Experimental and Computational Analyses of Sustainable Approaches in Railways
Abstract
:1. Introduction
2. Enhancing Railway Track Performance: Utilizing Scrap Rubber and Innovative Materials in Track Substructure
2.1. Finite Element Approach
2.1.1. Model Development
2.1.2. Results and Discussion
2.2. Experimental Approach
2.2.1. Materials and Methods
2.2.2. Results and Discussion
3. Use of Geosynthetics in Railway Tracks
3.1. Use of Geogrid in Pile-Supported Railway Embankments
3.1.1. Finite Element Modelling of a GRPS Embankment
3.1.2. Results and Discussion
3.2. Use of Three-Dimensional Cellular Inclusions in Ballasted Railway Tracks
3.2.1. General
3.2.2. Methodology
3.2.3. Results and Discussion
4. Conclusions
- The use of a scrap rubber layer reduces the vertical stress by up to 50% within the substructure of the slab track.
- Scrap rubber in its granulated form can be blended with soil to create sustainable track material, and the performance of this mixture can be further enhanced by incorporating PFA.
- The installation of a geogrid layer at the bottom of a railway embankment improves the load transfer to the pile head by up to 19%, owing to the tensioned membrane effect.
- Incorporating 3D cellular inclusions in a ballasted railway track curtails the vertical settlement by up to 32% and decreases the track geometry deterioration rate. This demonstrates the potential to reduce the frequency of maintenance operations upon the installation of 3D cellular geoinclusions, leading to substantial cost savings and a reduction in greenhouse gas emissions.
- An assessment of the field performance of railway tracks incorporating scrap rubber mixed polyurethane and geosynthetics to further advance our understanding of these sustainable approaches.
- The use of discrete element modeling (DEM) techniques to gain valuable insights into the microscale behavior of PFA-treated soil and PFA-treated soil–rubber mixtures.
- Full-scale 3D numerical modeling of the GRPS embankment to capture the influence of embankment slope on the soil arching phenomenon and the non-uniform stress distribution in the geosynthetic layers.
- A consideration of the bending of geoinclusions under the application of vertical loads in the additional confinement model to increase the accuracy of the predictions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 8 January 2024).
- Lawrence, M.; Bullock, R. The Role of Rail in Decarbonizing Transport in Developing Countries; World Bank: Washington, DC, USA, 2022. [Google Scholar]
- Bressi, S.; Santos, J.; Giunta, M.; Pistonesi, L.; Lo Presti, D. A comparative life-cycle assessment of asphalt mixtures for railway sub-ballast containing alternative materials. Resour. Conserv. Recycl. 2018, 137, 76–88. [Google Scholar] [CrossRef]
- Li, D.; Hyslip, J.; Sussmann, T.; Chrismer, S. Railway Geotechnics; Taylor and Francis: Boca Raton, FL, USA, 2016. [Google Scholar]
- Kiani, M.; Parry, T.; Ceney, H. Environmental life-cycle assessment of railway track beds. Proc. Inst. Civ. Eng. Eng. Sustain. 2008, 161, 135–142. [Google Scholar] [CrossRef]
- Farhan, A.H.; Dawson, A.R.; Thom, N.H. Effect of rubber incorporation on the behavior of pavement cemented mixtures under cyclic flexural loading: A preliminary study. J. Test. Eval. 2020, 48, 20170746. [Google Scholar] [CrossRef]
- Ahn, I.S.; Cheng, L.; Fox, P.J.; Wright, J.; Patenaude, S.; Fujii, B. Material properties of large-size tire derived aggregate for civil engineering applications. J. Mater. Civ. Eng. 2015, 27, 04014258. [Google Scholar] [CrossRef]
- D6270; Standard Practice for Use of Scrap Tires in Civil Engineering Applications. ASTM International: West Conshohocken, PA, USA, 2017.
- Ahn, I.S.; Cheng, L. Tire derived aggregate for retaining wall backfill under earthquake loading. Constr. Build. Mater. 2014, 57, 105–116. [Google Scholar] [CrossRef]
- Bosscher, P.J.; Edil, T.B.; Kuraoka, S. Design of highway embankments using tire chips. J. Geotech. Eng. 1997, 123, 295–304. [Google Scholar] [CrossRef]
- Kaushik, M.K.; Kumar, A.; Bansal, A. Performance assessment of gravel–tire chips mixes as drainage layer materials using real active MSW landfill leachate. Geotech. Geol. Eng. 2015, 33, 1081–1098. [Google Scholar] [CrossRef]
- Hidalgo-Signes, C.; Garzón-Roca, J.; Grima-Palop, J.M.; Insa-Franco, R. Use of rubber shreds to enhance attenuation of railway sub-ballast layers made of unbound aggregates. Mater. Constr. 2017, 67, 115. [Google Scholar] [CrossRef]
- Presti, D.L. Recycled tyre rubber modified bitumens for road asphalt mixtures: A literature review. Constr. Build. Mater. 2013, 49, 863–881. [Google Scholar] [CrossRef]
- Shalaby, A.; Khan, A.R. Temperature monitoring and compressibility measurement of a tire shred embankment: Winnipeg, Manitoba, Canada. Transp. Res. Rec. 2002, 1808, 67–75. [Google Scholar] [CrossRef]
- Koerner, R.M. Designing with Geosynthetics; Xlibris Corporation: Bloomington, IN, USA, 2012; Volume 1. [Google Scholar]
- Selig, E.T.; Waters, J.M. Track Geotechnology and Substructure Management; Thomas Telford: London, UK, 1994. [Google Scholar]
- Punetha, P.; Nimbalkar, S. Performance improvement of ballasted railway tracks using three-dimensional cellular geoinclusions. Geotext. Geomembr. 2022, 50, 1061–1082. [Google Scholar] [CrossRef]
- Liu, G.; Wang, Q.-A.; Jiao, G.; Dang, P.; Nie, G.; Liu, Z.; Sun, J. Review of Wireless RFID Strain Sensing Technology in Structural Health Monitoring. Sensors 2023, 23, 6925. [Google Scholar] [CrossRef]
- Wang, Q.-A.; Zhang, C.; Ma, Z.-G.; Jiao, G.-Y.; Jiang, X.-W.; Ni, Y.-Q.; Wang, Y.-C.; Du, Y.-T.; Qu, G.-B.; Huang, J. Towards long-transmission-distance and semi-active wireless strain sensing enabled by dual-interrogation-mode RFID technology. Struct. Control Health Monit. 2022, 29, e3069. [Google Scholar] [CrossRef]
- Wang, Q.-A.; Dai, Y.; Ma, Z.-G.; Ni, Y.-Q.; Tang, J.-Q.; Xu, X.-Q.; Wu, Z.-Y. Towards probabilistic data-driven damage detection in SHM using sparse Bayesian learning scheme. Struct. Control Health Monit. 2022, 29, e3070. [Google Scholar] [CrossRef]
- Wang, Q.-A.; Wang, H.-B.; Ma, Z.-G.; Ni, Y.-Q.; Liu, Z.-J.; Jiang, J.; Sun, R.; Zhu, H.-W. Towards high-accuracy data modelling, uncertainty quantification and correlation analysis for SHM measurements during typhoon events using an improved most likely heteroscedastic Gaussian process. Smart Struct. Syst. 2023, 32, 267–279. [Google Scholar] [CrossRef]
- Wang, Q.-A.; Dai, Y.; Ma, Z.-G.; Wang, J.-F.; Lin, J.-F.; Ni, Y.-Q.; Ren, W.-X.; Jiang, J.; Yang, X.; Yan, J.-R. Towards high-precision data modeling of SHM measurements using an improved sparse Bayesian learning scheme with strong generalization ability. Struct. Health Monit. 2024, 23, 588–604. [Google Scholar] [CrossRef]
- Farooq, M.A.; Nimbalkar, S.; Fatahi, B. Three-dimensional finite element analyses of tyre derived aggregates in ballasted and ballastless tracks. Comput. Geotech. 2021, 136, 104220. [Google Scholar] [CrossRef]
- Farooq, M.A.; Nimbalkar, S. Monotonic and cyclic triaxial testing of untreated and polyurethane-treated soil and soil–rubber mixtures. Acta Geotech. 2023. [Google Scholar] [CrossRef]
- Meles, D.; Chan, D.; Yi, Y.; Bayat, A. Finite-Element Analysis of Highway Embankment Made from Tire-Derived Aggregate. J. Mater. Civ. Eng. 2016, 28, 04015100. [Google Scholar] [CrossRef]
- Cho, S.D.; Kim, J.M.; Kim, J.H.; Lee, K.W. Utilization of waste tires to reduce railroad vibration. Mater. Sci. Forum 2007, 544, 637–640. [Google Scholar] [CrossRef]
- Wolfe, S.; Humphrey, D. Vibration attenuation of tire shreds. In Proceedings of the Rail Transit Conference, St Louis, MI, USA, 10–15 June 2000. [Google Scholar]
- D’Andrea, A.; Loprencipe, G.; Xhixha, E. Vibration induced by rail traffic: Evaluation of attenuation properties in a bituminous sub-ballast layer. Procedia Soc. Behav. Sci. 2012, 53, 245–255. [Google Scholar] [CrossRef]
- Zoccali, P.; Cantisani, G.; Loprencipe, G. Ground-vibrations induced by trains: Filled trenches mitigation capacity and length influence. Constr. Build. Mater. 2015, 74, 1–8. [Google Scholar] [CrossRef]
- Esmaeili, M.; Siahkouhi, M. Tire-derived aggregate layer performance in railway bridges as a novel impact absorber: Numerical and field study. Struct. Control Health Monit. 2019, 26, e2444. [Google Scholar] [CrossRef]
- Esmaeili, M.; Ataei, S.; Siahkouhi, M. A case study of dynamic behaviour of short span concrete slab bridge reinforced by tire-derived aggregates as sub-ballast. Int. J. Rail Transp. 2020, 8, 80–98. [Google Scholar] [CrossRef]
- Fathali, M.; Nejad, F.M.; Esmaeili, M. Influence of tire-derived aggregates on the properties of railway ballast material. J. Mater. Civ. Eng. 2017, 29, 04016177. [Google Scholar] [CrossRef]
- Sol-Sánchez, M.; Thom, N.H.; Moreno-Navarro, F.; Rubio-Gámez, M.C.; Airey, G.D. A study into the use of crumb rubber in railway ballast. Constr. Build. Mater. 2015, 75, 19–24. [Google Scholar] [CrossRef]
- Esmaeili, M.; Aela, P.; Hosseini, A. Experimental assessment of cyclic behavior of sand-fouled ballast mixed with tire derived aggregates. Soil Dyn. Earthq. Eng. 2017, 98, 1–11. [Google Scholar] [CrossRef]
- Dassault Systèmes. Abaqus; Dassault Systèmes Simulia Corp: Providence, RI, USA, 2018. [Google Scholar]
- Čebašek, T.M.; Esen, A.F.; Woodward, P.K.; Laghrouche, O.; Connolly, D.P. Full scale laboratory testing of ballast and concrete slab tracks under phased cyclic loading. Transp. Geotech. 2018, 17, 33–40. [Google Scholar] [CrossRef]
- Hall, L. Simulations and analyses of train-induced ground vibrations in finite element models. Soil Dyn. Earthq. Eng. 2003, 23, 403–413. [Google Scholar] [CrossRef]
- Dash, S.K.; Majee, A. Geogrid reinforcement for stiffness improvement of railway track formation over clay subgrade. Int. J. Geomech. 2021, 21, 04021163. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, N.; Chen, X.; Hu, H.; Wang, X.; Zhang, J. Investigation of the static and dynamic characteristics of TDA-subballast mixtures. Transp. Geotech. 2022, 32, 100676. [Google Scholar] [CrossRef]
- Li, N.; Ma, B.; Wang, H.; Tang, J.; Wang, X.; Shao, Z. Influence of loading frequency on mechanical properties of unbound granular materials via repeated load tests. Constr. Build. Mater. 2021, 301, 124098. [Google Scholar] [CrossRef]
- D2487; Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International: West Conshohocken, PA, USA, 2017.
- Farooq, M.A.; Nimbalkar, S. Static and cyclic performance of polyurethane foam adhesive bound soil–rubber mixtures under drained conditions. Acta Geotech. 2023. [Google Scholar] [CrossRef]
- Farooq, M.A.; Nimbalkar, S. Laboratory and numerical analyses on polyurethane-scrap rubber reinforced base layer. Can. Geotech. J. 2024. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, H.; Desai, C.S. New method for improvement of rockfill material with polyurethane foam adhesive. J. Geotech. Geoenviron. Eng. 2015, 141, 02814003. [Google Scholar] [CrossRef]
- Wang, H.-L.; Chen, R.-P. Estimating Static and Dynamic Stresses in Geosynthetic-Reinforced Pile-Supported Track-Bed under Train Moving Loads. J. Geotech. Geoenviron. Eng. 2019, 145, 04019029. [Google Scholar] [CrossRef]
- King, D.J.; Bouazza, A.; Gniel, J.R.; Rowe, R.K.; Bui, H.H. Load-transfer platform behaviour in embankments supported on semi-rigid columns: Implications of the ground reaction curve. Can. Geotech. J. 2017, 54, 1158–1175. [Google Scholar] [CrossRef]
- Briançon, L.; Simon, B. Pile-supported embankment over soft soil for a high-speed line. Geosynth. Int. 2017, 24, 293–305. [Google Scholar] [CrossRef]
- Almeida, M.S.S.; Ehrlich, M.; Spotti, A.P.; Marques, M.E.S. Embankment supported on piles with biaxial geogrids. Proc. Inst. Civ. Eng. Geotech. Eng. 2007, 160, 185–192. [Google Scholar] [CrossRef]
- Esen, A.F.; Woodward, P.K.; Laghrouche, O.; Connolly, D.P. Long-Term Performance Assessment of a Geosynthetic-Reinforced Railway Substructure. Sustainability 2023, 15, 9364. [Google Scholar] [CrossRef]
- Han, J.; Gabr, M.A. Numerical Analysis of Geosynthetic-Reinforced and Pile-Supported Earth Platforms over Soft Soil. J. Geotech. Geoenviron. Eng. 2002, 128, 44–53. [Google Scholar] [CrossRef]
- Arulrajah, A.; Abdullah, A.; Bo, M.W.; Leong, M. Geosynthetic applications in high-speed railways: A case study. Proc. Inst. Civ. Eng Ground Improv. 2015, 168, 3–13. [Google Scholar] [CrossRef]
- Wang, H.-L.; Chen, R.-P.; Liu, Q.-W.; Kang, X. Investigation on geogrid reinforcement and pile efficacy in geosynthetic-reinforced pile-supported track-bed. Geotext. Geomembr. 2019, 47, 755–766. [Google Scholar] [CrossRef]
- Terzaghi, K. Theoretical Soil Mechanics; John Wiley and Sons: New York, NY, USA, 1943. [Google Scholar]
- Liu, H.L.; Ng, C.W.W.; Fei, K. Performance of a Geogrid-Reinforced and Pile-Supported Highway Embankment over Soft Clay: Case Study. J. Geotech. Geoenviron. Eng. 2007, 133, 1483–1493. [Google Scholar] [CrossRef]
- Nunez, M.A.; Briançon, L.; Dias, D. Analyses of a pile-supported embankment over soft clay: Full-scale experiment, analytical and numerical approaches. Eng. Geol. 2013, 153, 53–67. [Google Scholar] [CrossRef]
- Rowe, R.K.; Liu, K.-W. Three-dimensional finite element modelling of a full-scale geosynthetic-reinforced, pile-supported embankment. Can. Geotech. J. 2015, 52, 2041–2054. [Google Scholar] [CrossRef]
- Wang, K.; Zhuang, Y.; Liu, H.; Xiao, H. Multilayered low-strength geogrid-reinforced piled embankment. Geotech. Res. 2018, 5, 231–246. [Google Scholar] [CrossRef]
- Meena, N.K.; Nimbalkar, S.; Fatahi, B.; Yang, G. Effects of soil arching on behavior of pile-supported railway embankment: 2D FEM approach. Comput. Geotech. 2020, 123, 103601. [Google Scholar] [CrossRef]
- Lee, T.; van Eekelen, S.J.M.; Jung, Y.-H. Numerical verification of the Concentric Arches model for geosynthetic-reinforced pile-supported embankments: Applicability and limitations. Can. Geotech. J. 2021, 58, 441–454. [Google Scholar] [CrossRef]
- Tran, Q.A.; Villard, P.; Dias, D. Geosynthetic reinforced piled embankment modeling using discrete and continuum approaches. Geotext. Geomembr. 2021, 49, 243–256. [Google Scholar] [CrossRef]
- Cowland, J.; Wong, S. Performance of a road embankment on soft clay supported on a geocell mattress foundation. Geotext. Geomembr. 1993, 12, 687–705. [Google Scholar] [CrossRef]
- Song, F.; Liu, H.; Yang, B.; Zhao, J. Large-scale triaxial compression tests of geocell-reinforced sand. Geosynth. Int. 2019, 26, 388–395. [Google Scholar] [CrossRef]
- Chrismer, S. Test of Geoweb to Improve Track Stability over Soft Subgrade; TD 97-045; Association of American Railroads: Washington, DC, USA, 1997. [Google Scholar]
- Zhou, H.; Wen, X. Model studies on geogrid-or geocell-reinforced sand cushion on soft soil. Geotext. Geomembr. 2008, 26, 231–238. [Google Scholar] [CrossRef]
- Giroud, J.P.; Han, J. Design method for geogrid-reinforced unpaved roads. I. Development of design method. J. Geotech. Geoenviron. Eng. 2004, 130, 775–786. [Google Scholar] [CrossRef]
- Raymond, G.P. Failure and reconstruction of a gantry crane ballasted track. Can. Geotech. J. 2001, 38, 507–529. [Google Scholar] [CrossRef]
- Zarembski, A.M.; Palese, J.; Hartsough, C.M.; Ling, H.I.; Thompson, H. Application of geocell track substructure support system to correct surface degradation problems under high-speed passenger railroad operations. Transp. Infrastruct. Geotech. 2017, 4, 106–125. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Remennikov, A.M.; Nguyen, P.; Aikawa, A. Field performance to mitigate impact vibration at railway bridge ends using soft baseplates. In Proceedings of the 11th World Congress on Railway Research, Milan, Italy, 29 May–2 June 2016; pp. 1–10. [Google Scholar]
- Leshchinsky, B.; Ling, H. Numerical modeling of behavior of railway ballasted structure with geocell confinement. Geotext. Geomembr. 2013, 36, 33–43. [Google Scholar] [CrossRef]
- Punetha, P.; Nimbalkar, S. Numerical investigation on dynamic behaviour of critical zones in railway tracks under moving train loads. Transp. Geotech. 2023, 41, 101009. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, A.; Jaksa, M. Three-dimensional modeling of geocell-reinforced straight and curved ballast embankments. Comput. Geotech. 2018, 102, 53–65. [Google Scholar] [CrossRef]
- Banerjee, L.; Chawla, S.; Dash, S.K. Application of geocell reinforced coal mine overburden waste as subballast in railway tracks on weak subgrade. Constr. Build. Mater. 2020, 265, 120774. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, A.; Jaksa, M. Three-Dimensional Discrete-Element Modeling of Geocell-Reinforced Ballast Considering Breakage. Int. J. Geomech. 2020, 20, 04020032. [Google Scholar] [CrossRef]
- Punetha, P.; Nimbalkar, S.; Khabbaz, H. Simplified geotechnical rheological model for simulating viscoelasto-plastic response of ballasted railway substructure. Int. J. Numer. Anal. Methods Geomech. 2021, 45, 2019–2047. [Google Scholar] [CrossRef]
- Punetha, P.; Nimbalkar, S.; Khabbaz, H. Evaluation of additional confinement for three-dimensional geoinclusions under general stress state. Can. Geotech. J. 2020, 57, 453–461. [Google Scholar] [CrossRef]
- Doyle, N.F. Railway Track Design: A Review of Current Practice; BHP Melbourne Research Laboratories, Australian Government Publishing Service: Canberra, Australia, 1980. [Google Scholar]
- Simo, J.C.; Hughes, T.J.R. Computational Inelasticity; Springer: New York, NY, USA, 1998. [Google Scholar]
- Punetha, P.; Nimbalkar, S. Geotechnical rheological modeling of ballasted railway tracks considering the effect of principal stress rotation. Can. Geotech. J. 2022, 59, 1793–1818. [Google Scholar] [CrossRef]
- Sayeed, M.A.; Shahin, M.A. Design of ballasted railway track foundations using numerical modelling. Part II: Applications. Can. Geotech. J. 2018, 55, 369–396. [Google Scholar] [CrossRef]
Properties | Rail 1 | Concrete Slab 1 | CAM 1 | Base Layer 1 | Subbase Layer 1 | Subgrade 1 |
---|---|---|---|---|---|---|
Constitutive model | LE | LE | LE | LE | DP | MC |
(kg/m3) | 7830 | 2700 | 2250 | 2700 | 2220 | 2220 |
Elastic modulus, E (MPa) | 210,000 | 20,000 | 27,000 | 7500 | 400 | 400 |
Poisson’s ratio, v | 0.3 | 0.167 | 0.167 | 0.167 | 0.25 | 0.25 |
Friction angle, φ | - | - | - | - | 35 | 35 |
Dilation angle, | - | - | - | - | 2 | 2 |
Damping ratio, ζ | - | - | - | - | 0.04 2 | 0.04 2 |
Parameter | Unit | Ballast | Subballast | Subgrade |
---|---|---|---|---|
Thickness, t | mm | 300 | 150 | 6000 |
Elastic modulus, E | MPa | 200 | 115 | 20 |
Poisson’s ratio, ν | − | 0.3 | 0.4 | 0.45 |
Density, ρ | kg/m3 | 1760 | 1920 | 1920 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farooq, M.A.; Meena, N.K.; Punetha, P.; Nimbalkar, S.; Lam, N. Experimental and Computational Analyses of Sustainable Approaches in Railways. Infrastructures 2024, 9, 53. https://doi.org/10.3390/infrastructures9030053
Farooq MA, Meena NK, Punetha P, Nimbalkar S, Lam N. Experimental and Computational Analyses of Sustainable Approaches in Railways. Infrastructures. 2024; 9(3):53. https://doi.org/10.3390/infrastructures9030053
Chicago/Turabian StyleFarooq, Mohammad Adnan, Naveen Kumar Meena, Piyush Punetha, Sanjay Nimbalkar, and Nelson Lam. 2024. "Experimental and Computational Analyses of Sustainable Approaches in Railways" Infrastructures 9, no. 3: 53. https://doi.org/10.3390/infrastructures9030053
APA StyleFarooq, M. A., Meena, N. K., Punetha, P., Nimbalkar, S., & Lam, N. (2024). Experimental and Computational Analyses of Sustainable Approaches in Railways. Infrastructures, 9(3), 53. https://doi.org/10.3390/infrastructures9030053