix. However, temperature does have a noticeable interaction with precipitation and
relative humidity rates.

A correlation was performed again to determine with certainty if these variables
are associated. As for temperature in contrast with SBA, the data presented a normal
distribution, yielding a Pearson coefficient of −0.4075 with a confidence interval of −0.9834
to 0.91, indicating an inverse correlation of moderate intensity. The correlation between
temperature and the mixture with silica fume was also evaluated and exhibited a normal
distribution. The Pearson coefficient obtained was −0.4330, with a confidence interval
of −0.9844 to 0.9045, indicating once again an inverse correlation of moderate intensity.
Finally, the correlation between temperature and the control mixture was analyzed, which
also followed a normal distribution with a Pearson coefficient of −0.3859 and a confidence
interval of −0.9826 to 0.9143. From this analysis, it is concluded that temperature is not
significantly associated with carbonation depth.

Wind speed has a significant influence when it moves at 10 km/h or less since it
causes carbon dioxide levels to remain in the environment and can be absorbed by the
concrete structures (Figure 9). In addition, wind speed showed a relevant index related
to the displacement of chlorides in the environment, which interferes with the carbon-
ation rate. Figure 10 indicates that the bimonthly period with the highest wind speed
was March–April 2019, with an average speed of 20 km/h. The period with the low-
est wind speed is July–August and September–October, both of 2018, with a speed of
5 km/h. The average wind speed recorded is 12.5 km/h. The periods closest to this aver-
age are May–June 2014, March–April and November–December 2015, January–February
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and September–October 2016, March–April 2017, and January–February 2019, all with an
approximate speed of 12 km/h. Considering these data, the March–April period can be
defined as the most demanding. This is because it not only records the highest speed but
also appears frequently in other years, both in terms of average and maximum speed.
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exposure period.

In the correlation analysis between wind speed and CO2 and SO2, the data did not
follow a normal distribution. The Spearman coefficient values were 0.08182 for CO2 and
−0.6483 for SO2. This suggests that only wind speed shows an inverse correlation of
moderate intensity with SO2.

Humidity promotes the development of carbonation and the decrease in pH in con-
crete. In particular, the November–December period had the greatest potential to influence
this phenomenon. During the January–April period, it was observed that CO2 levels in-
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teracted more significantly with humidity due to the high levels. However, according to
SEDEMA, CO2 levels decreased considerably, while the amount of SO2 remained constant,
interacting mainly with the wind. As shown in Figure 11, relative humidity is a determining
factor, as it indicates how the coastal environment can specifically affect concrete structures.
The humidity reached a level of 100%.
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A correlation analysis was conducted between relative humidity with CO2 and SO2.
As with wind speed, the data did not follow a normal distribution. The Spearman coefficient
values were 0.2569 for CO2 and −0.0789 for SO2, with confidence intervals of −0.4224 to
0.741 and −0.6598 to 0.5611, respectively. This resulted in a weak and null direct correlation,
suggesting no association between relative humidity with CO2 and SO2.

Precipitation, combined with humidity, contributes to higher production of chlorides,
while wind speed and temperature influence their dispersion. In the data obtained over
5 years, precipitation causes periods of scarcity, where the data are not representative.
Precipitation is measured in millimeters. The July–August 2017 period presents the high-
est precipitation recorded, with 391.28 mm/m2. In contrast, the period with the lowest
precipitation was March–April 2014, with only 1.40 mm/m2. However, it is notable that
the September–October 2014 period shows a precipitation of 387.48 mm/m2, the second
highest amount recorded in the last 5 years, suggesting a radical change in precipitation
in only two-month intervals. The mean precipitation was recorded in the May–June 2018
period, with 182.62 mm/m2. For precipitation, a correlation analysis was also carried out,
which showed that the data did not follow a normal distribution. The Spearman coefficient
values were 0.2636 for CO2 and 0.5472 for SO2. This indicates a weak correlation between
precipitation and CO2 and a moderate correlation with SO2.

3.4. Sulfur Dioxide (SO2) and Carbon Dioxide (CO2) Levels

Other variables considered were the levels of SO2 and CO2, gases that contribute to
the greenhouse effect and potentiate climate change. According to data from the National
Inventory of Greenhouse Gas and Compound Emissions, there are no records available
prior to July 2017. Therefore, the work was conducted using data available from that date
onwards. It is worth mentioning that, even within the periods with records, there were days
in which the levels were 0 or no data were captured. According to Figure 12, the highest
levels of both gases were recorded in July, with 25.1 ppm for SO2 and 27.3 ppm for CO2.
This suggests that in previous months the levels may have also been elevated. Analyzing
specifically CO2, a noticeable change is observed throughout the two and a half years.
The highest values were recorded in the bimesters of July–August 2017, January–February,
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September–October 2018, and May–June 2019, with levels of 27.3, 18.8, 11.11, and 14.5 ppm,
respectively.
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3.5. Compressive Strength

The compressive strength of the concrete specimens in this study area was evaluated
following the NMX-C-083-ONNCCE-2014 standard [39].

Figure 13 shows that compressive strength varies depending on curing and exposure
zone. In this case, the mixes with sugarcane bagasse ash complied with the strength
condition, with a design of 250 kg/cm2. However, the mixtures with silica fume show a
significant increase in compressive strength as the hardening time advances. From day
150 onwards, there is a noticeable improvement in this strength. The 15% substitution with
mixture designs of 150 to 250 kg/cm2 confirms that the use of waste materials and the
reduction in the use of Portland cement are effective. This finding is supported by both
previous research and the results obtained in the present study.
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In various parts of the world, waste materials of either industrial or agro-industrial
origin were utilized, assessing their performance in concrete mixtures at different percent-
ages (see Table 2). The contribution of the current research is significant due to its added
value in the performance of the coastal area of Boca del Río, Veracruz, México.

Table 2. Substitution indices for Portland cement worldwide.

Reference Cement
Substitute

Replacement
Percentage Key Results Region Year

[40] Silica Fume 10–30%

Improvement in
compressive
strength and

durability

India 2020

[41] Bagasse Ash 5–15%

Reduction in
cement

consumption and
CO2 emissions

Brazil 2023

[42] Silica Fume 15%
Significant increase

in sulfate
resistance

China 2021

[43] Bagasse Ash 20%
Improvements in
workability and
cost reduction

México 2017

[18]
Silica Fume
and Bagasse

Ash

10% Silica
10% Ash

Synergy in
mechanical

properties and
durability

South Africa 2022

[44] Silica Fume 25%
Optimization of

mix superior
properties

Iraq 2023

[45] Bagasse Ash 10–20%
Increase in

carbonation
resistance

Bangladesh 2024

[46] Silica Fume 20%
Positive effect on

concrete
sustainability

Croatia 2023

The results underscore the importance of reducing cement use and promoting sus-
tainable development in construction. It is concluded that concrete with 15% silica fume is
the most resilient option against climate change and chloride aggression along the coast
of Veracruz, while concrete with 15% bagasse ash may present greater economic value.
Sustainable concrete production is essential to mitigate global warming, particularly in
Veracruz, where climate promotes structural deterioration. The implementation of mete-
orological stations is recommended to assess the impact of degradation. This approach
enables the integration of innovative alternatives in construction, optimizing resources,
and reducing costs and risks associated with natural disasters.

4. Conclusions

The following conclusions were drawn from the conducted research:

1. The use of partially sustainable alternatives to Conventional Portland Cement (CPC)
using sugarcane bagasse ash (SBA) and silica fume (SF) demonstrates significant
potential in the production of high-durability concrete. The incorporation of SBA
percentages produced a compressive strength comparable to that of CPC, reaching
strength levels of 250 kg/cm2. However, with the addition of SF, there was up to a
21% increase in strength at 28 days compared to the control samples over the 302-day
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duration of the experiment, without compromising the integrity of the structural
element and aligned with ecological objectives.

2. Regarding the use of concrete in coastal climatic conditions (Boca del Rio, Veracruz,
Mexico), which are exposed to aggressive agents such as CO2 and SO2, there is an
increase in carbonation depths and corrosion rates. The mixtures utilizing SF exhibited
lower depths (not exceeding 12 mm over the 302 days) compared to control mixtures,
thus providing effective protection against environmental degradation.

3. The implementation of sustainable alternative materials promotes their use and may
inform public policies aimed at reducing the environmental footprint caused by con-
struction activities. Additionally, the utilization of SBA contributes to the economic
development of the sugar sector, as the commercialization of this agricultural byprod-
uct generates a sustainable alternative to cement and creates economic opportunities.

4. The performance of concrete modified with alternative cementitious materials, its
behavior in the presence of aggressive agents from hostile environments such as
coastal zones, and its resistance over time provide valuable information regarding
performance, structural reliability, and numerous real-world applications.

This study demonstrates that modified concretes, by reducing the need to extract
aggregates from quarries and process them at high temperatures, significantly reduce
environmental impact.

In the Veracruz region, and taking as an example one of the numerous local sugar
mills, such as “Ingenio de Mahuixtlán” or “La Concepción”, it is recommended to analyze
sugarcane wastes, like bagasse, to explore their potential use. This would help justify
the pollution generated during the sugar production process, demonstrating that the
subproducts, if not reused, could be minimized through finding a second use for them. The
use of byproducts such as sugarcane bagasse in the production of sustainable concretes can
boost regional development in the area. Experimentation with waste from the Mahuixtlán
sugar mill demonstrates the viability of using sugarcane bagasse ash, which can foster
community awareness and promote local and regional processing and commercialization
of this material. Based on the above, a sugarcane bagasse ash analysis could be carried out
at various sugar mills. It is recommended to carry out a characterization of the Moctezuma
cement plant in Apazapan, Veracruz, to collect the silica fume generated during the clinker
production process.
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