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Abstract: The degradation of paved and unpaved roads stands as a critical concern in contemporary
infrastructure management. When faced with limited budgets, it is important to identify the optimal
combination of road preservation strategies to minimize the lifecycle cost of the road network. Specific
studies are necessary to improve the maintenance management systems and analyze the behavior of
road surface deformation. To narrow these knowledge gaps, this study investigates a management
system that focuses on the application of optimization techniques for managing both paved and
unpaved tropical roads. Probabilistic deterioration models were constructed using the Markovian
process, resulting in precise degradation curves in the context of 18 unpaved road segments in the
Zona da Mata County of Minas Gerais (Brazil), along with 88 paved roads located in Minas Gerais. An
optimization algorithm was proposed for the prediction of maintenance resources for unpaved and
paved roads, emphasizing the cost-effectiveness of preventive and minor rehabilitation treatments
over reconstruction. Comparisons between the maintenance costs of unpaved and paved roads
indicated that the full rehabilitation costs of paved roads were approximately 10 times higher per
kilometer compared to those of unpaved roads. The models effectively captured the trend wherein a
major treatment leads to minor additional treatments being necessary for the subsequent several years
in both scenarios. The findings of this study provide future directions for the optimized allocation of
resources in the management of transportation infrastructures.

Keywords: transportation infrastructures; pavement management system; tropical roads; probabilistic
deterioration models

1. Introduction
1.1. Research Context

The degradation of the existing road network is a pressing concern in contemporary
infrastructure management. The existing road network has aged, leading to the appearance
of different types of distresses such as cracking, raveling and potholing on the road surface.
In the Brazilian state of Minas Gerais (MG), which is the focus of the present study, a total
of 271,160 km of roadway must be maintained by federal, state, or local entities [1].

The deterioration level of roads is directly related to different factors, such as the
volume of traffic and the maintenance activities undertaken over their lifespan. Nowadays,
the costs of maintenance and rehabilitation activities are rising dramatically [2]. The lack
of maintenance procedures has resulted in irreparable harm to economic growth rates,
as poorly maintained roads contribute to delays, road accidents and increased vehicle
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operating costs. Without proper and timely maintenance interventions, the condition of
the pavement rapidly deteriorates from “good” to “poor” over a relatively short period,
necessitating higher funding for rehabilitation [3].

Over the past decade, maintenance management systems have significantly improved
due to technological advances. Numerous researchers have dedicated efforts to elaborating
on maintenance management systems and investigating the road surface deformation
behavior. They include interesting strategic and systematic processes aimed at maintaining
and enhancing the road network [4–6].

1.2. Literature Review
1.2.1. Maintenance Management of Paved and Unpaved Roads

Pavements are designed to last for a certain period. Throughout their life cycle,
they begin in optimal conditions, declining until they reach failure [7]. The evaluation of
the pavement deterioration level is important in assisting those responsible for selecting
maintenance activities in their decision-making process. Deterioration should be estimated
based on functional and structural factors [8]. Maintaining paved roads in appropriate
conditions requires special attention. Depending on the structural health of the road,
varying degrees of maintenance activities are necessary. Different types of paved road
maintenance can be used [9,10]:

• Asphalt overlays: roads undergo restoration through resurfacing procedures. Rather
than removing the deteriorating pavement, it serves as a base onto which a new layer
is applied.

• Patching: this involves filling potholes or excavated areas in asphalt pavement. The
swift repair of such issues helps to prevent further deterioration and the need for
costly repairs. Without prompt patching, water infiltration can lead to more extensive
and serious infrastructure issues.

• Reshaping: when a road surface is too damaged to be smoothed, the unpaved sub-base
can be reworked to eliminate large potholes and restore a flattened crown.

• Slab replacement: pavement sections that are chipped, cracked, or uneven are replaced,
avoiding the need to replace the entire stretch.

• Smoothing: reworking the surface of a road without delving too deeply into the
sub-base. Smoothing procedures address minor damage resulting from regular use.

In addition, it is important to highlight that reconstruction is carried out when the
paved roads have deteriorated beyond cost-effective maintenance. Reconstruction is usually
carried out in phases to minimize traffic disruptions.

On the other hand, unpaved roads are constructed when the volume of commercial
traffic (gross weight exceeding 3 tons) is low [11]. In this case, it is necessary to identify
and characterize aspects related to the ride comfort, users’ safety, vehicle performance
and transportation costs, based on subjective and objective evaluations [12–14]. Several
agencies and local researchers have suggested different types of subjective rating methods
for representing unpaved road conditions, such as PASER, Unpaved-PASER, Ride Quality
Rating Guide (RQRG) and Gravel Roads Rating System (GRRS) [15]. The GRRS offers stan-
dardized evaluations for seven different types of distresses: potholes, rutting, washboards,
loose aggregate, dust, crown and roadside drainage [16].

Five primary factors affecting the quality of an unpaved road can be listed: traffic load,
subgrade quality, construction practices, water and maintenance programs. According
to Kabindra, Pramen and Thomas [17], the following types of maintenance programs are
generally recommended for unpaved roads:

• Routine maintenance: this involves mitigating blockages and damage on unpaved roads
through regularizing surfaces or patching methods. It also involves maintaining bridges
and drainage structures, in addition to implementing erosion control procedures.

• Periodic maintenance: employing maintenance practices to address various issues
that arise, where the extent of distress does not warrant full-scale rehabilitation or
reconstruction services.
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• Rehabilitation: applying a thin unpaved overlay to improve the durability and func-
tionality of the road.

1.2.2. Optimization Methodologies for Road Management Systems

Life cycle costs analysis (LCCA) systems have been widely used to investigate the
overall economic effectiveness of various alternatives for the design of pavements and their
maintenance and rehabilitation (M&R). The LCCA enables the appropriate assessment
of the lifetime impacts of their practices [18–20]. In addition, various statistical models
and machine learning algorithms have been elaborated on to improve the performance of
transportation systems, based on innovative strategies for traffic modeling, estimation and
monitoring [21]. Accurate systems for traffic evaluation are vital tools that support decision-
making by commuters and transportation system officials, particularly in managing road
conditions effectively [22,23].

According to previous literature [16,24], the management systems can be consid-
ered a multi-objective optimization approach due to different factors: (i) engineers or
decision-makers want to maximize the network road conditions within a limited budget;
(ii) preventive and minor rehabilitation treatments are more cost-effective than reconstruc-
tion (iii) the budget must exceed a certain threshold to maximize societal benefits; and
(iv) the best combination of road segments for rehabilitation should include those with
more traffic volume. In some works, this system can be conceptualized as a two-level
optimization process, as it connects decision-makers at two levels [25]. This scenario can be
exemplified by two sets of objective functions: one aligned with governmental objectives
and the other driven by the priorities of city governors or the company’s stakeholders.

The Management System (MS) can be associated with the integrated coordination of
various activities involved in the design, construction and maintenance processes related
to road infrastructures, allowing them to provide acceptable conditions at minimal costs.
The MS encompasses various methods aiding decision-makers in identifying optimized
strategies for constructing, evaluating and maintaining roads in an acceptable condition
over a specified period within a designated budget [26]. The optimization approaches
encompass mathematical programming techniques aimed at minimizing or maximizing
various factors to enhance the road management systems [27–29].

1.2.3. Pavement Management System (PMS)

The implementation of a Pavement Management System (PMS) is particularly crucial
in situations where road conditions are poor and resources are limited. A robust PMS
aims to delineate maintenance strategies that minimize costs while maximizing the return
on invested resources, thereby extending the service life of roads and properly allocating
limited budgets [30]. Furthermore, an effective PMS must continually update itself by
exploring alternative strategies, identifying the optimal workflow, and leveraging feedback
mechanisms to enhance overall decision-making processes [31].

The following procedures typically guide the customization of a pavement manage-
ment process to meet the unique needs of each local agency: defining the roadway network
and gathering inventory data, collecting condition data, predicting road conditions, se-
lecting treatments, reporting results, choosing pavement management tools and ensuring
ongoing updates [32].

Predicting road conditions requires a comprehensive understanding of pavement
performance and the distinctions between analyzing it at the network and project levels.
At the network level, the entire network is evaluated to identify the appropriate types of
maintenance and the road sections to be repaired. At the project level, only the selected
sections are analyzed to determine the most appropriate treatment procedures [33].

The road performance models are derived from various pavement characteristics (e.g.,
functional conditions, width, length, rut) and enable the prediction of pavement parameters
arising from traffic loads and climatic conditions (e.g., deflections, stresses, strains, moisture
content, temperature, etc.) [34–36].
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1.2.4. Unpaved Roads Management System (URMS)

According to Saha, Ksaibati and Atadero [8], an Unpaved Roads Management System
(URMS) is a strategic and systematic process for maintaining and upgrading the road
network. When funding is limited, the URMS identifies the best combination of projects for
road preservation, providing the most benefit to society in terms of the overall lifecycle cost
of the road network. A URMS consists of various stages, with the “prediction of conditions
step” being the most intricate. To predict the paved road conditions, it is necessary to
develop deterioration models based on the road’s conditions over the years. The established
models facilitate the prediction of key responses of the paved road, based on empirical,
mechanistic or mechanistic–empirical information calibrated with field-observed data.

URMSs lack standardized procedures for determining surface condition ratings or
deterministic approaches to modeling surface deterioration. Evaluating roads and estab-
lishing the pavement condition index (PCI) are essential for assessing the infrastructure
conditions. However, the typical PCI methodology is not applicable to unpaved roads, as it
primarily focuses on detailed examinations of distresses of paved roads, such as cracking
and potholes [37].

To determine future needs based on road conditions, a URMS applies either probabilis-
tic or deterministic models. In Brazil, deterministic models are commonly utilized, based
on expert opinion curves derived from field staff experience. However, these deterministic
techniques do not properly account for uncertainties associated with pavement deteriora-
tion due to traffic and weather. In contrast, probabilistic models take these uncertainties
into consideration, resulting in more precise curves [8].

1.3. Research Gaps and Original Contributions of the Present Study

In situations where funding is limited, the MS provides the optimal combination
of projects for road preservation, reaching the greatest benefits in terms of the overall
lifecycle cost of road infrastructures [38]. Since the growth of the road network has not
kept pace with the considerable increase in transport demand in Brazil, efficient pavement
management systems (PMSs) for tropical roads are necessary.

When confronting budget constraints, determining the optimal preservation proce-
dures becomes pivotal for minimizing the overall costs throughout the lifecycle of paved
and unpaved roads. The previous studies of Rejani et al. [39] only focused on the pavement
maintenance and rehabilitation of urban roads, using the Highway Development and
Management System (HDM-4) to minimize the total costs for a target road roughness.
Therefore, specific studies are still needed to formulate robust management systems for
both paved and unpaved roads. According to previous works [40,41], the inherent limita-
tions of existing approaches highlight the need to develop computational methods that can
effectively analyze the residual conditions of different infrastructure elements. Moreover,
a research gap exists in standardized procedures for the surface condition exploration of
unpaved roads. The conventional PCI methodology is inapplicable to unpaved roads,
given its predominant focus on detailed examinations of distresses specific to paved roads.

To narrow these knowledge gaps, the present paper proposes a methodology for
identifying the best combination of initiatives for road preservation within a specified
budget. In MG, approximately 90% of roads are unpaved, and most roads require an
efficient management system. Therefore, the present work presents innovative optimization
techniques for managing unpaved and paved roads using similar structures and simple
datasets. Maintenance resources were predicted for 18 unpaved road segments in the Zona
da Mata County (ZMC) of MG, along with 88 paved roads located in MG.

2. Materials and Methods

This section presents the methods used for data collection, the roadway segmentation
process, the procedures for the characterization of road conditions, the deterioration models
applied in this study and the algorithm proposed to identify the best combination of projects
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for road preservation. It is important to mention that the present model does not consider
political factors but rather purely the life cycle costs related to unpaved and paved roads.

2.1. Road Segmentation and Classification

Four different types of data were collected to develop this research: roadway segmen-
tation data, traffic counts, road width values and road conditions information. Roadway
segmentation was conducted by defining segments that start and end at points of new
construction, intersections with other roads or other alterations along the road.

Data from unpaved roads were directly collected in the field, which imposes some
challenges regarding accessibility and terrain conditions. For example, the average width
of the sections was determined using tape measurements. Rutting was obtained using a
standardized ruler and straightedge. The average daily traffic volume was determined
using the methodology proposed in the DNIT manual for traffic studies. Data regarding
paved roads were obtained from the “Rodovias” website managed by the government of
the state of MG.

Based on the segmentation process and using the ArcGIS software, a total of 18 un-
paved road segments were delineated in the ZMC of MG, alongside 88 paved roads
distributed throughout MG. Figure 1 shows a paved road in MG awaiting maintenance to
prolong its service life, while Figure 2 illustrates an unpaved road in poor condition in MG.
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The unpaved road conditions were characterized by seven distinct parameters: cross-
section/crown, roadside drainage, rutting, potholes, loose aggregate, dust and corrugation.
The Pavement Surface Evaluation and Rating (PASER) manual describes that the surface
of unpaved roads can be rated on a five-point scale, where five represents an excellent
condition and one indicates a failed condition for unpaved roads. For this paper focusing
on MG roads, we proposed transforming this five-point scale into a nine-point scale,
following the Gravel Roads Rating System (GRRS) guidelines [15]. This approach aimed
to reduce errors when human raters need to assess the infrastructure conditions. Then, a
Pavement Serviceability Index (PSI) was calculated, following the recommendations of
the RQRG created by the Wyoming Technology Transfer Center (WYT2/LTAP) [43]. This
nine-points scale was applied for unpaved roads, based on the Overall Road Condition
Index (ORCI). This methodology resulted in the ride quality, and the extreme values nine
and one represent the best and worst conditions, respectively.
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On the other hand, paved roads were assessed using the AASHTO methodology,
which ranks conditions from 0 to 100, with 100 representing a newly constructed road
and 0 indicating a failed road. According to this rating system, the primary variables
are the distresses rutting, fatigue cracking, longitudinal cracking, transverse cracking,
patches, potholes, raveling, bleeding and roughness. The evaluation results were reported
using the AASHTO guide to road classification, categorizing roads as “Excellent”, “Good”,
“Fair”, “Poor”, or “Failed” [44]. Therefore, a five-point scale was used for the paved roads
investigated in this research.

2.2. Deterioration Models

Huntington and Ksaibati [15] developed a deterioration model for roads in Wyoming
(USA), which served as a foundation in the current study for elaborating the deterioration
model for the Brazilian roads.

An average deterioration was estimated in the present research, based on overall road
conditions. At first, the obtained pavement condition database was appropriately organized
according to the defined condition states. Then, the first aspect of the data quantification
process involved categorizing the pavements. The subsequent step encompassed generating
data matrices for each pavement classification.

The deterioration evolution of unpaved and paved roads was predicted through the
Markovian chains. After defining the number of conditions (k) to be considered in the
statistical evaluation, the transition matrix with dimensions k × k was used to evaluate the
transition probability of states [45], as indicated in Equation (1).

P∆t =


p11 p12 p13 · · · p1k
0 p22 p23 · · · p2k
0 0 p33 · · · p3k
: : : :
0 0 0 · · · 1

 (1)

The unit value presented in this matrix (P∆t) corresponds to the maximum input
value for each event. The probability value of pkk was defined considering that there was
no further condition state after the k state, so it is a limited value [46]. The transition
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probability from a state i to a state j, for a generic time interval (∆t), is represented by pij,
with i = j = 1, . . ., k, as indicated in Equation (2) [47].

p(∆t)ij = Prob (Xt+∆t = j|Xt = i ) (2)

Then, Markovian chain techniques and regression analyses were conducted using the
R statistical software (version 3.5). Using the probabilistic Markovian process and begin-
ning with the data matrix, the transition matrix was calculated to derive the probability
distribution matrix. Subsequently, this matrix was used to determine the expected age of
the roads based on their conditions, resulting in the development of a statistical model for
road deterioration.

2.3. Algorithm Proposed to Identify the Best Combination of Projects for Road Preservation

Five treatment options were proposed for the unpaved roads: general maintenance,
chemical and mechanical stabilization, preventive rehabilitation, medium rehabilitation
and paving procedures (GM, 1-R, 2-R, 3-R and 4-R, respectively). In addition, six treatment
options were proposed for paved roads: general maintenance, preventive rehabilitation,
minor rehabilitation, medium rehabilitation, major rehabilitation and reconstruction (GM,
1-R, 2-R, 3-R, 4-R and 5-R, respectively). The characteristics of these treatment options were
discussed in Section 3. The decision trees for the unpaved and paved roads are illustrated
in Figures 3 and 4, respectively.
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Figure 3. Decision tree for the unpaved roads.

Hence, it is evident that the proposed URMS and PMS take into account not only the
cost factor but also local conditions, including the ORCI and the average daily traffic (ADT)
data. The objective of the developed model was to maximize a function that considers
three independent parameters: the road condition, ADT, and cost-factor, as indicated in
Equations (3) and (4).

Maximize
n

∑
i=1

ORCI × ADTi
Cost − f actor i (treatment type)

× (xi) (3)

Subjected to
n

∑
i=1

TreatmentCost i × (xi) ≤ Budget , xi ∈ {0, 1} (4)

where ADTi expresses the average daily traffic for road i, Cost-Factori is the function of
the treatment type, xi is an integer equal to one if the project is selected and zero if it is not
selected and ORCI represents the minimum index among the distress indices. This is a
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combinatorial optimization problem where one selects a collection of projects of maximum
value while satisfying some weight constraints.
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3. Results and Discussion

The collected information for unpaved and paved roads is presented in the compre-
hensive database summarized in Tables 1 and 2, respectively. The information provided
in these tables is also graphically represented in Figures 5 and 6, respectively. A detailed
analysis of the traffic counts reveals significant patterns in vehicle usage. The unpaved
road segments experienced traffic volumes of less than 400 vehicles per day, indicating
lighter usage. In contrast, a notable portion of the paved road segments, approximately
20%, handle a heavier traffic load, with daily vehicle counts exceeding 400. The road widths
of the segments varied significantly, ranging from 3 to 7 m. The collective length of the road
segments was substantial, with the 18 unpaved segments and 88 paved segments together
spanning a total distance of 15,236 km. This extensive network underscores the importance
of understanding traffic patterns and road characteristics for the effective management of
Brazilian roads.

Table 1. Dataset obtained for unpaved roads of MG.

Segment 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

PSI 1 1.8 2.81 2.51 1.5 0.88 1.63 0.89 1.8 1.03 1.19 3.06 1.22 1.63 0.9 0.93 1.22 3.24
Length (km) 1.94 0.91 0.62 0.65 1.02 0.13 0.27 1.52 0.57 1.18 1.00 2.65 0.26 0.56 0.13 0.90 0.60 1.30

Soil Sand Silt Clay Sand Silt Clay Silt Silt Sand Silt Clay Silt Silt Clay Clay Sand Sand Silt

The Markovian process enabled the determination of the following matrices: the
transition probability data, transition probability matrix and probability distribution matrix.
The results presented in Tables 3 and 4 represent the transition probability data obtained
from the unpaved and paved roads datasets, respectively.
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Table 2. Dataset obtained for paved roads of MG.

Segment 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

PSI 1 2 3 3 2 3 2 1 2 3 2 2 2 2 2 2 1 2
Length
(km) 35 9 6.5 45 10 32 17 23 7 103 291 3 60 26 75 33 11 97

Width (m) 7.0 7.0 7.0 7.0 7.0 3.8 6.5 3.0 7.2 7.2 7.2 7.2 7.2 7.2 7.2 3.7 6.6 4.0
Rut (cm) 0.4 0.4 0.4 0.4 0.5 0.51 0.53 0.45 0.77 0.43 0.51 0.51 0.51 0.51 0.5 0.48 0.5 0.54

Segment 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

PSI 3 3 2 2 3 1 2 3 2 2 2 2 1 2 2 2 1 2
Length
(km) 50 6.5 91 6.5 5 43 105 19 21 28 15 14 11 29 10 177 247 268

Width (m) 6.5 8.0 3.7 3.7 4.2 4.2 3.6 3.6 3.6 8.0 4.5 4.1 6.6 6.6 6.6 4.2 4.1 4.1
Rut (cm) 0.51 0.48 0.77 0.77 0.77 0.48 0.5 0.45 0.51 0.51 0.43 0.5 0.54 0.54 0.54 0.45 0.45 0.77

Segment 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

PSI 2 3 2 1 2 2 1 3 3 2 2 3 4 4 4 3 2 4
Length
(km) 91 109 17 49 160 49 6 124 59 69 17 239 831 209 823 341 41 670

Width (m) 3.8 3.8 80 8.0. 8.0 8.0 8.0 3.8 4.4 3.4 3.3 3.8 3.8 5.5 5.5 5.0 5.0 3.7
Rut (cm) 0.45 0.5 0.76 0.77 0.25 0.43 0.4 0.48 0.25 0.76 0.77 0.56 0.57 0.53 0.54 0.53 0.5 0.4

Segment 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

PSI 4 4 4 3 3 3 2 3 2 3 3 2 4 4 3 2 4 3
Length
(km) 338 246 11 547 311 890 417 457 77 268 73 202 154 875 324 137 946 140

Width (m) 5.2 5.2 5.2 5.2 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
Rut (cm) 0.55 0.51 0.4 0.4 0.57 0.58 0.57 0.81 0.54 0.58 0.86 0.86 0.79 0.58 0.84 0.99 0.76 0.84

Segment 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

PSI 4 2 3 4 3 3 3 2 4 2 1 3 4 1 3 3
Length
(km) 48 179 30 27 78 212 79 4 25 151 142 256 198 135 86 15

Width (m) 3.7 3.4 4.7 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Rut (cm) 0.55 0.49 0.45 0.25 0.77 0.77 0.25 0.25 0.25 0.5 0.76 0.48 0.48 0.58 0.55 0.58
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Figure 5. PSI (a) and length (b) values obtained for unpaved roads of MG.

Table 5 shows the transition probability matrix for the unpaved roads. A transition
matrix of a Markovian process contains information on how the deterioration process
moves from one state to another in terms of probabilities. According to the obtained data
presented in Table 5, it was possible to observe that after 1 year, the percentage of roads that
stay at level 9 was represented by the element 0.333. Similarly, the 0.481 element represents
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the percentage of roads that deteriorate from level 9 to level 8, and 0.185 represents the
percentage of roads that deteriorate from level 9 to level 7.
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Figure 6. PSI (a), length (b), width (c) and rut (d) values obtained for paved roads of MG.

Table 3. Transition probability data obtained from the unpaved roads dataset.

RQRG 9 8 7 6 5 4 3 2 1

9 9 13 5 --- --- --- --- --- ---
8 --- 1 10 3 --- --- --- --- ---
7 --- --- --- 11 1 --- --- --- ---
6 --- --- --- 4 10 1 --- --- ---
5 --- --- --- --- 7 12 3 --- ---
4 --- --- --- --- --- 2 6 --- ---
3 --- --- --- --- --- --- 1 9 ---
2 --- --- --- --- --- --- --- 3 3
1 --- --- --- --- --- --- --- --- 2
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The deterioration models were derived from regression analyses applied to the mean
data obtained from the Markovian distribution. Using these models, it was possible to
determine the time taken to transition from an excellent condition to a failed condition.
Equations (5) and (6) show the deterioration models obtained for the unpaved and paved
roads, respectively. In these equations, URCI indicates the unpaved roads condition index,
PCI indicates the pavement condition index and AGE is the age (in years).

Table 4. Transition probability data obtained from the paved roads dataset.

PCI 5 4 3 2 1

5 25 17 --- --- ---
4 --- 57 31 --- ---
3 --- --- 147 51 ---
2 --- --- --- 52 11
1 --- --- --- --- 2

Table 5. Transition Probability Matrix from the unpaved roads dataset after 1 year.

RQRG 9 8 7 6 5 4 3 2 1

9 0.333 0.481 0.185 --- --- --- --- --- ---
8 --- 0.071 0.714 0.214 --- --- --- --- ---
7 --- --- --- 0.917 0.083 --- --- --- ---
6 --- --- --- 0.267 0.667 0.067 --- --- ---
5 --- --- --- --- 0.318 0.545 0.136 --- ---
4 --- --- --- --- --- 0.250 0.750 --- ---
3 --- --- --- --- --- --- 0.100 0.900 ---
2 --- --- --- --- --- --- --- 0.500 0.500
1 --- --- --- --- --- --- --- --- 1.000

Table 6 represents the transition probability matrix for paved roads of MG. These
probabilities are assumed to be constant, i.e., the transition matrix is stationary. According
to the data reported in Table 6, it can be observed that the number 0.595 represents the
percentage of roads that stay at level five after 1 year. Similarly, the element 0.405 represents
the percentage of roads that deteriorate from level five to level four.

Table 6. Transition Probability Matrix from the paved roads dataset after 1 year.

PCI 5 4 3 2 1

5 0.595 0.405 --- --- ---
4 --- 0.648 0.352 --- ---
3 --- --- 0.742 0.258 ---
2 --- --- --- 0.825 0.175
1 --- --- --- --- 1.000

The probability distribution derived from the application of the Markovian probability
process for unpaved roads is presented in Table 7. In this table, states of maximum
probability were highlighted in red. For example, comparing the obtained data from year 1
to year 5, there was a probability of 0.004 for the unpaved road segments to stay at level nine
and a probability of 0.037 for these segments to be at level two after 5 years. In year 5, the
highest probability value (0.327) indicated the unpaved road segments of MG at level five.

Table 8 represents the probability distribution derived from the application of the
Markovian probability process to the paved road dataset. Again, states of maximum
probability are shown in red. Comparing the distribution from year 1 to year 5, there was a
probability of 0.075 for the paved road segments to stay at level five and a probability of
0.024 for the segments to be at level one. However, the highest probability value in year 5
was 0.415, which indicated paved roads at level three.
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Table 7. Probability distribution obtained from the unpaved roads dataset using the Markov process.

RQRG 9 8 7 6 5 4 3 2 1 Total

Year

1 0.333 0.481 0.185 0 0 0 0 0 0 1
2 0.111 0.194 0.451 0.230 0.011 0 0 0 0 1
3 0.037 0.067 0.272 0.413 0.185 0.021 0.001 0 0 1
4 0.012 0.023 0.123 0.312 0.351 0.134 0.041 0.001 0 1
5 0.004 0.007 0.049 0.173 0.327 0.246 0.152 0.037 0 1

Table 8. Probability distribution obtained from the paved roads dataset using the Markov process.

PCI 5 4 3 2 1 Total

Year

1 0.595 0.405 0 0 0 1
2 0.354 0.503 0.143 0 0 1
3 0.211 0.469 0.283 0.037 0 1
4 0.126 0.389 0.375 0.104 0.006 1
5 0.075 0.303 0.415 0.183 0.024 1

URCI = 0.035 × (AGE)2 − 1.082 × (AGE) + 9.107 (5)

PCI = 0.005 × (AGE)2 − 0.268 × (AGE) + 4.463 (6)

These results suggest that unpaved roads tended to deteriorate more rapidly over time.
The good alignment between the experimental findings derived from the methodology
outlined in this paper and the results of previous studies underscores the robustness of
the proposed methodology. According to previous literature, the faster deterioration of
unpaved roads is affected by permeability, materials, construction, traffic, environment
and drainage factors. Among them, the most important factor is the permeability and
weather [33]. As a result of these factors, tropical roads experience faster deterioration, and
unpaved road surfaces are more permeable compared to paved surfaces.

Details related to the five treatment options proposed in this methodology for the
unpaved roads (GM, 1-R, 2-R, 3-R and 4-R) are summarized in Table 9, while Table 10
shows the six possible treatment options (GM, 1-R, 2-R, 3-R, 4-R and 5-R) proposed for the
paved roads. The estimated costs were provided in BRL because it is the currency used in
MG, thus reflecting the local economic context.

Table 9. Treatment types and costs for unpaved roads.

Treatment Type Details and Applications
Estimated Cost per km

BRL USD

GM (General maintenance) Biannual maintenance procedures 600.00 110.62

1-R (Chemical and mechanical stabilization) Conventional stabilizing agents 20,000.00 3687.32

2-R (Preventive rehabilitation) DNIT recommendations 3180.00 586.28

3-R (Preventive rehabilitation with shoulder needs) DNIT recommendations 71,387.00 13,161.32

4-R (paving the roads) Addition of pavement 400,000.00 73,746.31

Note: All amounts in BRL have been converted to USD based on the exchange rate from 19 June 2024, where USD
1 = BRL 5.4240.

In Table 11 and Figure 7, the results provided by the optimization algorithm for
unpaved roads are organized into four distinct scenarios, as follows: (i) conditions under
current circumstances (referred to as the “current condition”), (ii) conditions following four
cycles of 3 months without any maintenance (termed “do nothing”), (iii) conditions after
applying treatments without budgetary constraints (designated as “no budget constraints”)
and (iv) conditions after applying treatments necessary for maintaining the road’s condition
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within a limited budget (referred to as “limited budget”). The rationale behind the selection
of a 3-month period stems from the observed tendency for unpaved roads to require the
next level of maintenance every 3 months [24].

Table 10. Details of treatment types proposed in this methodology and costs for paved roads.

Treatment Types Details and Application
Estimated Cost per km

BRL USD

GM
(general maintenance)

Asphalt patching

1875.00 345.69
Pothole repair
Crack sealing
Road striping

1-R
(preventive

rehabilitation)

Chip seal
51,800.00 9550.15Micro-surface

Thin overlay (lower than 5 cm)

2-R
(minor rehabilitation)

Preparation of the surface
100,000.00 18,436.58Seal coat and thick overlay (higher than 5 cm)

1-R plus shoulder or widening requirements

3-R (medium
rehabilitation)

Applied to good-condition roads with shoulder
needs 150,000.00 27,654.87

2-R plus shoulder or widening requirements

4-R (major rehabilitation) Applied to narrow roads with shoulder or
widening needs 200,000.00 36,873.16

5- R (reconstruction) Reconstruction of the road 300,000.00 55,309.73

Note: All amounts in BRL have been converted to USD based on the exchange rate from 19 June 2024, where USD
1 = BRL 5.421299.

Table 11. Unpaved roads treatment decisions obtained with the optimization algorithm.

Segment
Current Condition Do Nothing No Budget

Constraints Limited Budget

PSI Length L
(km)

Soil
Type

PSI × L
(km) PSI PSI × L

(km) PSI PSI × L
(km) PSI PSI × L

(km)

1 1.00 1.94 Sand 1.940 0.92 1.783 4.10 7.954 0.92 1.783
2 1.80 0.91 Silt 1.638 1.72 1.564 4.00 3.640 1.72 1.564
3 2.81 0.62 Clay 1.742 2.73 1.692 3.90 2.418 3.90 2.418
4 2.51 0.65 Sand 1.632 2.43 1.578 2.51 1.632 2.51 1.632
5 1.50 1.02 Silt 1.530 1.42 1.446 4.00 4.080 1.42 1.446
6 0.88 0.13 Clay 0.114 0.80 0.104 4.10 0.533 0.80 0.104
7 1.63 0.27 Silt 0.440 1.55 0.418 4.00 1.080 1.55 0.418
8 0.89 1.52 Silt 1.353 0.81 1.228 4.10 6.232 0.81 1.228
9 1.80 0.57 Sand 1.026 1.72 0.979 4.00 2.280 1.72 0.979

10 1.03 1.18 Silt 1.215 0.95 1.119 4.00 4.720 0.95 1.119
11 1.19 1.00 Clay 1.190 1.11 1.108 4.00 4.000 1.11 1.108
12 3.06 2.65 Silt 8.109 2.98 7.892 3.06 8.109 3.06 8.109
13 1.22 0.26 Silt 0.317 1.14 0.296 4.00 1.040 4.00 1.040
14 1.63 0.56 Clay 0.913 1.55 0.867 4.00 2.240 1.55 0.867
15 0.90 0.13 Clay 0.117 0.82 0.106 4.10 0.533 0.82 0.106
16 0.93 0.90 Sand 0.837 0.85 0.763 4.10 3.690 0.85 0.763
17 1.22 0.60 Sand 0.732 1.14 0.683 4.00 2.400 1.14 0.683
18 2.34 1.30 Silt 3.042 0.92 1.190 4.00 5.200 4.00 5.200

Table 12 and Figure 8 present similar results for four different scenarios considered
in the optimization algorithm for the paved roads. In this case, the “do nothing” scenario
reflects conditions after 12 months without any maintenance. The reason for this 12-month
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period is that the typical lifespan of paved roads without maintenance is longer than that
of unpaved roads [24].
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Table 12. Paved roads treatment decisions obtained with the optimization algorithm.

Paved Road

Current Condition Do Nothing No Budget
Constraints Limited Budget

PSI Length
L (km)

Width
(m)

Rut
(cm)

PSI × L
(km) PSI PSI × L

(km) PSI PSI × L
(km) PSI PSI × L

(km)

LMG-633 1 35 7.0 0.40 35 0.96 33.4 4.30 150.5 0.96 33.4
LMG-820 2 9 7.0 0.40 18 1.86 16.7 4.00 36.0 4.00 36.0
MG-050 3 6.5 7.0 0.40 19.5 2.80 18.2 3.90 25.4 2.80 18.2
MG-123 3 45 7.0 0.40 135 2.80 126.0 3.90 175.5 2.80 126.0

MG-123/BR-
262 2 10 7.0 0.50 20 1.86 18.6 4.00 40.0 4.00 40.0

MG-129 3 32 3.8 0.51 96 2.80 89.6 4.00 128.0 2.80 89.6
MG-129/BR-

120 2 17 6.5 0.53 34 1.86 31.6 4.00 68.0 1.86 31.6

MG-164 1 23 3.0 0.45 23 0.95 21.9 4.30 98.9 0.95 21.9
BR-460 3 79 4.0 0.25 237 2.80 221.2 3.90 308.1 2.80 221.2
BR-462 2 4 4.0 0.25 8 1.86 7.4 4.00 16.0 1.86 7.4
BR-464 4 25 4.0 0.25 100 3.75 93.8 4.00 100.0 4.00 100.0
BR-474 2 151 4.0 0.50 302 1.86 280.9 4.00 604.0 1.86 280.2
BR-482 1 142 4.0 0.76 142 0.95 134.9 4.30 610.6 0.96 135.6
BR-491 3 256 4.0 0.48 768 2.80 716.8 3.90 998.4 2.80 716.8
BR-494 4 198 4.0 0.48 792 3.75 742.5 4.00 792.0 4.00 792.0
BR-496 1 135 4.0 0.58 135 0.95 128.3 4.30 580.5 0.95 128.3
BR-497 3 86 4.0 0.55 258 2.80 240.8 4.00 344.0 2.80 240.8
BR-499 3 15 4.0 0.58 45 2.80 42.0 4.00 60.0 2.80 42.0

Comparisons between the maintenance costs of unpaved and paved roads indicated
that the full rehabilitation costs of county paved roads were approximately 10 times higher
per kilometer compared to those for unpaved roads, considering the difference in mainte-
nance treatment frequency, which is approximately four times higher for unpaved roads
(every 3 months) compared to that for paved roads (every 12 months). The models accu-
rately depicted the pattern where major treatments result in a minimal need for further
treatments over the following several years in both situations.
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It is important to highlight that other countries may have different optimization prior-
ities. For instance, engineers might aim to maximize the overall network road conditions
given an unrestricted budget. In the present study, the options for maximizing network
road conditions and minimizing costs were thoroughly examined to showcase the potential
of the proposed methodology.
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4. Conclusions

In the present research, optimization techniques for the management of unpaved
and paved roads of MG were applied, enabling the evaluation of the best combination of
projects for road preservation, considering different constraints. The following conclusions
were derived from the present paper:

• Based on the transition probability data, transition probability matrices and probability
distribution matrices, it was possible to quantify the probability of unpaved and paved
roads being in different condition levels after various periods.

• The Markovian probability distribution matrix revealed that an MG unpaved road
that is initially at the highest condition level (nine) would have a higher probability of
being at level eight after 1 year (48.1%) and a higher probability of being at level five
after 5 years (32.7%). Similarly, a paved road that is initially at the highest condition
level (5) would be more likely to remain at level 5 (59.5%) after 1 year and more likely
to remain at level 3 (41.5%) after 5 years.

• The regression analysis models developed in this research enabled the determination
of the time required for unpaved and paved roads of MG to go from being in excellent
condition to being in a failed condition, based on the age of the roads.

• The results of the optimization algorithm for unpaved and paved roads were organized
into four distinct scenarios: (i) conditions under the current circumstances (referred
to as “current condition”), (ii) conditions without any maintenance (“do nothing”),
(iii) conditions after applying treatments without budget constraints (“no budget
constraints”) and (iv) conditions after applying treatments required to maintain the
road condition within a limited budget (“limited budget”). These results showed that
the best results were achieved without budget constraints.

• Different preservation projects were evaluated in order to reach the maximization of
the overall condition of paved and unpaved roads at minimal costs. Comparisons
between the maintenance costs of unpaved and paved roads suggested that the full re-
habilitation costs of paved roads were around 10 times higher per kilometer compared
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to those of unpaved roads, considering the difference in the maintenance treatment fre-
quency, which is approximately four times higher for unpaved roads (every 3 months)
compared to that for paved roads (every 12 months).

• The models effectively captured the trend wherein a major treatment leads to minor
additional treatments being needed for the subsequent several years in both scenarios.

The findings of the present study provide future directions for the optimized allocation
of resources for the management of roads in MG. Further research is recommended to
investigate the implementation of the proposed methodology in other regions and identify
minor changes in some procedures that may be needed to reflect distinct local conditions.
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