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Abstract: While crack detection is crucial for maintaining concrete structures, existing methods
often overlook the analysis of large cracks that span multiple images. Such analyses typically rely
on image stitching to create a complete image of a crack. Current stitching methods are not only
computationally demanding but also require manual adjustments; thus, a fast and reliable solution
is still lacking. To address these challenges, we introduce a stitching method that leverages the
advantages of crack image-segmentation models. This method first utilizes the Mask R-CNN model
for the identification of crack regions as regions of interest (ROIs) within images. These regions are
then used to calculate keypoints of the scale-invariant feature transform (SIFT), and descriptors for
these keypoints are computed with the original images for image matching and stitching. Compared
with traditional methods, our approach significantly reduces the computational time; by 98.6%
in comparison to the Brute Force (BF) matcher, and by 58.7% with respect to the Fast Library for
Approximate Nearest Neighbors (FLANN) matcher. Our stitching results on images with different
degrees of overlap or changes in shooting posture show superior structural similarity index (SSIM)
values, demonstrating excellent detail-matching performance. Moreover, the ability to measure
complete crack images is indicated by the relative error of 7%, which is significantly better than that
of traditional methods.

Keywords: large crack analysis; crack image stitching; crack segmentation model

1. Introduction

Crack detection plays an indispensable role in the monitoring of the health of concrete
structures, with its significance extending beyond simply preventing structural damage to
ensuring public safety and long-term maintenance. However, during inspections, merely
identifying and detecting a single crack is not sufficient to understand the structural
behavior [1]. Additionally, inspection tasks generate a large volume of image data, which
require effective organization. A typical solution is the application of image stitching [2],
which is a viable method for increasing the field of view [3]. Stitched images can provide
high-resolution images, improving the results when detecting crack defects, especially in
the case of detecting fine cracks [4].

The measurement accuracy in crack detection is crucial for the maintenance of struc-
tures, as cracks as small as approximately 0.3 to 0.4 mm are considered to be defects [5]. For
fine cracks ranging from 0.3 to 0.4 mm, the shooting distance should not be too far; other-
wise, the crack images will become insufficiently clear due to inadequate spatial resolution,
thus failing to meet the detection requirements. In order to satisfy the requirements for
measuring cracks with images during inspections, the spatial resolution of the images must
reach at least 0.1 mm/pixel. For a typical camera, this would correspond to a shooting
distance of about 50 cm. Taking an image size of 3200 × 4800 pixels as an example, at a
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resolution of 0.1 mm/pixel, the imaging area would only cover 3248 square centimeters.
This implies that, for cracks exceeding one meter in length, dense imaging is required for
detailed documentation. However, at this point, crack information would be scattered
across different images, making it challenging to conduct a comprehensive analysis and
evaluate the potential harm the crack poses to the concrete structure, as well as whether it
has caused structural damage.

For such cross-image crack damage analysis, image stitching can be employed to con-
struct complete crack images for assessment [6,7]. Traditionally, the most commonly used
method is to utilize the scale-invariant feature transform (SIFT) for image stitching [8–10].
However, while the SIFT excels in maintaining scale invariance, its drawbacks include
susceptibility to the erroneous matching of keypoints, resulting in suboptimal stitching
results [10]; it also involves a considerable computational burden, particularly for high-
resolution images, to the extent that it may be impractical [9]. For the issue of erroneous
matching, Tian et al. [10] utilized the geometric relationships between crack feature points
to improve matching accuracy, while Woo et al. [11] used the SIFT combined with the
Random Sample Consensus (RANSAC) algorithm [12] to compute homography matrices
for image stitching. Additionally, researchers have explored various feature-matching
methods combined with RANSAC for crack image-stitching tasks; Da et al. [13] and Wu
et al. [14], for instance, used the SURF and ORB (Oriented FAST and Rotated BRIEF) algo-
rithms, respectively, in combination with RANSAC. Apart from using RANSAC during the
computation of homography matrices, scholars have proposed different feature-matching
strategies. For instance, Geda et al. [15] used the Accelerated-KAZE (AKAZE) feature-
detection algorithm combined with the k-nearest neighbor algorithm and Lowe’s ratio
test [16] to stitch pavement images, while Wang et al. [17] combined the uniformed ORB
algorithm with the KD tree and k-nearest neighbor algorithms for feature-point matching,
and similarly employed RANSAC to enhance the matching accuracy. These methods,
which combine feature matching with different matching strategies and utilize RANSAC
for stitching, have shown promising results in crack image stitching. However, these
approaches involve computation on entire images, which, for high-resolution images with
numerous feature points, requires a significant computation time to find all matching point
pairs. In particular, when using the Brute Force (BF) matcher, matching between only
two images can take several minutes.

To reduce the matching computation time, reducing the number of matching points is
a highly effective approach. The most direct method is to use only feature points within the
region of interest (ROI) for matching. For instance, Huang et al. [18] manually delineated
crack and non-crack regions and then used the SIFT for underwater crack image stitching.
Similarly, Wang et al. [19] partitioned the ROIs in an image into fixed areas and matched the
corresponding ROIs in adjacent images using the SIFT. However, this rigid ROI specification
imposes considerable demands on the consistency of posture and overlap in the capture
of the images, which is difficult to achieve in practical shooting operations and is not
suitable for practical use. For crack image stitching, the primary ROI is the area of pixels
in which a crack is located. Wang et al. [9] proposed a method of first detecting cracks
and then stitching images. In this study, crack detection was performed using the Canny
edge-detection method. After noise elimination, the SIFT was used to calculate matching
keypoints and descriptors for a binary crack image. Finally, stitching was performed using
Lowe’s ratio test [16] and RANSAC to produce a complete binary crack image. However,
the Canny algorithm requires manual parameter adjustment, meaning that its results
depend on the operator’s relevant experience. Additionally, the Canny algorithm is a form
of image processing, and such methods have limited crack-recognition capabilities and are
prone to noise. They also require reliance on empirical rules to filter out noise from binary
images; otherwise, non-crack noise can adversely affect the stitching results. Furthermore,
this method uses a binary image for the computation of the SIFT, which, despite reducing
the number of keypoints, also causes the loss of a significant amount of texture information.
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This is highly disadvantageous for the calculation of the SIFT descriptor and can lead to
erroneous matches, thereby affecting the stitching results.

In addressing the limitations of the Canny algorithm for crack detection, recent devel-
opments in convolutional neural networks (CNNs) have proven effective [20,21]. Whether
using object-detection models or image-segmentation models, CNNs demonstrate excel-
lent performance in crack detection. Unlike object-detection models, image-segmentation
models can perform pixel-level classification on images while effectively marking crack
areas with masks and being robust to noise [22]. This facilitates the extraction of regions of
interest (ROIs) for crack image stitching.

Of the various CNN models, the Mask R-CNN model is often applied and compared
in concrete crack-recognition studies [23–25]. Compared with image-segmentation mod-
els such as U-Net and DeepCrack, Mask R-CNN demonstrates superior performance in
complex imaging situations [24] and is concurrently more suited for application in on-site
concrete damage detection [25]. Furthermore, the Mask R-CNN model can also be utilized
for crack recognition in different materials, such as asphalt pavement [26,27] and metal
surfaces [28,29]. In related research, some scholars have discussed both image-stitching
and crack-recognition models in experiments [14,19]. However, these studies typically ad-
dressed these two issues separately—completing image stitching first and then performing
crack recognition using different CNN models—without considering that the detection
results of the CNN models could serve as regions of interest (ROIs) for crack image stitching.
Through integrating both tasks, it is possible to achieve crack image stitching concurrently
with successful crack recognition, facilitating subsequent crack hazard analysis.

Based on this literature review, it is known that current methods for image stitching
with large cracks cannot simultaneously achieve speed and robustness, and they still
rely on operational expertise. Therefore, this study proposes a new method to address
this issue. Utilizing the advantages of current crack image-segmentation models in pixel-
level segmentation, this method segments the binary mask of a crack area in an image
into regions of interest (ROIs). Subsequently, the SIFT is used to compute the matching
keypoints within the ROIs of the image, and the SIFT descriptors for the keypoints in
the original image are calculated. Finally, this process involves the completion of the
matching and stitching of the crack area images. The method proposed in this study offers
several advantages:

1. Utilizing a crack image-segmentation model to identify crack regions as ROIs elim-
inates the need for manual parameter adjustments, thus avoiding reliance on oper-
ational expertise. Moreover, the noise within the recognition results is significantly
lower than that of methods using image processing.

2. Computing the keypoints in images of ROIs instead of using a binary mask of a
crack area significantly reduces the number of keypoints to be matched, effectively
decreasing the computation time. Moreover, this approach is not affected by variations
in the mask’s shape, ensuring both robustness and optimal stitching results in the
crack area.

3. Calculating the descriptors of keypoints from the original image preserves texture-
feature information outside the ROI, enhancing the number of effective matches.
This ensures good stitching results even for images with significant differences in
shooting angles.

According to the experimental results, the method proposed in this study significantly
saves computation time compared with traditional methods. Additionally, the proposed
method demonstrates excellent performance in handling images with varying degrees
of overlap or changes in shooting angles when successfully completing stitching tasks.
Notably, the proposed method surpasses traditional methods in detail matching, achieving
higher SSIM values across various metrics. Regarding the measurement accuracy for the
crack length, the proposed method achieves a relative error of 7%, which is significantly
better than that of traditional methods, highlighting its importance for subsequent crack
hazard assessments. Moreover, the method proposed in this study includes a process
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of crack detection before stitching, avoiding unnecessary stitching operations on images
without cracks, thus effectively improving the efficiency of the detection of cracks in
concrete structures. Future research could consider integrating quantitative analysis and
risk assessment for large cracks to further enhance the detection mechanism for such cracks.

2. Materials and Methods

This study utilizes a crack image-segmentation model to extract crack regions from
images as ROIs, then the SIFT keypoints in these ROI images are calculated; finally, the
descriptors in the original images are calculated to complete the stitching of crack-region
images. Figure 1 illustrates the workflow of the proposed method, wherein the crack image-
segmentation model employed is a Mask R-CNN model trained specifically for this study.
Additionally, this study incorporates the spatial coordinates of feature points on cracks into
the image-stitching process for image projection correction. This approach can enhance
the stability of continuous image stitching and enable final images of complete cracks to
provide measurement capabilities. Each step is detailed in the following subsections. The
image-processing techniques used in this study were implemented using the Python3.7
OpenCV library, with all processing conducted on the same computer under consistent
hardware conditions.
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2.1. Capturing Images

The experimental site chosen for this study was the Taichung Cultural and Creative
Industries Park in Taiwan, where multiple cracks were present in the concrete walls. Tests
were conducted using images captured at one location with a large-scale branching crack
and in another area with more complex cracks. Multiple sets of images were captured
for each crack location, and efforts were made to keep the camera parallel to the wall
during shooting. For each set of images, the camera was maintained in a similar shooting
posture, and attention was paid to the overlap between images. However, there were slight
variations in the shooting posture between different sets of images.

2.2. Image Preprocessing

The camera used in this study was a SONY RX0, with a focal length of 9.2 mm and an
image resolution of 3200 × 3200 pixels. The RX0 belongs to the category of general cameras,
and calibration is required to correct for distortions caused by the lens. The calibration
method used in this study was the planar chessboard-grid calibration technique [30]. This
method involved taking photographs of a black-and-white chessboard grid at different
angles and then calculating the camera’s distortion parameters based on the chessboard
grid’s corner points in the images. After correcting for distortion parameters, the distortions
within the images could be removed. This not only enhanced the integrity of the image-
stitching results but also improved the measurement accuracy of the images.

2.3. Training of the Crack Image-Segmentation Model and the Extraction of Crack Masks

In the process of image stitching, the most time-consuming task is matching large
numbers of keypoints. In addressing this issue, Wang et al. [9] employed the Canny edge-
detection method to filter out crack pixels in images and then extracted keypoints from
these pixels for matching. While this approach effectively reduces the number of keypoints
by reducing image information, the quality of edge detection depends on the selected
parameters and may have limited effectiveness in removing noise, as shown in Figure 2b.
In contrast, the method proposed in this study utilizes a crack image-segmentation model to
detect crack regions in images and generate masks, which are used as ROIs. This approach
effectively filters out noise, as illustrated in Figure 2c.
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sets in an 80:20 ratio. 

Figure 2. The original images were processed using both the Canny edge detector and Mask R-CNN
for crack detection. (a) Original image. (b) Cracks detected using the Canny edge detector on the
original image (parameters were manually adjusted). (c) Cracks detected using Mask R-CNN on the
original image.

This study utilized the crack data set provided by Volker [31] to train the Mask R-CNN
model. A total of 788 images were selected from this data set. Data augmentation was
performed on each image by rotating it by 90◦, 180◦, and 270◦, increasing the brightness
by 10%, decreasing the brightness by 10%, and mirroring, resulting in a sixfold increase in
the number of images. The final data set comprised 5516 images, and all were resized to
448 × 448 pixels. The images were randomly split into training and validation sets in an
80:20 ratio.
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On the other hand, when calculating the mask for the crack regions in the images,
the images were not resized in this study. Instead, the original images were segmented
into several smaller images with a size of 448 × 448 pixels, which were then fed into the
Mask R-CNN model. The segmentation results of these cropped images were subsequently
stitched together to reconstruct the original image, as illustrated in Figure 3. This ap-
proach prevented the loss of subtle crack features due to resizing, ensuring the accurate
identification of cracks.
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Figure 3. Flowchart of the process for generating crack masks: The original image is segmented, and
the cracks are recognized using the Mask R-CNN model. The results are then stitched back to the
original size.

2.4. Keypoint Calculation

According to the method proposed by Wang et al. [9], compared with using the
original images, using binary images indeed reduces the number of keypoints, as shown
in Figure 4a,b. In the method proposed in this study, binary images correspond to the
masks of crack regions. However, it is not recommended to use a mask image to calculate
keypoints for matching due to the following three issues. First, the masks generated by
Mask R-CNN do not perfectly align with the crack pixels, resulting in differences in the
contours of the crack masks in overlapping areas of adjacent images. Second, the keypoints
detected in the mask images mainly surround the mask’s perimeter, resulting in a minority
of keypoints within the mask, as shown in Figure 4c. Finally, using a binary mask means
ignoring the texture information of crack pixels and their surroundings, which prevents the
SIFT’s matching advantages from being leveraged. The differences in mask contours, the
keypoints predominantly surrounding the mask, and the disregard for texture information
are all critical issues for subsequent matching tasks.
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keypoints using the mask image. (c) A close-up view of the results of calculating keypoints using the
mask image.

Due to the aforementioned limitations, this study proposes the partitioning of the mask
into ROIs, followed by the detection of keypoints for matching in the ROI images. As long
as there is an overlap in the ROIs between two adjacent images, matching and stitching can
be accomplished based on the keypoints in the overlapping area. In the method proposed
by this study, the pixels of the crack area will constitute the overlap between the two images,
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while other aspects, such as false positives from non-overlapping sections, will not affect the
matching outcome. This approach not only mitigates the impact of mask shape differences
but also significantly increases the number of keypoints within the ROIs, concentrating
keypoints on crack pixels within the image (as shown in Figure 5). Moreover, the keypoints
calculated using this method are more representative of the texture information of crack
pixels. The computation of keypoints follows the feature-point-detection method used for
the SIFT, which can be used to calculate keypoints at different scales.
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2.5. Calculation of SIFT Feature Descriptors

A feature descriptor is used to describe the texture features around keypoints. Tradi-
tionally, when calculating descriptors, the image containing keypoints is directly used. This
method is unquestionably effective for general images. However, in this study, keypoints
are calculated using ROI images in which the pixel values outside the ROI are 0, meaning
that there is no relevant texture information. As shown in Figure 5b, some keypoints are
distributed outside the ROIs, and some keypoints within the ROIs are located at the edges.
For these keypoints, if descriptors are computed using only the ROI images, descriptors for
keypoints outside the ROIs would lack texture information and could be used for matching.
Additionally, for keypoints located at the edges of the ROIs, the loss of surrounding texture
information would affect the performance of descriptors, further reducing the robustness
of matching. Therefore, in this study, keypoints are first calculated in the ROI image, and
then SIFT feature descriptors are computed using the texture information around each
keypoint coordinate in the complete image, as shown in Figure 6. This approach preserves
the background texture from the original image, providing complete feature descriptors,
reducing the impact of texture loss, and enhancing the matching accuracy and robustness
without affecting the computation time.
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2.6. Keypoint Matching

This step involves matching feature descriptors calculated from two images to find
corresponding keypoint pairs, and accounts for the majority of the computation time in the
image-stitching process. At present, in the OpenCV library, the most common methods
for SIFT matching are using the Brute Force (BF) matcher or the FLANN (Fast Library
for Approximate Nearest Neighbors) matcher. The Brute Force matcher is a basic and
straightforward matching method that calculates the Euclidean distance between all feature
points to find the most similar descriptors. It is a robust matcher but is only suitable
for small data sets and is inefficient for large data sets. On the other hand, the FLANN
matcher utilizes tree-based data structures (e.g., kd-trees, k-means, and so on) to perform
approximate nearest-neighbor searches. This allows FLANN to efficiently find approximate
nearest neighbors in high-dimensional data spaces, improving search speed. Therefore,
FLANN is particularly suitable for large data sets.

This study will compare the image-stitching results of the proposed method with those
of traditional methods using both the BF matcher and the FLANN matcher. This comparison
is intended to demonstrate the advantages of the proposed method in keypoint matching.

2.7. Image Stitching

In the process of forming a complete crack image using image-stitching techniques, it
is necessary to ensure consistency between different projection planes. In this study, based
on keypoint matching, the Random Sample Consensus (RANSAC) algorithm is introduced
to calculate the homography matrix for adjusting the projection planes, thereby enhancing
the accuracy of the stitching.

This section is focused solely on stitching images related to the crack mask region.
Initially, pairwise image-stitching comparisons were conducted to assess the accuracy of
stitching between adjacent images. Subsequently, the method was applied to the continuous
stitching of crack images, with a focus on the measurement accuracy of the stitched crack
images. Through these experimental results, the potential value of the proposed method in
measurement and analysis could be elucidated.

For continuous stitching of a series of crack images, this study introduces the spatial
coordinates of several manually selected feature points on the cracks to address the issue of
changing camera angles. These spatial coordinates of the feature points were measured
using a total station theodolite within a local spatial coordinate system established in the
study, with the aim of determining the spatial position of the plane at which the crack
was located. At the start of continuous stitching, projection correction was performed
on only the first image of each set to be stitched based on the spatial coordinates of the
feature points, and the first image was projected onto an orthographic plane relative to
the crack. This orthographic plane served as the base plane for image stitching. During
the subsequent continuous stitching, the remaining images to be stitched were aligned
to this orthographic plane. This approach primarily addressed the problem of excessive
differences in camera angles between different images. As it was challenging for the
photographer to maintain a completely consistent camera angle during shooting, and
because all images were aligned and projected onto the same plane during continuous
stitching, if a few images had too significant of a difference in camera angles, this could
lead to stitching failure. Using an orthographic plane as the base plane for stitching was
able to prevent this issue. Additionally, through introducing the spatial coordinates of
feature points, the complete crack images were endowed with actual spatial information,
enabling them to have value for measurement.

2.8. Evaluation Metrics

The discussion of the image-stitching outcomes in this study is divided into two
parts: stitching between adjacent images and continuous stitching of the entire set of
crack images. In the section concerning stitching between adjacent images, this study
compared the degree of overlap of ROIs in the overlapping areas of adjacent images and
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the consistency of the ROI images. The degree of overlap of ROIs was measured using the
intersection over union (IOU) of the crack masks, while the consistency of the ROI images
was compared using the structural similarity index (SSIM) of the ROI images. These two
evaluation metrics are used to discuss the stitching accuracy of the method proposed in
this study in comparison with that of traditional methods. In the section on continuous
image stitching, the precision of stitching in measurements of continuous crack images
is examined. The actual length of cracks was compared with the length measured in the
complete crack images to verify the applicability of the method proposed in this study for
crack measurements. Details about the IOU and SSIM for the crack masks will be explained
in the following.

1. IOU of the Crack Mask

The calculation of the IOU typically involves computing the IOU value for two binary
masks. This involves calculating the intersection and union of two binary regions, as shown
in Equation (1).

IOU =
Ai
Au

(1)

where Ai is the intersection area between two regions and Au is the union area between the
two regions.

The IOU represents the level of overlap between two masks, and the values range
from 0 to 1. A value closer to 1 indicates a higher similarity between the two masks.

2. SSIM

SSIM(x, y) is an indicator used to evaluate the similarity between two images while
considering luminance, contrast, and structural similarity, as shown in Equation (2).

SSIM(x, y) =
[
L(x, y)αC(x, y)βS(x, y)γ

]
(2)

where L(x, y) is the luminance, C(x, y) is the contrast, and S(x, y) is the structural similarity.
The weights for the luminance, contrast, and structural similarity are denoted by α, β,
and γ, respectively. The calculation formulas for L(x, y), C(x, y), and S(x, y) are given in
Equations (3)–(5).

L(x, y) =
2µxµy + c1

µx
2 + µy

2 + c1
(3)

C(x, y) =
2σxσy + c2

σx2 + σy2 + c2
(4)

S(x, y) =
2µxy + c3
σxσy + c3

(5)

where µx and µy are the pixel intensity averages of the two images, σx
2 and σy

2 are the
variances of the two images, σxσy is the covariance between the two images, and c1, c2,
and c3 are constants to avoid division by zero.

The result of the computation of the SSIM falls within the range of –1 to 1, with values
closer to 1 indicating a higher similarity between the two images. As this study focuses
solely on the stitching outcomes of images of crack regions, the calculation of the SSIM
is specifically applied to the crack region rather than the entire image. Using the SSIM
as an indicator allows for the examination of the matching details in images of a crack
mask region.

3. Results

Two types of crack images were tested in this study: The first type was the commonly
encountered branched crack (Crack 1), which exhibits branching, and the second type was
the complex crack (Crack 2), which involved multiple cracks within the image range. For
Crack 1, the stitching method involved dividing the crack into three parts and stitching
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each part separately from the central branching point to the three farthest endpoints (Crack
1–1 to Crack 1–3). The numbers of images captured for each set of cracks and the average
overlap rates between adjacent images are shown in Table 1.

Table 1. Numbers of images and overlap rates for each group of crack images.

Crack Number Number of Images Average Overlap Rate

Crack 1–1 16 79.0%
Crack 1–2 11 67.7%
Crack 1–3 12 76.9%

Crack 2 12 86.9%

In each image of Crack 1, there was only one main crack, and the crack pattern was
close to linear and relatively monotonous. Some images had branching but not many twists.
On the other hand, in the images of Crack 2, the crack pattern resembled a network, and
there was more than one crack in the images. This study discusses the applicability of the
proposed method to these two different types of crack patterns.

In Table 1, it can be observed that, except for Crack 1–2, the average overlap ratio of
adjacent images in each group of cracks was close to 80%, indicating high overlap among
the images. To evaluate the performance of the proposed method on images with lower
overlap ratios (around 60%), a subset of images was selected for Crack 1–1, Crack 1–3, and
Crack 2 to form a test group with lower overlap ratios. The numbers of images and the
overlap ratios for the low-overlap-ratio test group are shown in Table 2.

Table 2. Numbers of images and adjacent overlap rates for the low-overlap test group.

Crack Number Number of Images Average Overlap Rate

Crack 1–1 9 62.4%
Crack 1–3 9 66.0%

Crack 2 6 70.9%

In addition to discussing the low-overlap-ratio images, this study also captured mul-
tiple sets of images with varying camera poses. Artificially, from these images with pose
variations, a mixed set of crack images was selected and the images were combined to form
another test group to determine the robustness of the method in stitching images with pose
variations. The numbers of images and overlap rates for the mixed-image test group are
presented in Table 3.

Table 3. Numbers of images and neighboring overlap rates for the mixed-image test group.

Crack Number Number of Images Average Overlap Rate

Crack 1–1 10 63.3%
Crack 1–2 13 70.0%
Crack 1–3 12 69.5%

Crack 2 6 69.7%

3.1. Detection Results of the Mask R-CNN Model

The Mask R-CNN model trained in this study reached convergence after 99 training
iterations. The precision and recall on the validation set were 86.6% and 87.3%, respectively.
The detection results for the 51 images of Crack 1 and Crack 2 were manually inspected, and
it was confirmed that the fissures in the images were successfully detected and segmented
using binary masks, as shown in Figure 7. The subsequent experiments and discussions in
this study utilized these crack masks as ROIs and involved ROI images.
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Figure 7. A crack image and a crack mask detected by the Mask R-CNN model, with a portion of
Crack 2 as an example.

3.2. Stitching of Adjacent Images

This section focuses on discussing the results of stitching adjacent images. First,
regarding the number of matched keypoints, compared with the traditional method of
using the entire image for matching, the number of matched keypoints calculated from the
crack mask and the ROI image significantly decreased, reducing the numbers of matched
keypoints by 99.1% and 96.5%, respectively, as shown in Table 4. This reduction can greatly
decrease the subsequent matching time for the keypoints.

Table 4. Numbers of keypoints calculated with different methods.

Crack
Number

Traditional
Methods

Mask Only ROI Image
Number of
Keypoints

Reduction
Rate

Number of
Keypoints

Reduction
Rate

Crack 1–1 94,264 670 99.3% 2791 97.0%
Crack 1–2 78,725 676 99.1% 2917 96.3%
Crack 1–3 59,671 606 99.0% 2245 96.2%

Crack 2 94,052 1099 98.8% 3495 96.3%

Average 81,678 762 99.1% 2862 96.5%

In terms of image-matching results, not only were the traditional method using only
the mask and the method proposed in this study tested, with each paired with both the
BF matcher and the FLANN matcher, but the results of using only the ROI images for
matching were also compared. The differences between various matching methods are
detailed in Table 5. Among these methods, the difference between the method using
only ROI images for matching and the method proposed in this study lies in the source
of the feature descriptors for the keypoints. The method that matches using only ROI
images does not refer to the entire image when calculating feature descriptors; hence, it
lacks the texture information outside of the ROI. This study included this method in the
comparison to discuss the effectiveness of using full-frame images to calculate keypoint
feature descriptors.

Table 5. Sources for calculating matching keypoints and feature descriptors of different match-
ing methods.

Traditional
Methods Mask Only Matching Using Only

ROI Images Our Method

The calculation source for
matching keypoints Entire image Crack mask ROI image ROI image

The computation source for
feature descriptors Entire image Crack mask ROI image Entire image
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Regarding the matching results, this study primarily discusses the IOU of the crack
mask in the overlapping regions of the two images and the SSIM of the crack areas. For
the crack-mask IOU, the results of matching with both the BF matcher and the FLANN
matcher are detailed in Tables 6 and 7, respectively. The matching counts, IOUs, and times
in the tables are the averages across all adjacent image pairs in each group.

Table 6. Comparison of the IOU results when using the BF matcher.

Crack
Number

Traditional Methods Mask Only
Matching Using Only

ROI Images
Our Method

Number of
Matches

IOU Time (s)
Number of

Matches
IOU Time (s)

Number of
Matches

IOU Time (s)
Number of

Matches
IOU Time (s)

Crack
1–1

56,058 43.7% 747.8 355 0.3% 7.6 1562 43.4% 8.2 1635 43.8% 8.4

Crack
1–2

44,525 40.0% 523.9 371 0.1% 7.1 1657 40.5% 8.0 1710 43.7% 8.1

Crack
1–3

34,084 43.3% 348.9 331 0.1% 7.1 1244 42.9% 7.7 1299 43.3% 7.6

Crack 2 58,635 41.7% 708.1 616 0.3% 7.4 2015 41.6% 8.8 2098 41.7% 8.8

Average 48,326 42.2% 582.2 418 0.2% 7.3 1619 42.1% 8.2 1685 43.1% 8.2

Table 7. Comparison of the IOU results when using the FLANN matcher.

Crack
Number

Traditional Methods Mask Only
Matching Using Only

ROI Images
Our Method

Number of
Matches

IOU Time (s)
Number of

Matches
IOU Time (s)

Number of
Matches

IOU Time (s)
Number of

Matches
IOU Time (s)

Crack
1–1

15,427 43.7% 19.6 97 0.3% 7.4 276 43.6% 7.6 597 43.6% 7.8

Crack
1–2

8821 43.6% 17.6 106 0.3% 7.3 217 43.5% 7.3 445 43.7% 7.5

Crack
1–3

7667 43.3% 15.2 88 0.2% 7.3 144 43.4% 7.4 348 43.2% 7.3

Crack 2 18,181 41.6% 20.9 145 0.3% 7.3 191 41.6% 7.7 491 41.6% 7.8

Average 12,524 43.1% 18.3 109 0.3% 7.3 207 43.0% 7.5 470 43.1% 7.6

In terms of the IOU performance in the crack areas, the method proposed in this study
performed well across all crack groups, whether paired with the BF matcher or the FLANN
matcher, with a slightly better performance being observed with the BF matcher compared
with that of the traditional method. However, the method of matching using only the crack
area mask was a complete failure, confirming that relying solely on the recognition results
of the Mask R-CNN model for stitching is not suitable. As for the method of matching
using only ROI images, the performance was also decent across all crack groups, but the
number of matched keypoints was lower than that of the method proposed in this study.
Even when using the FLANN matcher, the number of matches in this method was only
44% of that in the method proposed in this study. Figure 8 displays three sets of images
where the matching failed.

In these images, Figure 8a,b both exhibit obvious failures; additionally, while the
matching result in Figure 8e appears to be successful, in comparison with Figure 8c,d,f,
the first image still shows slight differences in the upper-right corner of the image. From
the matching results of these three sets of images, it can be observed that the method
proposed in this study is capable of performing matching effectively, regardless of the type
of matcher used. Compared with the method of matching using only ROI images, the
proposed method effectively enhances the matching robustness.
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FLANN matcher. (f) Our method with the FLANN matcher.

The performance in matching time showed that the traditional method using the BF
matcher had an average matching time of 582.2 s; meanwhile, when using the FLANN
matcher, it was 18.3 s. In contrast, the method proposed in this study had matching times
of 8.2 s and 7.6 s with the different matchers, indicating reductions of 98.6% and 58.7%,
respectively. However, the matching time when using only ROI images for matching was
similar to that of the proposed method. This demonstrates that the method proposed by this
study can effectively reduce matching time under the same computer hardware conditions.

Regarding the SSIM performance, the reader is referred to Table 8. As the results
obtained when using only the mask for matching were all failures, only the results for the
other three methods are discussed.

Table 8. Comparison of the SSIM results for matching.

Crack
Number

Using BF Matcher Using FLANN Matcher

Traditional
Methods

Using Only
ROI Image
Matching

Our
Method

Traditional
Methods

Using Only
ROI Image
Matching

Our
Method

Crack 1–1 0.588 0.608 0.620 0.592 0.599 0.603
Crack 1–2 0.511 0.535 0.591 0.544 0.585 0.590
Crack 1–3 0.556 0.543 0.577 0.559 0.574 0.567

Crack 2 0.534 0.545 0.551 0.531 0.539 0.543

Average 0.547 0.558 0.585 0.556 0.574 0.576

In the matching results for each crack group, the average SSIM values of the stitching
results using the proposed method with the two different matchers were 0.585 and 0.576,
respectively, and both were higher than those of the traditional method, which were 0.547
and 0.556. The method that matched using only ROI images performed better with the
FLANN matcher, indicating its lack of robustness. In this part, in conjunction with the
number of matches shown in Table 6, it was observed that the matching count when using
the ROI images with the BF matcher was similar to that of the method proposed in this
study. However, there was a significant difference in performance in terms of the SSIM
value. This discrepancy was likely due to the lack of texture information in the feature
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descriptors of the keypoints located at the edges and outside of the ROI, leading to more
incorrect matches when using the BF matcher, which matched keypoints one by one, as
shown in Figure 9.
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From the comparison of the SSIM (structural similarity index measure) values, it is
evident that the method proposed in this study—whether matching the details of monotonic
cracks (Crack 1) or complex cracks (Crack 2)—performed better than traditional methods,
regardless of whether the BF (Brute Force) or FLANN (Fast Library for Approximate
Nearest Neighbors) matcher was used. This is advantageous for crack image stitching
requiring high resolution for analysis.

In addition, in the experiments with the low-overlap-rate test group and the mixed-
image test group, the traditional method paired with the FLANN matcher was used as the
control to examine the effectiveness of the proposed method when paired with the different
matchers. The detailed experimental results are shown in Tables 9 and 10.

Table 9. Comparison of the SSIM results for the low-overlap-rate test group.

Crack Number
Average Overlap

Rate

Traditional
Methods Using

FLANN Matcher

Our Method

Using BF Matcher Using FLANN
Matcher

Crack 1–1 62.4% 0.584 0.610 0.599
Crack 1–3 66.0% 0.534 0.557 0.542

Crack 2 70.9% 0.407 0.480 0.482

Average 0.508 0.549 0.541

Table 10. Comparison of the SSIM results for the mixed-image test group.

Crack Number Average Overlap
Rate

Traditional
Methods Using

FLANN Matcher

Our Method

Using BF Matcher Using FLANN
Matcher

Crack 1–1 63.3% 0.566 0.598 0.588
Crack 1–2 70.0% 0.532 0.545 0.550
Crack 1–3 69.5% 0.522 0.551 0.541

Crack 2 69.7% 0.428 0.458 0.467

Average 0.512 0.538 0.537

From Tables 9 and 10, it can be observed that the performance of the proposed method
with the different matchers was superior to that of the traditional method in both the low-
overlap-rate test group and the mixed-image test group. This indicates that the proposed
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stitching method is applicable to neighboring images with an overlap rate of over 60% and
neighboring images with significant variations in shooting poses.

3.3. Continuous Stitching of Crack Images

The results of the continuous stitching of various sets of crack images completed using
the proposed method with the BF matcher are shown in Figures 10 and 11. In these figures,
the parts of Crack 1 were manually grouped into Crack 1–1, Crack 1–2, and Crack 1–3, with
each group containing images of the central branching point (highlighted with the red box
in Figure 10).
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Figure 11. The stitching results for Crack 2.

Before continuous stitching, perspective projection correction was performed on the
images at the branching points using feature-point spatial coordinates measured on-site.
This not only ensured that the projection posture of the images was parallel to the wall
surface but also provided information on the image scale. Subsequently, during stitching,
the images at the branching points were fixed, and adjacent images were sequentially
inserted into them. Finally, the complete image of Crack 1 was assembled from the images
at the branching points, as shown in Figure 12. In Figure 12, the upper-left branch of
the crack corresponds to Crack 1–3, the lower-left branch corresponds to Crack 1–1, and
the right branch corresponds to Crack 1–2. Throughout the entire process of continuous
stitching of the crack images, only image grouping and perspective projection correction
required manual processing, while the other steps were automatically handled by the
program without the need to adjust any parameters.
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Figure 12. Complete images of Crack 1 stitched using different methods. The yellow and green
boxes in the figure indicate and magnify the misalignment situations. (a) Traditional method with
the FLANN matcher. (b) Proposed method with the BF matcher. (c) Proposed method with the
FLANN matcher.

Figure 12 illustrates three complete images of Crack 1 stitched using three different
methods: the traditional method with the FLANN matcher, the method proposed in this
study with the BF matcher, and the method proposed in this study with the FLANN
matcher. Among these three results, the outcome achieved with the method proposed in
this study with the BF matcher was the most complete, and no misalignment was observed.
Next was the method proposed in this study combined with the FLANN matcher, which
showed no misalignment at the main trunk of the crack, and only partial misalignment
occurring at the bifurcation of Crack 1–2, as shown in the yellow box of Figure 12c. The
worst performance was observed with the traditional method combined with the FLANN
matcher, where there were significant misalignments at both Crack 1–1 (as indicated by the
green box in Figure 12a) and Crack 1–2 (as indicated by the yellow box in Figure 12a).

Upon inspection of the images to be stitched, the small cracks that are misaligned
inside the yellow frames of Figure 12a,c were found to be related to the fragment cracks at
the upper left inside the image, as shown in Figure 13a. This segment of cracks accounted
for only a minority of the overall crack features; hence, their influence on the calculation of
the homography matrix was weaker, as illustrated in Figure 13b, ultimately leading to the
occurrence of misalignment. The absence of this misalignment in Figure 12b is due to the
dense matching of the BF matcher, which, compared with the FLANN matcher, resulted
in more matching-point pairs in the fragment cracks. In addition to using the BF matcher,
avoiding the occurrence of fragment cracks during shooting can also reduce the occurrence
of such misalignments.
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In terms of crack measurement accuracy, this study measured the straight-line distance
from the intersection point of the three branches at the center of Crack 1 to the endpoints of
the three individual crack segments. The measurement results are detailed in Table 11. The
ground truth in Table 11 was obtained by directly measuring the actual wall surface with a
steel tape measure.

Table 11. Measurement results for Crack 1.

Crack
Number

Ground Truth
(M)

Traditional Methods
Using FLANN Matcher Our Method

Measurement
Value (M) Relative Error

Using BF Matcher Using FLANN Matcher
Measurement

Value (M) Relative Error Measurement
Value (M) Relative Error

Crack 1–1 1.212 1.349 11% 1.312 8% 1.308 8%
Crack 1–2 0.945 0.827 12% 0.827 12% 0.858 9%
Crack 1–3 1.091 1.320 21% 1.388 27% 1.139 4%

Average 15% 16% 7%

In the measurements of the complete crack images produced with the different meth-
ods, the performance of the method proposed in this study with the FLANN matcher
was the best, with an average relative error of 7%. The relative error with the BF matcher
was 16%, which was not significantly different from the 15% obtained with the traditional
method. Among the measurements of the lengths of these three cracks, except for the
method proposed in this study with the FLANN matcher, the other two methods had the
highest relative errors for Crack 1–3. By comparing with Figure 12, it can be observed
that the upper-left section of Crack 1–3 had significant deformation towards the end, as
shown in Figure 14. This error arose from the cumulative deformation caused by contin-
uous image stitching. Additionally, the crack at the end of Crack 1–3 was quite simple
and unidirectional, making it more susceptible to the accumulation of deformation in the
same direction.

Infrastructures 2024, 9, x FOR PEER REVIEW 19 of 22 
 

Crack 1–3 1.091 1.320 21% 1.388 27% 1.139  4% 
Average   15%  16%  7% 

In the measurements of the complete crack images produced with the different meth-
ods, the performance of the method proposed in this study with the FLANN matcher was 
the best, with an average relative error of 7%. The relative error with the BF matcher was 
16%, which was not significantly different from the 15% obtained with the traditional 
method. Among the measurements of the lengths of these three cracks, except for the 
method proposed in this study with the FLANN matcher, the other two methods had the 
highest relative errors for Crack 1–3. By comparing with Figure 12, it can be observed that 
the upper-left section of Crack 1–3 had significant deformation towards the end, as shown 
in Figure 14. This error arose from the cumulative deformation caused by continuous im-
age stitching. Additionally, the crack at the end of Crack 1–3 was quite simple and unidi-
rectional, making it more susceptible to the accumulation of deformation in the same di-
rection. 

 
(a) 

 
(b) 

 
(c) 

Figure 14. The laĴer half of Crack 1–3 in each complete crack image. (a) Traditional method with 
the FLANN matcher. (b) Proposed method with the BF matcher. (c) Proposed method with the 
FLANN matcher. 

4. Conclusions 
This study aimed to address the problem of stitching crack images and proposed a 

rapid and robust method. First, a Mask R-CNN model was utilized to segment the crack 
foreground in an image, generating a mask as an ROI without the need for manual 

Figure 14. The latter half of Crack 1–3 in each complete crack image. (a) Traditional method with
the FLANN matcher. (b) Proposed method with the BF matcher. (c) Proposed method with the
FLANN matcher.



Infrastructures 2024, 9, 74 19 of 21

4. Conclusions

This study aimed to address the problem of stitching crack images and proposed
a rapid and robust method. First, a Mask R-CNN model was utilized to segment the
crack foreground in an image, generating a mask as an ROI without the need for manual
parameter adjustment, thus ensuring minimal noise in the extraction result. Subsequently,
matching keypoints were computed in the ROI image, reducing the number of keypoints
by 96.5% compared with traditional methods. During image matching, a method for calcu-
lating keypoint descriptors over the entire image was used, allowing texture information
outside the ROI to contribute to comprehensive descriptor information. When paired
with either the BF or FLANN matchers, the proposed approach increased the number
of matched-point pairs, thereby enhancing the matching robustness. The experimental
results confirmed that, compared with traditional methods, the proposed method reduced
computational time by 98.6% and 58.7%, respectively, when paired with the two different
matchers. It successfully completed stitching tasks on crack images with different degrees
of overlap or varying shooting poses. Moreover, the SSIM values of all results were higher
than those of traditional methods, indicating better performance in matching details. Re-
garding the ability to measure the complete crack length, the proposed method achieved a
relative error of 7%, surpassing that of the traditional method (15%), which is advantageous
for subsequent crack hazard assessments.

The method proposed in this study primarily uses images within the ROI for matching
to achieve the goal of stitching; hence, it has higher requirements for the selection of the
ROI and the clarity of images within the ROI. The ROI-selection method proposed in this
study uses a crack image-segmentation model; thus, the crack-recognition capabilities
of the model directly determine the quality of the ROI and will affect the final stitching
results. On the other hand, as the proposed method only uses images within the ROI
for matching, it demands higher clarity of the ROI images than that required by tradi-
tional methods. While traditional methods can still perform matching with the help of
keypoints in the background image when the crack images are too fine or unclear, the
method proposed in this study does not consider keypoints calculated from the background
image during matching. Therefore, it is prone to issues with images in which the cracks
are too fine and blurred. Additionally, when capturing cracks, it is advisable to avoid
capturing fragments of branching cracks in the corners of the image. This action can help to
reduce the occurrence of image misalignment issues related to fragmentary cracks. Future
research could explore the following directions: (1) utilizing crack image-segmentation
models with greater recognition capabilities that can simultaneously ensure the accuracy of
crack detection and image stitching; and (2) developing automated analysis methods for
quantifying the properties of large cracks, such as their length, width, and orientation; and,
subsequently, using them for risk assessment.
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