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Abstract: During devastating earthquakes, soil liquefaction has disastrous outcomes on bridge
foundations, as mentioned in books and published research. To avoid foundation failure when the
surrounding soil is fully liquefied, a bridge’s pile foundation design could be such that the bridge
pier is directly resting on the top of a large-diameter monopile instead of the traditional multiple
small-diameter piles. This paper discusses the gap of insufficient studies on large-diameter monopiles
to support railway bridges subjected to buckling instability and the lack of simplified tools to quickly
assess structural reliability. A framework could quickly assess the structural reliability by formulating
a simplified reliability analysis. This study focused on pure buckling with shear deformation and
reliability assessment to calculate a monopile’s failure probability in fully liquefied soils. In reliability
assessment, with the critical pile length (Lcrit) and the unsupported pile length (Luns), the limit state
function g(x) = [Lcrit − Luns] thus forms the basis for assessing the safety and reliability of a structure,
indicating the state of success or failure. The Lcrit formulation is accomplished with a differential
equation. Here, Luns assumes various depths of liquefied soil. The reliability index’s (β) formulation is
achieved through the Hasofer–Lind concept and then double-checked through a normal or Gaussian
distribution. A case study was conducted using a high-speed railway bridge model from a published
research to demonstrate the application of the proposed methodology. To validate the minimum pile
diameter for buckling instability when a fully liquefied soil’s thickness reaches the condition that
Lcrit = Luns, this study applies the published research of Bhattacharya and Tokimatsu. The validation
results show good agreement for 0.85–0.90 m monopile diameters. With a monopile diameter smaller
than 0.85 m, the Lcrit = Luns limit was at lesser depths, while with a monopile diameter larger than
0.90 m, the Lcrit = Luns limit was at deeper depths. A load increase notably affected the large-diameter
monopiles because the Lcrit movement required a longer range. In fully liquefied soil, buckling will
likely happen in piles with a diameter between 0.50 m and 1.60 m because the calculated probability
of failure (Pf ) value is nearly one. Conversely, buckling instability will likely not happen in monopiles
with a diameter of 1.80–2.20 m because the Pf value is zero. Hence, the outcome of this case study
suggests that the reliable monopile minimum diameter is 1.80 m for supporting a high-speed railway
bridge. Lastly, this paper analyzed the shear deformation effect on large-diameter monopiles, the
result of which was 0.30% of Lcrit. Shear deformation makes minimal contributions to large-diameter
monopile buckling.

Keywords: monopile; liquefaction; buckling instability; structural reliability

1. Introduction
1.1. Overview

During a highly destructive earthquake, a complex phenomenon which occurs is
lateral spreading, where soil liquefaction takes place such that the soil loses its strength and
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appears to flow into a fluid-like material. This causes the settling, tilting, overturning, and
sliding of structures on piles, such as long bridges [1] and tall buildings [2]. The damage
outcomes of earthquakes have been studied for centuries, and they are mentioned in books
and published research. Lateral spreading poses a significant risk to pile foundations
when liquefaction affects the soil. Liquefied soil can no longer support the loads placed
upon it, causing it to flow laterally. In sloping ground, this lateral movement can exert
considerable force on pile foundations, potentially causing them to tilt, shift, or even fail.
Table 1 summarizes the historical events of soil liquefaction due to devastating earthquakes.

Table 1. Significant historical liquefaction [3–9].

Date Location Magnitude Comments

1925 California 6.3 The liquefaction during the Santa Barbara earthquake caused damage to the Sheffield
Dam.

1964 Alaska 9.2 The effect of liquefaction during the Good Friday earthquake resulted in landslides
and severe damage.

1964 Japan 7.5 Due to liquefaction, extensive damage to bridges, buildings, and port facilities in
Niigata occurred.

1971 California 6.6 During the San Fernando earthquake, tremendous damage to the highway and
buildings occurred.

1989 California 7.1 In San Francisco Bay, the Loma Prieta earthquake generated substantial ground
amplification and damages due to liquefaction.

1994 California 6.8 The Northridge earthquake produced extreme shaking at various sites.

1995 Japan 6.9 The Hyogo-Ken Nanbu earthquake produced massive damage to Kobe.

1999 Turkey 7.4 The Kocaeli earthquake resulted in thousands of fatalities.

2008 China 7.9 A liquefaction event occurred in a densely populated area during the Wenchuan
earthquake.

2010 New Zealand 7.1 Liquefaction happened during the Darfield earthquake, causing damage to a city.

2011 New Zealand 6.2 The Christchurch earthquake also caused damage to cities due to liquefaction.

2023 Turkey
and Syria 7.7

On 6 February 2023, a strong earthquake doublet of Mw 7.7 and Mw 7.6 occurred in
Turkey and Syria, respectively. The earthquake caused liquefaction and lateral
spreading, resulting in a death toll of over 52,000 and making it the fifth-deadliest
earthquake of the 21st century.

1.2. The Aftermath Impact of Earthquakes on a Transport Network

An earthquake also has a disastrous aftermath impact on transport networks, causing
bridges to not be accessible for rescue operations or relief goods delivery to the affected
areas. As such, a bridge’s structure must be structurally efficient [10]. However, in areas
prone to soil liquefaction, the increase in pore pressure will decrease the strength of soil and
its stiffness, which seriously affects the pile foundation’s response to ground shaking [11],
resulting in significant bending moments and buckling (see Figure 1b) which threaten the
pile’s structural stability [12]. Instead of several piles of a small diameter, as shown in
Figure 1a, the bridge’s pile foundation design could be such that the bridge pier is directly
resting on the top of a large-diameter monopile, as illustrated in Figure 1c. However, this
type of foundation might experience pure buckling instability with a shear deformation
effect. Some bridge projects applied monopile foundations because of restricted spaces and
congested locations [13]. Also, this could minimize existing utility conflicts [14] and avoid
the risk of pile cap splitting due to an active fault line [15].
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Figure 1. Bridge pier on a large-diameter monopile [1].

2. Literature Review

During seismic liquefaction, the various feasible pile failure mechanisms are shear,
bending, buckling, and cyclical loading [16]. However, this literature review focused on
pure buckling instability with the shear deformation effect.

Pile bending or flexural mechanism is a well-established theory based on the assump-
tion that piles act as laterally and axially loaded “beams” during liquefaction [17–19].
On the contrary, a theory on buckling instability assumes that piles behave as axially
loaded “columns” in liquefied soil, and some researchers verified this hypothesis through
experimentation [20–22].

Designing piles to resist bending as a beam and buckling as a cantilevered column
requires different approaches; the former relies on the pile’s strength [23], and the latter
relies on its stiffness [24]. Increasing the pile’s yield strength is advisable to steer clear of
bending failure. However, this may not be sufficient to prevent the piles from buckling [25].
A pile may bend due to lateral loading. However, some researchers considered this
scenario to be secondary to the necessity that piles in liquefiable soils must be examined
for Euler’s buckling load because soil loses its strength when liquefied. The lateral load
is minimal compared with the axial load [26]. In analyzing pile bending and buckling in
liquefied soil, the commonly used mathematical approach is the Euler–Bernoulli theory [27].
However, other researchers found out that the Euler–Bernoulli theory does not provide
realistic analysis for large-diameter monopiles because the effect of shear deformation is
not considered [28].

Various studies revealed the outcomes of considering the effect of shear deformation
in pile analysis. For example, Han and Frost [29] compared a pile’s lateral deformation
due to combined axial and lateral load using the subgrade reaction approach, in which
they noticed more significant pile deflections when employing Timoshenko’s theory. Gupta
and Basu [30] used the Euler-Bernoulli, Timoshenko, and rigid beam theories in analyzing
laterally loaded piles. They observed in some cases that the Euler–Bernoulli theory un-
derestimated the deformation of the pile head. Furthermore, Bechtel et al. [31] studied a
polymer pile’s lateral response using the finite element method, in which they concluded
that the shear deformation effect is relevant and suggested adding it to the analysis of pile
design. However, most of these works used complex mathematical approaches and did not
consider the probabilistic measure of structural safety through the structural reliability of
the pile foundation.
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On the other hand, a structural reliability assessment is essential to know the prob-
ability of failure, owing to the buckling instability of piles in liquefied soils, including
the shear deformation effect. The structure’s ability to comply with given requirements
under specific conditions [32] is one of the definitions of structural reliability. Theoretically,
structural failures may happen once the structure’s capacity minus demand exceeds the
limit state. A structure’s acceptable behavior is when the limit state function g(x) has a
resulting value less than zero, thus indicating a safe domain [33].

Research progress in reliability analysis concerning buckling instability, especially in
structural engineering contexts, has evolved significantly in recent years. There has been
a shift toward probabilistic modeling [34] to account for uncertainties in material proper-
ties, geometric imperfections, loading conditions, and environmental factors. Advanced
techniques such as Monte Carlo simulation [35] and response surface methodology [36]
are employed to assess the reliability of structures under buckling conditions. Also, some
design codes are evolving to include reliability-based approaches for assessing buckling
instability [37]. These codes provide guidelines for probabilistic structural performance
assessment under different loading scenarios, ensuring safety margins are appropriately
defined. However, most of these studies are for buildings and not large-diameter monopiles
supporting railway bridges.

The gap in the knowledge that exists in the current literature consists of (1) insufficient
studies on large-diameter monopiles supporting railway bridges subjected to buckling
instability during seismic liquefaction and (2) a lack of simplified tools to quickly assess
the structural reliability of large-diameter monopile foundations for railway bridges. This
study aims to tackle this gap by formulating a simplified framework which considers the
critical pile length for the capacity of the pile foundation, with the unsupported pile length
as the demand. This simplified framework can quickly assess the structural reliability of
large-diameter monopiles in fully liquefied soil which causes buckling instability failure.

Text Structure

The outline of this review is as follows.
Section 1 introduces the study’s overview in a broader context by presenting dam-

aging outcomes of earthquakes resulting in soil liquefaction. This section highlights the
possibilities of a bridge pier directly resting on top of a large-diameter monopile instead of
several smaller-diameter piles.

Section 2 discusses the literature review. However, it focuses on pure buckling in-
stability with the shear deformation effect. The gap in the knowledge that exists in the
current literature consists of (1) insufficient studies on large-diameter monopiles supporting
railway bridges subjected to buckling instability during seismic liquefaction and (2) a lack
of simplified tools to quickly assess the structural reliability of large-diameter monopile
foundations for railway bridges.

Section 3 illustrates the mathematical formulation framework of the current study.
Section 4 shows a case study of a high-speed railway bridge model to demonstrate the

application of the proposed methodology illustrated in Section 3.
Section 5 shows the results and discussions. This section presents the validation of the

current study using the information from published research, namely the current study
pile length comparison, probability of failure analysis, and the effect of shear deformation.

Section 6 presents the concluding statements. There is a need for further research to
fill the gaps in the study of monopiles during the transient stage, a short period from a
phase with no soil liquefaction to a fully liquefied soil phase. Also, this section mentions
the limitations of the current study.

3. Methodology
3.1. Mathematical Formulation Framework

The methodology adopted in this research is based on the first-order reliability method,
also known as the Hasofer-Lind Reliability Index [38]. It is a semi-probabilistic way of
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evaluating structural reliability for a linear state function. This method is advantageous
because it avoids the ambiguities associated with contrasting formulations of the limit state
function [39]. The framework is composed of two independent streamlines, as illustrated in
Figure 2. Streamline 1 at the left-hand side of the illustration aims to formulate the capacity
by considering the critical pile length, depending on the intensity of the dynamic load at the
top of the monopile in a surrounding liquefied soil. Streamline 2 on the right-hand side aims
to determine the demand by considering the unsupported pile length, which equals the
liquefied soil depth. Then, the calculated critical pile length and unsupported pile length are
the input data for evaluating the probability of failure of a monopile in fully liquefied soil
conditions. On the other hand, a reliability index is an essential parameter for measuring
structural reliability instead of the probability of failure. Appendix A summarizes the
notation used in the current study.
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3.2. Critical Pile Length Formulation

The static axial load (Pstat) is the load of the structure which is safely resting above
the pile foundation. However, when an earthquake strikes, the structure’s inertial action
obtrudes a dynamic axial load (Pdyn) which is often much greater than the structure’s static
equivalent [25], which may cause the pile foundation to buckle. To estimate the maximum
axial load on top of a pile, refer to Equation (1):

Pdyn = Pstat + αPstat = (1 + α)Pstat (1)

Here, the Greek letter α is the dynamic amplification factor, which is a function of the
structure’s type, the center of its mass, and earthquake excitation responses.

The possible effect of an earthquake on pile foundations is that the pile becomes
laterally unsupported in the layer of liquefiable soil because it loses its lateral restraint from
the surrounding ground [16,25]. Thus, the pile is vulnerable to buckling failure once its
axial load increases from Pstat to Pdyn. Hence, there shall be three scenarios for the critical
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pile length (Lcrit) and unsupported pile length (Luns) hypothesis, as illustrated in Figure 3.
Here, Lcrit is the length of a pile at which buckling instability occurs under a specific load,
such as Pdyn. Beyond this Lcrit value, the pile becomes susceptible to buckling failure. The
Luns value is the soil’s weak region which may fully liquefy during an earthquake. Also,
this portion of the pile at Luns loses its lateral support and is susceptible to buckling. The
pile fixity depth (Dfix) is the pile’s embedded length in the hard strata. Soilliquid represents
the liquefied soil profile, Soilhard is the non-liquefied hard strata, and d is the minimum pile
diameter to support the Pdyn against buckling instability.
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In Figure 3a, Case 1 represents a condition where Lcrit extends farther down than
Luns. In this case, the pile has a higher chance of withstanding the effect of Pdyn in the
surrounding Soilliquid during an earthquake. However, Dfix could be greater than required
and, therefore, overdesigned. In Figure 3b, Case 2 shows when Lcrit has the same depth as
Luns, in which the pile is at its minimum requirement to sustain Pdyn in the surrounding
Soilliquid [40]. In Figure 3c, Case 3 shows an unsafe condition for the pile, where Luns extends
farther down than Lcrit, which may result in buckling instability failure.

The structural analysis of a pile in liquefied soil as a column element carrying an
axial load is often more realistic than treating it as a beam element carrying the same load,
especially in certain geotechnical conditions [20–22]. The technical reason for this is that
the pile’s behavior in liquefied soil is significantly influenced by the surrounding soil’s
response to liquefaction. Analyzing it as a column element carrying an axial load might be
more appropriate in this context because this focuses on the vertical load-carrying capacity
of the pile. A minimum pile diameter, represented by the letter d, should correspond with
the depth of the liquefied soil to prevent the pile from undergoing column buckling failure.
When comparing the critical pile length with the unsupported pile length, the potential
pile failure due to buckling instability shall be when Lcrit < Luns, as depicted in Case 3 of
Figure 3c.

On the other hand, the monopile’s ability to comply with structural reliability under
certain geotechnical conditions, such as the probability of failure due to the monopile’s
buckling instability in liquefied soils, may happen once the monopile’s capacity minus
demand exceeds the limit state. Accordingly, the structure’s acceptable behavior is when
the limit state function g(x) has a resulting value less than zero. Thus, this indicates that it
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is in a safe domain [33]. Here, g(x) is a fundamental structural engineering and reliability
analysis concept. It is a key component in the design and analysis of structures to ensure
that they can safely withstand anticipated loads and environmental conditions. For the
structural reliability assessment of a monopile, refer to Equation (2), where Lcrit is the
capacity term while Luns is the demand:

g(x) = [Lcrit − Luns] (2)

The monopile is safe when the limit state function (g(x)) equals a positive value.
Otherwise, the monopile is unsafe when g(x) results in a negative value.

The critical axial load for a monopile foundation is found by considering a hypothetical
column performance, assumed at first to be ideally straight and compressed by an axial
load. From the elementary beam theory point of view, the stresses and deflections are
directly proportional to the applied load. The expression of the curvature of the axis of a
vertical beam element delineated in Figure 3c shall be as shown in Equation (3):

EI
d2x
dy2 = −M (3)

Here, the representation of E is the elastic modulus, I is the moment of inertia, and M
is the bending moment. On the other hand, when the coordinate axes are taken as indicated
in Figure 3c, and the pile is assumed to be a column element with a slightly deflected
position, the bending moment at any cross-section a-b becomes as shown in Equation (4):

P(δ − x) = −M (4)

To calculate the critical axial load which a column element can carry, the axial force (P)
multiplied by the displacement (δ − x) at any cross-section shall equal the bending moment.
When combining Equation (3) with Equation (4), the resulting equation is Equation (5):

d2x
dy2 =

P(δ − x)
EI

(5)

However, the value of P should be the minimum axial force or the critical load when a
column starts buckling.

In 1744, Leonhard Euler introduced a theory regarding the critical axial load (Pcr) or
Euler’s critical load [41] (refer to Equation (6)). This is the minimum compressive axial load
which causes a column to buckle. The assumptions for Euler’s theory are as follows: (1) the
column is ideally straight; (2) the cross-section is uniform; (3) the material is homogeneous
and elastic; and (4) the compressive force acts on the centroid of the section:

Pcr =
π2EI

(KL)2 (6)

where L is the unsupported column length and K represents the column’s effective length
factor. Considering that the axial load P in Equation (5) equals Pcr in Equation (6), when
combining these equations, the result is Equation (7):

d2x/
dy2

(δ − x)
=

π2

(KL)2 (7)

However, the mathematical expressions introduced in Equations (3)–(7) neglect the
effect of a shearing force in deriving the deflection curve using a differential equation. Based
on a book by Timoshenko and Gere [42], shearing forces act on the column’s cross-section
when buckling happens, as illustrated in Figure 4.
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The shearing force (Q) presented in Figure 4b, which is normal to the column’s
axis, conforms to the element of the length dy between two cross-sections a and b. The
corresponding equation of a shearing force is shown in Equation (8):

Q = P
dx
dy

(8)

By applying the differential equation, this becomes Equation (9):

dQ
dy

= P
d2x
dy2 (9)

Merging the change in the deflection curve’s slope due to the shearing force of nQ/AG
thus creates the equation for the shear deformation through multiplying the left-hand side
of Equation (9) by a numerical factor (n) and dividing this by the cross-sectional area (A)
with a shear modulus (G), which will form Equation (10):

n
(

dQ
dy

)
/AG (10)

For a circular cross-section, Timoshenko and Gere [42] considered a value of n equal
to 1.11. By substituting the value of dQ/dy in Equations (9) and (10), the curvature created
by the shearing force is as expressed in Equation (11):

n
(

P
d2x
dy2

)
/AG (11)

Hence, obtaining the total curvature of the deflection curve (d2x/dy2) is achieved by
incorporating the curvature produced by the shearing force into the curvature created
by the bending moment. For the column shown in Figure 4, the differential equation of
the deflection curve shall be the combination of Equations (5) and (11), which generates
Equation (12a) and then creates Equation (12b):

d2x
dy2 = P

(δ − x)
EI

+ n
(

P
d2x
dy2

)
/AG (12a)

d2x/
dy2

(δ − x)
=

P

EI
(

1 − nP
AG

) (12b)

Combining Equations (7) and (12b) will generate Equation (13). On the left-hand
side of this equation, it is noticeable that it is equivalent to Euler’s critical load, shown in
Equation (6). We rename Pcr to Pe to represent the critical load or Euler’s buckling formula
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without shear deformation. Furthermore, we rename P to Pcr+s, representing the critical
axial load with the effect of shear deformation (refer to Equation (14)):

π2EI

(KL)2 =
P(

1 − nP
AG

) (13)

Pcr+s =
Pe

1 +
( n

AG
)

Pe
(14)

In the critical pile length and unsupported pile length hypothesis illustrated in Figure 3,
the maximum Pdyn which causes the pile to buckle—that is, the load at which the pile may
fail (Pfail)—should not be equal to Pcr+s because there are uncertainties and imperfections
to be considered in the analysis. Hence, Pfail shall be less than Pcr+s (refer to Equation (15)):

Pf ail < Pcr+s (15)

The value of Pfail can be determined by multiplying Pcr+s by a reduction factor (∅) to
obtain more conservative assumptions in the analysis (refer to Equation (16)):

Pf ail = ∅Pcr+s (16)

Multiplying the calculated Pcr+s by ∅ ensures good safety in Pfail’s determination. The
reduction factor shall be less than one (∅ < 1) to adjust a certain risk’s estimated impact or
reduce the likelihood of failure.

In the condition of a monopile failure’s limit state, the load Pdyn due to earthquake
shaking shall equal Pfail or the axial load which may cause the monopile to buckle, as
illustrated in Figure 3c. Putting Equations (14) and (16) together will generate Equation (17):

Pdyn = ∅
[

Pe
1 +

( n
AG
)

Pe

]
(17)

The magnitude of Pdyn equals (1 + α) Pstat, as defined in Equation (1), while Pe equals
Euler’s critical load, as presented in Equation (6). By, letting L equal Lcrit, the generated
equation is Equation (18):

(1 + α)Pstat = ∅

 π2EI
K2Lcrit

2

1 +
( n

AG
)(

π2EI
K2Lcrit

2

)
 (18)

Extracting the mathematical expression of Lcrit from Equation (18) shall lead to formu-
lating Equation (19) in determining the critical pile length, considering buckling instability
due to an actual failure axial load with the shear deformation effect:

Lcrit =

√
π2EI

[
∅−

(
((1 + α)Pstat)

( n
AG
))]

K2[(1 + α)Pstat]
(19)

Also, this research intends to investigate the difference in the mathematical expression
of Lcrit without shear deformation effects. The value of Pfail shall be less than the force Pe
(refer to Equation (20)), corresponding to the magnitude of Pdyn, which is equivalent to the
reduced Pe (refer to Equation (21)):

Pf ail < Pe (20)

Pdyn = ∅Pe (21)

To generate Equation (22) from Equation (21), let Pdyn equal (1 + α)Pstat on the left-hand
side, and then substitute Pe with Equation (6), which is equivalent to Pcr on the right-hand
side. Then, let L equal Lcrit:
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(1 + α)Pstat = ∅
[

π2EI
K2Lcrit

2

]
(22)

In Equation (22), the Lcrit formulation is represented by Equation (23):

Lcrit =

√
π2EI[∅]

K2[(1 + α)Pstat]
(23)

The dissimilarities between Equations (19) and (23) are noticeable. In Equation (19),
the term [∅ − (((1 + α)Pstat) (n/AG))] indicates that a shearing force deducts the reduction
factor, but in Equation (23), the term [∅] is not deducted. These formulation dissimilarities
specify that adding the effect of shear deformation will significantly increase the safety
factor because the value of the reduction factor shall be decreased. Moreover, the estimated
value of the critical pile length, including the shear deformation, is lower than the critical
pile length when not considering shear deformation. Accordingly, Lcrit depends on the
intensity of Pdyn at the top of the monopile in liquefied soil.

The essential parameters needed in Equations (19) and (23) are ∅, K, n, and α. Some
studies considered the pile’s buckling instability with a ∅ value of 0.35 [25]. It is necessary
to evaluate a pile regarding its boundary condition, such as fixed, pinned, or free end, in
which the value of K for the column with a fixed end at the base and a free end at its top is
1.00 [12]. Drilled monopiles are practically circular cross-sections. The assumed value of n
for a circular section is 1.11 [42]. At the top of the pile, the acceleration amplification factor
stabilizes at 1.32 [43]. However, conducting a sensitivity analysis of ∅, K, n, and α using
books, conference papers, articles, and published research is advisable.

3.3. Unsupported Pile Length Formulation

The assumptions in determining the unsupported pile length (Luns) equal the liquefied
soil depth. Liquefaction determination has two methods: magnitude plots versus the
epicentral distance [44] and the simplified procedure [45]. However, the first method uses
approximation, which is suitable as a screening guide, while the other is a detailed method.
Furthermore, these two methods are not akin.

Liquefaction can occur down to a 20 m depth. However, the chances of this are not
the same in different soil layers. This phenomenon is potentially high on the surface and
linearly decreases to a depth of 20 m [6]. The liquefaction potential index (LPI) formulation
provided by Iwasaki et al. [46] is shown in Equation (24):

LPI =
∫ 20

0
F(z)w(z)dz (24)

where F(z) represents the severity function, which equals the function of the factor of safety
(FS) in anticipation of liquefaction, and w(z) is a weighting factor. The value of w(z) (refer
to Equation (25)) is 10 for the surface level or at natural ground level and 0 beyond a 20 m
depth, as liquefaction will likely not happen after 20 m deep in soil. Z represents the soil
depth in meters and should not exceed 20 m:

w(z) = 10 − 0.5(Z) (25)

Galupino and Dungca [47] presented an estimate of the function of FS against lique-
faction or the so-called probability of liquefaction (PL), which is shown in Equation (26):

PL =
1

1 +
(

FS
0.96

)4.5 (26)

The computations for the FS in different layers of soil shall be in terms of the cyclic
shear stress ratio, cyclic resistance ratio and magnitude scaling factor. However, there
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are many arguments in the literature that soil shall liquefy until FS = 1.20 [6], while other
studies adopted 1 < FS < 1.2 [48]. When merging Equation (25) with Equation (24) and
letting PL = F(z), the resulting generated equation is Equation (27):

LPI =
∫ 20

0
PL[10 − 0.5(Z)]dz (27)

Then, the probability of ground failure (PG) [49] using a quantitative assessment [50]
shall become Equation (28):

PG =
1

1 + e4.71−0.71(LPI)
(28)

3.4. Limit State Function Formulation Using the Hasofer–Lind Reliability Index

The term Lcrit is the capacity, while Luns is the demand. Then, the failure criterion is
g(x) = [Lcrit − Luns], which is the limit state function, as explained in Equation (2). Structural
reliability assessment aims to evaluate the probability of failure (Pf) of a monopile in
liquefied soil conditions. On the contrary, a reliability index (β) is an essential parameter
for measuring structural reliability, unlike Pf.

In 1974, Hasofer and Lind [38] developed the Hasofer-Lind Reliability Index, also
recognized as the first-order reliability method (FORM). It is a semi-probabilistic way of
evaluating structural reliability, described as the closest distance from the intersection of
the Y1 and Y2 axes to the failure surface. This method is advantageous because it avoids
the ambiguity of using the first-order second method (FOSM) associated with contrasting
formulations of the limit state function [39].

In determining the value of β using the Hasofer–Lind Reliability Index, we convert
the random variables X = {X1, X2, . . ., Xn} into Y = {Y1, Y2, . . ., Yn} as shown in Equation
(29). The variables comprising Y are the standard normal variables with a mean equal to
zero and a unit standard deviation. The conversion is easy if X is an independent random
variable, which resolves the lack of invariance problem:

Yi =
Xi − µXi

σXi

(29)

The original coordinate system X is equal in function to the converted or transformed
coordinate system Y. Then, the limit state function changes from the original g(x) to a trans-
formed g(y). Figure 5 presents the Hasofer–Lind transformation of the original coordinate
system X to a converted coordinate system Y.
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As shown in Figure 5b, the closest point with the shortest line to the limit state surface
Y* is the checking or design point, in which this line represents the values of the reduced



Infrastructures 2024, 9, 123 12 of 22

random variable. Figure 5a shows that the borderline between failure and safe spaces is
g(x) = 0. The random variables X1 and X2 represents Lcrit and Luns respectively. By utilizing
Equation (29) these variables shall be converted into reduced random variables Y1 and Y2,
resulting to Equations (30) and (31):

X1 = µX1 + σX1Y1 (30)

X2 = µX2 + σX2Y2 (31)

The formulation of the transformed limit state function (g(y)) is the merging of Equa-
tions (30) and (31) into Equation (2), as illustrated in Figure 4a, which is borderline in the
middle of the failure and safe spaces. This concept generates Equation (32a,b):

g(x) = X1 − X2 = 0 (32a)

g(y) = µX1 + σX1Y1 − µX2 − σX2Y2 = 0 (32b)

The line g(y) = Y1 − Y2 = 0 in Figure 4b represents the limit state surface, which is
the borderline in the middle of the failure and safe spaces. If the location of the line g(y)
is nearer to the origin of the converted or transformed coordinate system, then the failure
space is more extensive and contrariwise. Accordingly, the closest distance β directly
linked to Pf characterizes the location of the line g(y) in the transformed coordinate system
regarding the system’s origin. The coordinates of the line g(y) which intercept with the
transformed coordinate axes Y1 and Y2 are the points for obtaining the formula for β using
a simple geometry considering an isosceles triangle with two sides of equal length, in
which the mathematical form to determine β for the Hasofer–Lind Reliability Index shall
be as expressed in Equation (33):

β =
µX1 − µX2√
σX1

2 + σX2
2

(33)

Furthermore, this research explores the reliability index derived using the normal
or Gaussian distribution. One of the exceptional cases is when the Pf analysis is not
complicated, in which X1 and X2 are considered independent normal random variables.
Equation (32a) is equivalent to a normal random variable with its means and variances. The
resulting equation for the means is Equation (34), while that for the variance is Equation
(35a), which is equivalent to Equation (35b):

µg(x) = µX1 − µX2 (34)

σg(x)
2 = σX1

2 + σX2
2 (35a)

σg(x) =
√

σX1
2 + σX2

2 (35b)

Here, µX1 and µX2 represent the means while σX1 and σX2 are the standard deviations
of X1 and X2, respectively. The simplest case of modeling X1 and X2 as two random
variables is using the probability distributions f X1(X1) and f X2(X2), respectively, in which Pf
shall be as expressed in Equation (36a,b):

Pf = P(g(x) ≤ 0) (36a)

Pf = P(X1 − X2 ≤ 0) (36b)

The probability distribution function (PDF) utilizing the concept of the normal distri-
bution is Equation (37):

fx(X) =
1√
2πσ

e(−
1
2 (

X−µ
σ )

2
) (37)
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where µ represents the mean while σ is the standard deviation of the variable X. Here, 1√
2π

ensures that the area under the PDF equals one. The rationale of the random variable X is
in the gamut of infinities (−∞, ∞). We replace the random variable X with a comparable
normalized expression (U) (refer to Equation (38)) to derive the standard form of this
distribution:

U =
X − µ

σ
(38)

When merging the standard form presented in Equation (38) with Equation (37), the
generated PDF shall be as expressed in Equation (39):

fu(U) =
1√
2π

e(−
U2
2 ) (39)

The mathematical forms of the cumulative distribution function (CDF) are as shown
in Equation (40a–c):

Fx(X) = P(X ≤ x) (40a)

Fx(X) = Φ

(
X − µ

σ

)
(40b)

Fx(X) = Φ(U) (40c)

By letting Equation (36a) equal Equation (40b) and considering the values of X = 0,
µ = µg(x), and σ = σg(x), the generated equation shall be as shown in Equation (41):

Pf = Φ

(
−

µg(x)

σg(x)

)
= Φ(−β) (41)

In Equation (41), the equivalent mathematical expression for the structural reliability
index is as shown in Equation (42):

β =
µg(x)

σg(x)
(42)

When incorporating Equation (34) and Equation (35b) into Equation (42), the resulting
equation is Equation (43):

β =
µX1 − µX2√
σX1

2 + σX2
2

(43)

It is noticeable that Equation (43) and Equation (33) end with the same mathematical
expressions. Gowever, the formulation of each equation uses a different approach. The
former uses simple geometry, while the latter uses the properties of the independent normal
random variables X1 and X2. When the limit state function is a linear operation of two
variables X1 and X2 or Lcrit and Luns, both descriptions provide a similar mathematical form
of reliability index.

In summary, when combining Equation (33) with Equation (41), the structural relia-
bility which corresponds to the probability of failure for a monopile buckling in liquefied
soils is as shown in Equation (44):

Pf = Φ

−
µLcrit − µLuns√
σLcrit

2 + σLuns
2

 (44)

Here, Φ (.) represents the standard normal distribution CDF, for which the tabulated
values are ready for use in standard textbooks or the Excel program (=NORMSDIST(.)).
The term inside the CDF, (−β), is the reliability index. The transformed coordinate system,
illustrated in Figure 4b by Hasofer and Lind, can be further developed to visually indicate
the limit state surface because it is an isosceles triangle representation. If the perpendicular
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distance from the longest side of the triangle to the (0,0) origin is farther, then this might
indicate a lower likelihood of failure. However, if the perpendicular distance from the
longest side of the triangle to the origin is too close, then this might indicate a greater
likelihood of failure, and this requires further studies.

4. Case Study

The structural reliability assessment via the probability of failure of a monopile foun-
dation’s buckling instability in liquefied soil is like a structural system relying on a column
element cantilevered from a fixed base and free at the top with axial force applied centrically.

A case study of a high-speed railway (HSR) bridge model was used to demonstrate the
application of the proposed methodology illustrated in the previous section. This case study
consisted of a five-span, simply supported box girder bridge. The bridge deck and pier
column’s cross-sectional dimensions can be seen in the published research of Chen et al. [51].
The 32 m deck was a prestressed concrete box girder of a trapezoidal cross-section. The
reinforced concrete solid pier columns were 10–20 m high, with round-end cross-sections
resting on a concrete drilled pile foundation with circular sections. The HSR bridge model
assumed a fully fixed rigid connection between the pier column and monopile foundation,
in which the pier column remained elastic during earthquake shaking.

Table 2 outlines the parameters of the HSR bridge. This type of bridge represents more
than 90% of China’s HSRs.

Table 2. Geometric parameters of the model [51].

Parameters Value

Length of girder 32 m
Width of girder 12 m
Height of girder 3.05 m
Area of girder 8.6597 m2

Linear mass of girder 2.19 × 104 kg/m
Length of pier column in cross-section 6.20 m
Width of pier column in cross-section 2.20 m

Height of pier column nos. 1–6 10 m, 12 m, 14 m,
16 m, 18 m, and 20 m

Area of solid pier (round-shaped) 11.141 m2

Unit weight of concrete 24 kN/m3

Superimposed dead load 184 kN/m

Table 3 consists of other parameters used in this study: the elastic modulus (E),
reduction factor (∅), numerical factor (n), amplification factor (α), Poisson’s ratio (ν), and
column’s effective length factor (K), as well as the train load or live load from the bridge to
the foundation.

Table 3. Parameters from various research.

Parameters Value From the Study by

E 25,000,000 KPa Moayedi et al. [52]
∅ 0.35 Bhattacharya [25]
n 1.11 Timoshenko and Gere [42]
α 1.32 Dong et al. [43]
ν 0.2 Pal [53]
K 1.00 Madabhushi et al. [12]

Train load 83.60 kN/m Aziz and Ma [54]

This paper applied the abovementioned parameters to illustrate Equation (19) for Lcrit
with shear deformation and Equation (23) for Lcrit without shear deformation, considering
various monopile diameters of 0.50 m, 0.60 m, 0.70 m, 0.85 m, 0.90 m, 1.10 m, 1.40 m, 1.60 m,
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1.80 m, 2.00 m, and 2.20 m. The selected monopile diameters were based on Bhattacharya
and Tokimatsu’s published research [40]. The current study used the same sets of pile
diameters for validation purposes. This case study considered a pile fixity depth (Dfix)
sufficiently anchored on hard strata to secure the pile bottom, factoring in no settlement
and overturning.

Table 4 presents the parameters to illustrate Equation (44) for the probability of failure
of a monopile and assess its structural reliability. The value of the mean of the critical pile
length (µLcrit) was calculated based on Lcrit, which is dependent on the pile diameter and
axial load Pdyn. Luns was assumed to be five depths of liquefiable soil—0.25 m, 5 m, 10 m,
15 m, and 19.75 m—in which the value of the mean of unsupported pile length (µLuns) was
10.00 m. Eventually, the standard deviations (σLcrit) and (σLuns) would be calculated from
the provided data of Lcrit and Luns, respectively. The five selected depths were based on
the fact that the liquefaction phenomenon is potentially high on the surface and linearly
decreases to a depth of 20 m [6]. For a preliminary liquefaction analysis, it is common to
consider the upper 9 m of soil. If the liquefaction potential is a significant concern, then a
more detailed analysis may need to be performed for site-specific investigations.

Table 4. Parameters for the probability of failure.

Parameters Value

µLcrit
Based on the calculated Lcrit, which depends on various pile diameters, and
Pdyn generated from Table 2.

µLuns 10.00 m

σLcrit
Based on the calculated Lcrit, which depends on various pile diameters, and
Pdyn generated from Table 2.

σLuns 7.74798

5. Results and Discussion
5.1. Current Study Validation

The current study conceptualized that when Lcrit has the same depth as Luns during
liquefaction, as depicted in Figure 3b, the monopile is at its minimum capacity in supporting
the axial load Pdyn in Soilliquid because it is at the limits between the safe and unsafe states.
Figure 6 shows the results of Lcrit with the shear deformation effect using Equation (19),
contingent on the pile diameter and axial load Pdyn for selected pier column heights of
10 m and 20 m. In addition, this paper applied the published research of Bhattacharya and
Tokimatsu [40] to validate the minimum pile diameter for buckling instability when a fully
liquefied soil’s thickness reaches the Lcrit = Luns condition.
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The validation outcome indicates good agreement for monopile diameters of
0.85–0.90 m in that the estimated Lcrit = Luns condition occurred in depths 6.69–8.05 m
from the natural ground level. However, with smaller monopile diameters of 0.50 m to
0.70 m, the estimated Lcrit = Luns condition was at lesser depths than those in Bhattacharya
and Tokimatsu’s study. On the other hand, with larger pile diameters of 1.10 m to 2.20 m,
the estimated Lcrit = Luns condition was deeper than suggested. For example, the 1.80 m
monopile diameter should start to buckle at a 16 m depth [40]. However, this study esti-
mated that the monopile started buckling when Lcrit = Luns reached 30.29 m in depth. The
deepest reach of liquefaction was 20 m in depth [46], for which the suggested diameter
was 2.20 m [40]. However, the current study estimated a minimum monopile diameter of
1.50 m, which is smaller by 46.6%.

5.2. Current Study’s Pile Length Comparison

Figure 7 compares Lcrit, including the shear deformation effect, using Equation (19)
when increasing Pdyn from 42,000 kN to 48,200 kN. The load increment was contingent on
the selected pier column heights of 10 m and 20 m.
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These results indicate that in a monopile with a diameter of 0.50–1.10 m, the location
shift of Lcrit was lower than the pile diameter. On the other hand, in a monopile with
a diameter of 1.40–2.20 m, the location shift of Lcrit was greater than the pile diameter.
This observation implies that an increase in Pdyn significantly affects piles with large
diameters because the movement of Lcrit requires a longer range than monopiles with
smaller diameters. These findings shall be the basis for calculating the total length of the
monopile in the surrounding liquefied soil.

5.3. Current Study’s Probability of Failure Analysis

Figure 8 shows the probability of failure (Pf) of a monopile buckling in fully liquefied
soil using Equation (44), contingent on the monopile diameter and considering the effect
of shear deformation. The value of Luns assumes five liquefied soil depths from 0.25 m
(shallow) to 19.75 m (deepest).

When the probability of failure is equal to one, this typically implies a situation where
the monopile is certain to fail. If the probability of an event occurring (success) is p, then
the probability of it not occurring (failure) is 1 − p. Therefore, if the probability of failure is
equal to one (P(failure) or Pf = 1), then this means that the event is guaranteed to fail.
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The graph in Figure 8 illustrates that buckling instability will likely happen in monopiles
0.50–1.60 m in diameter in fully liquefied surrounding soil, because the Pf value was nearly
one. Conversely, buckling instability will likely not happen in monopiles with a diameter
of 1.80–2.20 m, because the Pf value was zero. Hence, the reliable monopile diameter for
supporting the HSR bridge model in the current study is 1.80 m.

5.4. Current Study’s Shear Deformation Effect Analysis

The current study’s literature review cited that shear deformation is essential for large-
diameter monopiles and should be included in buckling analysis [28]. Figure 9 illustrates
the difference when comparing Equation (19) for Lcrit with the shear deformation effect
and Equation (23) without shear deformation using a monopile 1.80 m in diameter. The
difference in the analysis outcome was 0.3% of Lcrit. This finding indicates that the shear
deformation gave a minimal contribution to the buckling instability analysis.
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The results of the current study can be explained by the fact that the monopile’s
structural reliability assessment in liquefied soil as a column element carrying an axial load
is the appropriate approach. The technical reason for this is that the surrounding soil’s
behavior significantly influences the response of a monopile. Analyzing it as a column
element carrying an axial load is the proper method because it focuses on the monopile’s
vertical load-carrying capacity. Also, the axial load analysis considers factors such as the
monopile’s capacity to resist axial compression, which is critical in supporting the railway
bridge above.
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On the other hand, treating the monopile as a beam element might oversimplify
the structural reliability assessment and neglect important considerations related to the
monopile’s axial response, requiring further studies. The technical reason for this is that
beam element analysis typically involves studying bending moments, shear forces, and
deflections, which may not be as relevant in liquefied soil conditions, where the primary
concern is often the monopile’s axial capacity to support vertical loadings without buckling
instability.

6. Conclusions

Liquefaction is a significant reason for pile buckling, in which the assumption is that
the piles will behave as axially loaded columns. Thus, the bridge pier can directly rest above
a single, rigid, large-diameter monopile foundation instead of a pile cap with multiple
flexible, small-diameter piles. Some bridge projects applied monopile foundations because
of restricted spaces and congested locations [13]. Also, they can minimize existing utility
conflicts [14] and avoid the risk of pile cap splitting due to an active fault line [15]. The
simplicity of installing a monopile can lead to faster construction times compared with the
more intricate process of installing multiple small-diameter piles. Using a large-diameter
monopile foundation to support a bridge pier in liquefied soil surroundings is a viable
alternative to a traditional pile cap with multiple small-diameter piles. The important
contribution to the existing literature is that this study formulated a simplified framework
to assess the structural reliability of large-diameter monopiles in fully liquefied soil, which
causes buckling instability failure, through a case study. The method checks the stability
of the monopile at various diameters against pure buckling at full liquefaction when the
surrounding soil loses its strength to support the monopile laterally.

Summarized below are the current study results:

1. The validation using the study of Bhattacharya and Tokimatsu [40] showed good
agreement for 0.85–0.90 m monopile diameters, where the condition of Lcrit = Luns
occurred at 6.69–8.05 m depths from the ground level. However, with a smaller
diameter than 0.85 m, the estimated Lcrit = Luns condition was at lesser depths, while for
a larger diameter than 0.90 m, the estimated Lcrit = Luns condition was at deeper depths.

2. The deepest reach of liquefaction was at 20 m deep [46], in which the suggested pile
diameter was 2.20 m [40]. However, the current study estimated a minimum pile
diameter of 1.50 m, which was smaller by 46.6%.

3. The increase in Pdyn significantly affected the large-diameter monopiles because the
movement of Lcrit required a longer range than the monopiles with smaller diameters.

4. Buckling will likely occur in monopiles with diameters of 0.5–1.60 m in fully liquefied
soil because the Pf value is nearly one. On the other hand, buckling will likely not
happen in monopiles with diameters of 1.80–2.20 m because the Pf value is zero. Hence,
the reliable monopile diameter was 1.80 m for the current study’s HSR bridge model.

5. The current study also analyzed the effect of shear deformation on large-diameter
monopiles. The difference in the analysis outcome was 0.30% of Lcrit, indicating that
shear deformation has less of an effect on large-diameter monopile buckling.

It is important to note that the specific analysis approach depends on the site condi-
tions, the type of structure, and the engineering requirements. In liquefied soil situations,
addressing the monopile’s axial load behavior as a column element is often a more accurate
representation of the monopile’s response to the ground conditions.

The feasible pile failure mechanisms are shear, bending, buckling, and cyclic load-
ing [16]. This study focused on one failure mechanism, namely pure buckling of a monopile
with the effect of shear deformation. Hence, future research shall focus on the following:

1. The transformed coordinate system, illustrated in Figure 4b, by Hasofer and Lind
can be further developed to visually indicate the limit state surface because it is an
isosceles triangle representation. If the perpendicular distance from the longest side
of the triangle to the (0,0) origin is farther, then this might indicate a lower likelihood
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of failure. However, if the perpendicular distance from the longest side of the triangle
to the origin is too close, then this might indicate a greater likelihood of failure.

2. Treating the monopile as a beam element might oversimplify the structural reliability
assessment and neglect important considerations related to the monopile’s axial
response. The technical reason for this is that beam element analysis typically involves
studying bending moments, shear forces, and deflections, which may not be as
relevant in liquefied soil conditions, where the primary concern is often the monopile’s
axial capacity to support vertical loadings without buckling instability.

3. The monopile may fail due to combined failure mechanisms, such as buckling, bend-
ing, and torsion, in which axial compression, lateral deformation, and rotational
loading act simultaneously on the pile during the transient stage, a short period from
the phase with no soil liquefaction to the fully liquefied soil phase [55].

The limitations of the current study are the following:

1. The research considered a pile fixity depth (Dfix) sufficiently anchored on hard strata
to secure the pile bottom while considering no settlement and overturning. The
complex behavior of liquefied soil is challenging to model accurately, and it can vary
depending on factors such as the soil type, density, and initial conditions.

2. The HSR bridge model assumed a fully fixed rigid connection between the pier
column and monopile foundation, in which the pier column remained elastic during
earthquake shaking. The fixed connection means that the two elements (the bridge
pier and monopile) did not rotate or move relative to each other.

3. The current study did not consider the transient stage of liquefaction. During a short
period from no soil liquefaction to fully liquefied soil, the monopile experiences a
range of loading conditions. The dynamics of soil liquefaction may significantly
impact the pile’s behavior and resistance.
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Appendix A

Table A1. Notation used in the current study.

Symbol Description

A Cross-sectional area
d Minimum pile diameter

Dfix Pile fixity depth or additional length for anchor the pile in hard strata
E Elastic modulus

FS Factor of safety
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Table A1. Cont.

Symbol Description

Fz Severity function
I Moment of inertia
G Shear modulus

g(x) Limit state function and the basis in assessing reliability
g(y) Transformed limit state function
K Column’s effective length factor
L Unsupported column length

Lcrit Critical pile length and the capacity for reliability assessment
Luns Unsupported pile length and the demand for reliability assessment
LPI Liquefaction potential index
M Bending moment
N Numerical factor
P Axial force

Pstat Static axial load
Pdyn Dynamic axial load
Pcr Critical axial load

Pcr+s Critical axial load with the effect of shear deformation
Pe Euler’s buckling

Pfail Monopile’s actual failure axial load due to buckling instability
PL Probability of liquefaction
PG Probability of ground failure
Pf Probability of failure of a monopile in liquefied soil conditions
Q Shearing force

Soilliquid Liquefied soil profile
Soilhard Non-liquefied hard strata

w(z) Weighting factor
Z Liquefiable soil depth, which should not exceed 20 m
α Dynamic amplification factor
β Reliability index

δ − x Displacement at any cross-section a-b within the column element
∅ Reduction factor
µ Mean
σ Standard deviations

Φ (.) Standard normal distribution’s cumulative distribution function
ν Poisson’s ratio
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