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Abstract: Investigations into the properties of generalized effective temperature are conducted across
arbitrary dimensions. Maxwell–Boltzmann distribution is displayed for one, two, and three dimen-
sions, with effective temperatures expressed for each dimension. The energy density of blackbody
radiation is examined as a function of dimensionality. Effective temperatures for non-uniform tem-
perature distributions in one, two, three, and higher dimensions are presented, with generalizations
extended to arbitrary dimensions. Furthermore, the application of generalized effective tempera-
ture is explored not only for linearly non-uniform temperature distributions but also for scenarios
involving the volume fraction of two distinct temperature distributions. The effective temperature
is determined for a cryogenic system supplied with both liquid nitrogen and liquid helium. This
effective temperature is applied to the Coefficient of Performance (COP) in cryogenic systems and
can also be applied to high-energy accelerator physics, including high-dimensional physics.

Keywords: effective temperature; fractional dimension; thermal radiation; cryogenic system;
accelerator physics

1. Introduction

The temperature of a body is commonly assessed through the utilization of blackbody
radiation. The exploration of Stefan–Boltzmann’s law in n-dimensional space has been
pursued [1]. It has been observed that thermal radiation exhibits notable deviations from
blackbody radiation when considering bodies of a small size. Investigations into the size
effect of thermal radiation in one, two, and three dimensions have been conducted [2–4].
Techniques for correcting camera and infrared detector errors have been developed to
enhance temperature measurement accuracy [5–8], while investigations into minimum
resolvable temperature have been conducted in the realm of thermal imaging sensing [9].
Furthermore, calculations of effective temperature for non-uniform temperature distribu-
tions have been investigated [10,11]. Additionally, research across various fields has delved
into the fractal dimensions of natural phenomena and their applications [12–17]. Integer
dimensions are idealized constructs, whereas fractional dimensions manifest in natural
phenomena. The evaluation of fractal dimensions on the thermal and hydrodynamic
properties of micro-channel rough surface structures was conducted using computational
fluid dynamic simulations [18]. The heat capacity of liquid helium, which exhibits a fractal
dimension between two and three dimensions, was calculated. The results showed a signif-
icant dependence on this fractal dimension [19]. The fractional dimension of a body can be
discerned through the measurement of the maximum frequency of thermal radiation. A
study explored how the most probable frequency of emitted radiation relates to thermal en-
ergy across arbitrary dimensions [20]. Furthermore, the study of temperature-independent
thermal radiation—where the color remains constant despite temperature variations—was
investigated through insulator-to-metal phase transitions [21]. To construct high-energy
accelerators, superconducting cavities are essential for accelerating high-energy beams.
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Cryogenic systems were constructed, superconducting cavities were developed, and the
surface resistance of these cavities was investigated [22–25]. The temperature of cryo-
genic systems is important, and the effective temperature can be useful for regions with
non-uniform temperatures. The effective temperature of a cryogenic system is crucial, as it
directly influences the cooling temperature of the body and the volume of the cryogenic
system, particularly when using liquid helium and liquid nitrogen. These factors are closely
tied to the overall cost of the system.

In this study, we investigate the properties of generalized effective temperature across
arbitrary dimensions. We examine the energy density of blackbody radiation in relation
to dimensionality. Generalized effective temperatures for non-uniform temperature dis-
tributions are derived for one, two, and three dimensions, with extensions to fractional
dimensions and arbitrary higher dimensions. We explore the effective temperature for
linearly non-uniform temperature distributions across arbitrary dimensions, as well as its
variation with volume fraction. Additionally, we estimate the effective temperature when a
low-temperature test system is supplied with liquid nitrogen and liquid helium.

2. Maxwell–Boltzmann Distribution for One, Two, and Three Dimensions

The one-dimensional Maxwell–Boltzmann distribution for a gas is given by

f (vx) = (
m

2πkBT
)1/2e−mv2

x/2kBT , (1)

where vx is the velocity in x-direction and m is the mass of the particles. For a one-dimensional
velocity distribution, the most probable velocity is vmp = 0, the average velocity is

vav =
√

2kBT
m , and the root-mean-square velocity is vrms =

√
kBT
m .

The velocity distribution for two different temperature regions in one dimension is
given by

f (vx) = (
n1

n1 + n2
)(

m
2πkBT1

)1/2e−
mv2

x
2kBT1 +

(
n2

n1 + n2

)(
m

2πkBT2

)1/2
e−

mv2
x

2kBT2 , (2)

where n1 is the number of particles in the temperature T1 region and n2 is the number of
particles in the temperature T2 region.

The effective temperature for the two different temperature distributions is

Te f f = [(
n1

n1 + n2
)T2

1 + (
n2

n1 + n2
)T2

2 ]
1/2. (3)

The velocity distribution in terms of the effective temperature in one dimension is

f (v) = (
m

2πkBTe f f
)1/2e−mv2

x/2kBTe f f . (4)

The two-dimensional Maxwell–Boltzmann distribution is given by

f (v) = (
m

2πkBT
)e−m(v2

x+v2
y)/2kBT , (5)

where v2 = v2
x + v2

y. For a two-dimensional velocity distribution, the most probable velocity

is vmp =
√

kBT
m , the average velocity is vav =

√
πkBT

2m , and the root-mean-square velocity is

vrms =
√

2kBT
m .

The velocity distribution for two different temperature regions in two dimensions is

f (v) = (
n1

n1 + n2
)(

m
2πkBT1

)2/2e−m(v2
x+v2

y)/2kBT1 + (
n2

n1 + n2
)(

m
2πkBT2

)2/2e−m(v2
x+v2

y)/2kBT2 , (6)
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where n1 is the number of particles in the temperature T1 region and n2 is the number of
particles in the temperature T2 region.

The effective temperature for the two different temperature distributions in two
dimensions is

Te f f = [(
n1

n1 + n2
)T3

1 + (
n2

n1 + n2
)T3

2 ]
1/3. (7)

The velocity distribution in terms of the effective temperature in two dimensions is

f (v) = (
m

2πkBTe f f
)e−m(v2

x+v2
y)/2kBTe f f . (8)

The three-dimensional Maxwell–Boltzmann distribution is given by

f (v) = (
m

2πkBTe f f
)3/2e−m(v2

x+v2
y+v2

z)/2kBT , (9)

where v2 = v2
x + v2

y + v2
z . For a three-dimensional velocity distribution, the most probable

velocity is vmp =
√

2kBT
m , the average velocity is vav =

√
8kBT
πm , and the root-mean-square

velocity is vrms =
√

3kBT
m .

The velocity distribution for two different temperature regions in three dimensions is

f (v) = (
n1

n1 + n2
)(

m
2πkBT1

)3/2e−m(v2
x+v2

y+v2
z)/2kBT1 + (

n2

n1 + n2
)(

m
2πkBT2

)3/2e−m(v2
x+v2

y+v2
z)/2kBT2 , (10)

where n1 is the number of particles in the temperature T1 region and n2 is the number of
particles in the temperature T2 region.

The effective temperature for the two different temperature distributions in three
dimensions is

Te f f = [(
n1

n1 + n2
)T4

1 + (
n2

n1 + n2
)T4

2 ]
1/4. (11)

The velocity distribution in terms of the effective temperature in three dimensions is

f (v) = (
m

2πkBTe f f
)3/2e−m(v2

x+v2
y+v2

z)/2kBTe f f . (12)

3. Blackbody Radiation in Arbitrary Dimensions

While blackbody radiation in integer dimensions is well understood, we can extend
this concept to arbitrary dimensions. For comparison, the energy density of one-dimensional
blackbody radiation is given by [4]

u = (
2π2k2

B
3hc

)T2, (13)

where kB represents the Boltzmann constant, T denotes the absolute temperature, h
stands for the Planck constant, and c denotes the speed of light. The energy density
of two-dimensional blackbody radiation becomes [3]

uB(T) = 8πζ(3)

[
(kBT)3

(hc)2

]
, (14)

where ζ stands for the Riemann zeta function. The energy density for blackbody radiation
in three dimensions is [2]

uB(T) =
(

8π5

15

)[
(kBT)4

(hc)3

]
. (15)

The energy density in Equations (13)–(15) is proportional to the temperature raised
to a power that reflects the total dimensionality. This total dimensionality includes both
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spatial and temporal components. While the spatial dimension can be arbitrary, time is
always one-dimensional.

Dimension, which includes integer dimension as well as fractional dimension, can be
calculated as

D =
ln N

ln
(

1
S

) , (16)

where D is the dimension, S is the scaling factor, and N is the number of pieces. The
dimension of an object can be determined using an arbitrary scaling factor. Equation (16)
allows us to calculate the arbitrary dimension for any given geometry. Figure 1a shows
one-dimension for S = 1/5 and N = 5, Figure 1b shows two-dimension for S = 1/5
and N = 25, and Figure 1c shows three-dimension for S = 1/5 and N = 125 by using
Equation (16). A fractal has a non-integer dimension and exhibits self-similarity, meaning
that a small part of the object resembles the entire object. Figure 1f represents D = 1.062 for
S = 1/12 and N = 14, while Figure 1d,e show the process used to create Figure 1f. The surface
area and the volume for arbitrary dimension in Euclidean space are SD(R) = 2π(D+1)/2

Γ[(D+1)/2] R
D

and VD(R) = πD/2

Γ( D
2 +1)

RD, respectively, in which R means the radius of the Euclidean plane

and D means the dimension. Figure 1g,h refer to the surface area and the volume as a
function of dimension for the radius of 1 m in Euclidean space. The volume and surface
area of an object increase as the dimensions increase.
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Figure 1. Integer and fractional dimensions: Subfigure (a) displays one dimension for S = 1/5 and
N = 5, while subfigure (b) depicts two dimensions for S = 1/5 and N = 25. Subfigure (c) shows
three dimensions for S = 1/5 and N = 125. Subfigures (d–f) illustrate D = 1.062 for S = 1/12 and
N = 14. Subfigures (g,h) depict the surface area and volume as a function of dimension for a radius of
1 m in Euclidean space.
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The energy density of the blackbody radiation in arbitrary dimensions is given by [1,20]

uB(D, T) =
4πD/2Γ(D + 1)ς(D + 1)

Γ(D/2)
(
(kBT)D+1

(hc)D ), (17)

where Γ is the gamma function and D denotes the spatial dimension. The energy density
increases with temperature as T(D + 1), where D represents the spatial dimension, and the
additional power of one accounts for the time dimension.

4. Effective Temperature for One, Two, and Three Dimensions

The total energy density of one-dimensional thermal radiation is calculated as:

u = (
2π2k2

B
3hc

)T2
e f f , (18)

Here, Te f f represents the effective temperature of the entire body. For a one-dimensional
blackbody with uniform temperature distribution, the effective temperature remains con-
stant throughout the body. Using Equations (13) and (18), we can derive the effective
temperatures for three different temperature distributions, denoted as T1, T2, and T3,

Te f f = [(
L1

L
)T2

1 + (
L2

L
)T2

2 + (
L3

L
)T2

3 ]
1/2, (19)

where L represents the total length of the body, with L1, L2, and L3 denoting the lengths
corresponding to temperatures T1, T2, and T3, respectively. It is important to note that the
effective temperature of the body always surpasses the average temperature when dealing
with more than two different temperature regions. For a one-dimensional non-uniform
temperature distribution, the effective temperature of n segments can be generalized as

Te f f = [(
1
L
)∑n

i=1 LiT2
i ]

1/2, (20)

where L = ∑n
i=1 Li. The effective temperature is defined for discrete non-uniform tempera-

ture distribution in Equation (20). For continuously changing temperature distribution in
one dimension, the effective temperature can be expressed as

Te f f =
2

√∫ T(l)2

L
dl. (21)

The total energy density of two-dimensional thermal radiation is calculated as

u =

(
8πζ(3)k3

B

(hc)2

)
T3

e f f , (22)

where Te f f represents the effective temperature across a two-dimensional body. Using
Equations (14) and (22), we can calculate the effective temperatures for three different
temperature distributions

Te f f = [(
A1

A
)T3

1 + (
A2

A
)T3

2 + (
A3

A
)T3

3 ]
1/3, (23)

where A represents the total surface area of the body, with A1, A2, and A3 denoting the
surface areas corresponding to temperatures T1, T2, and T3, respectively. It is important to
note that the average temperature is lower than the effective temperature for three different
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temperatures. In two dimensions, the effective temperature for n segments with varying
temperature distributions can be generalized as

Te f f =

[
1
A ∑n

i=1 AiT3
i

]1/3
, (24)

where A = ∑n
i=1 Ai represents the total surface area of the two-dimensional body. Equa-

tion (24) provides the definition of the effective temperature for discrete non-uniform
temperature distribution in two dimensions. For continuously non-uniform temperature
distribution in two dimensions, the effective temperature can be expressed as

Te f f =
3

√∫ T(a)3

A
da. (25)

The total energy density for thermal radiation in three dimensions is given by

u(T) = (
8π5k4

B
15h3c3 )T

4
e f f , (26)

where Te f f represents the effective temperature across a three-dimensional body. From
Equations (15) and (26), the effective temperature of a body with three different temperature
distributions can be expressed as

Te f f = [(
V1

V
)T4

1 + (
V2

V
)T4

2 + (
V3

V
)T4

3 ]
1/4, (27)

where V represents the total volume of the body, with V1, V2, and V3 denoting the volumes
corresponding to temperatures T1, T2, and T3, respectively. The effective temperature of
the body for the n segments of different temperature distributions in three-dimensional
thermal radiation can be generalized as

Te f f = [
1
V ∑n

i=1 ViT4
i ]

1/4, (28)

where V represents the total volume of the body, given by V = ∑n
i=1 Vi. The effective

temperature is defined for discrete non-uniform three-dimensional temperature distribution
in Equation (28), where many small bodies have different temperatures.

The effective temperature of continuously non-uniform temperature distribution in
three dimensions is expressed as

Te f f =
4

√∫ T(v)4

V
dv. (29)

5. Effective Temperature for Arbitrary Dimension

Many natural physical systems exhibit fractional dimensions, which often deviate from
regular geometric shapes. For instance, while a line is typically considered one-dimensional,
the dimension of a curved line exceeds one dimension. Similarly, while a perfectly smooth
surface is typically two-dimensional, the dimension of a surface with roughness surpasses
two dimensions. This study investigates the thermal radiation properties across arbitrary
dimensions, highlighting the correlation between maximum radiation frequency and these
dimensions [20]. The factor, f actor(D) = h · νmax/kBT, where h represents Planck’s con-
stant, νmax is the maximum frequency, and T is the absolute temperature, depending on
the dimensions. The factors for one, two, and three dimensions are 0, 1.59362, and 2.82144,
respectively. The factors for 2.1, 2.2, and 2.3 dimensions are 1.72634, 1.85622, and 1.98357,
respectively [20]. The actual dimension of the body can be measured by detecting the most
probable frequency.
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The total energy density of the thermal radiation for both fractional dimension and
arbitrary dimension is given by

u(D, T) = [
4πD/2Γ(D + 1)ς(D + 1)kD+1

B
Γ(D/2)hDcD ]TD+1

e f f , (30)

Here, h represents the Planck constant, c denotes the speed of light, D signifies the
spatial dimension, and Te f f stands for the effective temperature of the body.

Combining Equations (17) and (30), the effective temperature of a body with three
different temperature distributions in D-dimension can be formulated as

Te f f = [(
v1

v
)TD+1

1 + (
v2

v
)TD+1

2 + (
v3

v
)TD+1

3 ]1/(D+1), (31)

Here, v denotes the total volume of the body, while v1, v2, and v3 represent the
volumes corresponding to temperatures T1, T2, and T3, respectively. For n segments
exhibiting different temperature distributions, the generalized effective temperature of the
body in arbitrary-dimensional thermal radiation is given by

Te f f = [
1
v ∑n

i=1 viTD+1
i ]1/(D+1), (32)

where v = ∑n
i=1 vi and D represents the spatial dimension. The generalized effective

temperature of continuously changing temperature distribution in arbitrary D-dimension
can be expressed as

Te f f =
D+1

√∫ T(v)D+1

v
dv. (33)

where Te f f stands for the effective temperature of the body, v denotes the total volume of the
body, T is the absolute temperature, and D represents the spatial dimension. Equation (33)
represents the most generalized effective temperature for continuously changing tempera-
ture distributions in D-dimension, applicable to both fractional and arbitrary dimensions.
The effective temperature of a system can be determined from Equation (33) once the
temperature distribution of the system is known or measured. Using Equation (33), the
effective temperatures for one, two, and three dimensions can be derived as shown in
Equation (21), Equation (25), and Equation (29), respectively.

6. Results and Discussion

The effective temperature of a cryogenic system is of utmost importance as it dic-
tates the required cooling power and associated costs for achieving desired temperatures.
Figure 2 depicts the cryogenic system designed for a quarter-wave resonator cryomodule,
where the superconducting cavity is cooled using both liquid nitrogen and liquid helium.
These cryogenic liquids, with boiling points at 77 K and 4.2 K, respectively, are widely
employed in cryogenic applications due to their effectiveness in cooling systems.

Figure 3 illustrates the effective temperature of linearly non-uniform temperature
distribution for both liquid nitrogen and liquid helium. It serves as a valuable reference
when examining thermal contact from room temperature to cryogenic temperatures. The
effective temperature of the system can be determined from the generalized effective
temperature in Equation (33) once the temperature distribution of the system is known.
Using Equation (33), the effective temperatures for one, two, and three dimensions can be
derived as shown in Equation (21), Equation (25), and Equation (29), respectively.

The linearly non-uniform temperature distribution between liquid nitrogen and room
temperature is given by T(x) = 77 + (300 − 77)x/L, where x is the distance and L represents
the total length of the body. For the linearly non-uniform temperature distribution ranging
from 77 K to 300 K, the effective temperatures for one, two, and three dimensions are
199.2 K, 208.3 K, and 216.0 K, respectively. The average temperature is calculated as 188.5 K.
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Figure 3. The effective temperature of a linearly non-uniform temperature distribution for both
liquid nitrogen and liquid helium. In the top graph, the effective temperature ranges from 77 K to
300 K. For one, two, and three dimensions, the respective effective temperatures are 199.2 K, 208.3 K,
and 216.0 K. The bottom graph displays the effective temperature ranging from 4.2 K to 300 K. In
this range, the effective temperatures for one, two, and three dimensions are 174.4 K, 189.9 K, and
201.3 K, respectively.
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Additionally, for the linearly non-uniform temperature between liquid helium and
room temperature, the equation is given by T(x) = 4.2 + (300 − 4.2)x/L, where x is the
distance and L represents the total length of the body. For the linearly non-uniform
temperature distribution ranging from 4.2 K to 300 K, the effective temperatures for one,
two, and three dimensions are 174.4 K, 189.9 K, and 201.3 K, respectively. These values are
obtained using Equations (21), (25), and (29) to calculate the effective temperature for one,
two, and three dimensions, respectively. Equations (21), (25), and (29) can be derived from
the generalized effective temperature expression in Equation (33). The average temperature
is determined to be 152.1 K. Notably, the effective temperature of a body exceeds its average
temperature, and it increases with higher dimensions.

Figure 4 depicts the effective temperature with identical volume ratios for liquid
helium and room temperature, as well as for liquid nitrogen and room temperature. In the
top graph of Figure 4, the effective temperature is shown with the same volume ratio for
77 K and 300 K, while in the bottom graph, it is shown for 4.2 K and 300 K. It is observed
that the effective temperature increases with higher dimensions. Furthermore, the disparity
in effective temperature between the two cases decreases as the dimensionality is increased.
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Figure 4. The effective temperature illustrated for liquid helium and room temperature, as well as
for liquid nitrogen and room temperature, maintaining the same volume ratio. In the top graph,
the effective temperature is plotted for 77 K and 300 K. Similarly, the bottom graph displays the
effective temperature for 4.2 K and 300 K. Notably, the effective temperature shows an increase with
higher dimensions.

In Figure 5, the effective temperature is presented as a function of the volume ratio
for liquid helium and room temperature. The effective temperature is determined using
the generalized effective temperature equation, Equation (33). Specifically, the graph
illustrates the effective temperature with respect to the volume ratio of the 300 K volume
to the 4.2 K volume. As anticipated, the effective temperature rises as the volume ratio
increases. Moreover, it is noted that the effective temperature also escalates with increasing
dimensionality while maintaining the same volume ratio. The effective temperature for
D = 3 represents a cryogenic system and can be determined once the volume ratio of the
300 K volume to the 4.2 K volume is known. The effective temperature for D = 2 can be
applied to two-dimensional materials such as graphene, while the effective temperature for
D = 1 can be applied to one-dimensional materials such as carbon nanotubes.
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Figure 6 illustrates the effective temperature as a function of the volume ratio, specif-
ically the ratio of 300 K volume to 77 K volume. The generalized effective temperature
equation, Equation (33), is used to determine the effective temperature of the system. It
is evident that the effective temperature increases with both increasing dimensionality
and volume ratio. The effective temperature for D = 1 can be applied to one-dimensional
materials such as carbon nanotubes, while the effective temperature for D = 2 can be ap-
plied to two-dimensional materials such as graphene. The effective temperature for D = 3
represents a cryogenic system and can be determined once the volume ratio of the 300 K
volume to the 77 K volume is known.
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Coefficient of Performance (COP) is an important metric for cryogenic systems. The
ideal Coefficient of Performance (COP) for a refrigeration cycle is given by the Carnot
COP, which represents the maximum possible efficiency of a refrigeration system operating
between two temperature reservoirs. The Carnot COP for a refrigeration cycle is defined as:

COPCarnot =
Tcold

Thot − Tcold
, (34)

where Tcold is the absolute temperature of the cold reservoir and Thot is the absolute
temperature of the hot reservoir. The Carnot COP for a cryogenic system cooling from
300 K to 4.5 K is 0.0152. The Carnot COP for a cryogenic system cooling from 300 K to
2 K is 0.0067.

The generalized effective temperature can be applied to the COP. The COP for a
refrigeration or cooling system can be expressed in terms of the effective temperatures of
the hot and cold reservoirs:

COPre f rigeration =
Te f f , cold

Te f f ,hot − Te f f ,cold
, (35)

where Te f f ,cold is the absolute effective temperature of the cold reservoir (refrigerated space),
Te f f ,hot is the absolute effective temperature of the hot reservoir where heat is rejected. The
COP of a refrigeration system increases as the temperature difference between the cold and
hot reservoirs decreases. Therefore, the system performs better (higher COP) when the
temperature difference is smaller.

The figure of merit (FOM) is defined as:

FOM =
COPreal

COPCarnot
, (36)

where COPreal is the actual COP and COPCarnot represents the COP of an ideal Carnot
cycle. The FOM is approximately 0.3 or 30% for a 4.5 K cooling cryogenic system having
COPreal = 0.045, In contrast, the FOM is around 0.15 or 15% for a 2 K cooling cryogenic
system with COPreal = 0.001 [26].

The effective temperature represents the global temperature concept of a body, which
is particularly useful when the local temperature distribution across the body is non-
uniform. When seeking to determine the overall temperature of the body, calculating the
effective temperature becomes essential. This paper offers valuable insights into computing
the effective temperature for both integer and fractional dimensions, providing a useful
resource for obtaining the effective temperature of a body across various dimensional spaces.
This effective temperature can also be applied to low-dimensional materials, including
one-dimensional materials such as carbon nanotubes and two-dimensional materials such
as graphene. Additionally, it can be applied to high-energy accelerator physics, including
high-dimensional physics. This research provides valuable insights into understanding the
effective temperature of cryogenic systems, offering potential applications and benefits in
this field.

7. Conclusions

We have demonstrated the characteristics of the generalized effective temperature
across both fractional and arbitrary dimensions. Additionally, we present the energy
densities of blackbody radiation across one, two, three, and higher dimensions. The
Maxwell–Boltzmann distribution is displayed for one, two, and three dimensions, with
effective temperatures expressed for each dimension. The generalization of effective tem-
perature for non-uniform temperature distributions in various dimensions, from one to
high dimensions, is provided. Furthermore, we compute the effective temperature for
cryogenic liquids, including liquid nitrogen and liquid helium, and express the effective
temperature of linearly non-uniform temperature distributions as a function of arbitrary
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dimension. We also illustrate the effective temperature for two different temperature
distributions for liquid nitrogen and liquid helium in terms of arbitrary dimensions and
volume fractions. The effective temperature is applied to the Coefficient of Performance
(COP) in cryogenic systems. This generalized effective temperature can be useful for low-
dimensional materials, including one-dimensional materials such as carbon nanotubes,
and two-dimensional materials such as graphene, as well as for high-energy accelerator
physics, including high-dimensional physics.
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