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Abstract: The historical and cultural significance of artistic works and archaeological artifacts under-
scores the imperative use of non-destructive testing methods in cultural heritage objects. Analyzing
pigments in artwork poses a specific analytical challenge that demands a combination of various
techniques to accurately determine chemical compositions. In this context, our work focused on
the multi-analytical characterization of samples derived from fragments of a Roman-era Egyptian
mummy named Kherima, dating back to around 200 AD. To identify the layers and elemental
composition of the pigments used in the decoration, various techniques were employed: X-ray
microfluorescence (µXRF), X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared
spectroscopy (FTIR), high-resolution optical microscopy (OM), and X-ray computed microtomogra-
phy (microCT). This multi-analytical approach facilitated the identification of the original pigments
in the analyzed mummy fragments, along with insights into the materials used in the ground layer
and the techniques applied in artifact manufacturing, indicating their accordance with the historical
period and region to which they originally belonged.

Keywords: pigments analysis; non-destructive techniques; Egyptian mummy; cultural heritage

1. Introduction

The Napoleonic invasions and European colonial expansion in the 18th and 19th
centuries increased Western interest in Egyptian mummies, leading to their commercial-
ization [1]. In 1826, a shipment of Egyptian artifacts, including the mummy Kherima,
was controversially auctioned in Rio de Janeiro, where it was acquired by Emperor Dom
Pedro I [2–4]. Kherima became part of the National Museum’s collection, but much of
the museum, including Kherima, was destroyed in a 2018 fire. This study analyzes the
remaining samples of Kherima, now the last evidence of the mummy.

Kherima’s embalming technique, involving the individual wrapping of limbs and
fingers, is unique compared to the mummification practices in Egypt’s Dakhleh Oasis
during the Late Ptolemaic–Roman Period [5] and the composite mummies from Ismant
el-Kharab [6]. These distinctions underscore the singularity of Kherima’s method in the
context of ancient funerary practices.

To achieve a deeper understanding of unique practices and artifacts, this study em-
phasizes the importance of non-destructive testing methods. These techniques are essential
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for the examination of art and archaeological objects, as they enable researchers to analyze
the materials, manufacturing technologies, and cultural interactions embodied in these
artifacts [7,8]. Additionally, analyzing the composition of these objects is crucial for their
conservation and preservation, particularly given the sensitivity of certain materials to
environmental factors [9,10]. The accurate identification of pigments and pictorial layers
often necessitates the use of multiple analytical techniques, highlighting the need for non-
destructive or minimally invasive methods [11]. Non-destructive methods, which do not
require the removal of samples from the object and leave it in its original state, allow for
the re-analysis of the entire object or its parts with other techniques if further examination
is needed [12–14]. These approaches prevent damage or alteration, ensuring that artifacts
remain intact for future study and public display. Furthermore, they allow researchers to
obtain detailed information without compromising the integrity of rare or fragile items.

In cultural heritage research, non-destructive X-ray techniques, such as XRF and XRD,
are extensively employed for elemental analysis and crystalline structure characterization,
respectively [7,15–18]. When combined with Raman spectroscopy and FTIR, these methods
offer critical insights into the chemical bonds, phases, and both crystalline and molecular
structures of archaeological materials [19–22]. Additionally, X-ray imaging techniques,
including radiography and computed tomography (CT), facilitate the non-invasive exam-
ination of the internal structures of artifacts [23–27]. The integration of these techniques
enables a thorough understanding of both the elemental composition [28] and the structural
properties of materials [29–34], significantly contributing to the preservation and historical
analysis of cultural heritage objects.

Various studies highlighted demonstrate the significant progress made in analyz-
ing and understanding the composition and preservation of Egyptian artifacts through
advanced analytical techniques. The authors of [35] emphasized the need for further explo-
ration of rare pigments and the impact of conservation practices, while [36] underscored
the importance of a broader, multi-technique approach to fully comprehend preservation
processes in ancient mummies. The authors of [37] successfully identified key materials
used in ancient Egyptian paintings, though their reliance on X-ray techniques suggests
the potential for complementary methods to enhance findings. The authors of [38] pro-
vided a detailed analysis of cartonnage layers, identifying various pigments and binders,
contributing valuable insights into the materials used. The authors of [22] effectively distin-
guished between original and restored pigments on a 21st Dynasty coffin, illustrating the
importance of non-invasive techniques in restoration studies. Finally, [39] advanced the
understanding of cartonnage stratigraphy and pigment composition through multispectral
analysis. Additionally, [40] utilized a multi-analytical approach to study pigments from
a Late Dynastic Period sarcophagus cover, demonstrating the effectiveness of combining
SEM-EDXS, ATR-FTIR, Raman spectroscopy, and VIL to thoroughly understand pigment
composition and detect organic binders. Collectively, these studies underscore the need
for continued research using a diverse range of analytical methods to further unravel the
complexities of ancient Egyptian artifacts and their preservation.

Ref. [4] utilized synchrotron-based X-ray microfluorescence to investigate the pig-
ments on the sarcophagus of the Egyptian mummy Kherima, identifying key pigments
such as Egyptian blue, verdigris, and ochre. Hierarchical cluster analysis and principal
component analysis were applied to assess whether the sarcophagus samples were con-
temporaneous with a linen fragment used in the mummy’s wrappings. While the study
provides valuable insights through µXRF with synchrotron radiation, it is constrained by
the lack of complementary analytical techniques and a broader comparative framework.
These limitations highlight the need for more comprehensive research to enhance our
understanding of ancient Egyptian pigments and their preservation. In response to these
gaps, the present study seeks to characterize the pigments, preparation layers, and linen
samples from cartonnage and decorated linen using a suite of techniques, including µXRF,
XRD, FTIR, Raman spectroscopy, and microCT. Furthermore, this study aims to correlate
the pigments identified in the linen from the mummy’s chest with those found in the
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cartonnage and to situate these materials and techniques within the broader context of the
historical period to which the artifact belongs.

2. Materials and Methods

Two cartonnage samples from the mummy Kherima were examined, each measur-
ing 3 to 4 cm in length. Despite their age, these samples show a yellowish background
color with black outlines, with greenish and pink pigments in specific areas. Addition-
ally, exposed ground layers were observed in some parts of the cartonnage. An analy-
sis was conducted on a decorated linen sample that covered the chest of the mummy
Kherima. This linen piece is approximately 15 cm long and exhibits degraded pigments
(Figures 1 and 2). Table 1 displays the points shown in cartonnage samples (Figure 1) along
with their corresponding colors and the layer to which they belong.
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Table 1. Colors found in the cartonnage samples.

Points Layer Color

1 Pigment Red/Pink
2 Pigment Black
3 Pigment Greenish
4 Pigment Yellow
5 Ground White

Figure 2 illustrates the linen sample, with marked points representing the various
shades observed in the decoration. These shades are detailed in Table 2.

µXRF: Pigment and preparation layers in the samples were analyzed using µXRF to
investigate elemental composition and spatial distribution. The analyses utilized the M4
Tornado spectrometer (Bruker, Berlin, Germany), featuring computer-controlled operation
and a vacuum pump to enhance detection sensitivity for low atomic number elements.
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Samples were positioned on a triaxial stage driven by stepper motors eliminating the
need for sample preparation. The system maintained a fixed geometry between the X-ray
tube and detector at a 30◦ incident angle. The X-ray tube, equipped with a rhodium
(Rh) anode operating at 30 W (50 kV and 600 µA), employed capillary collimation to
achieve a focal point of approximately 25 µm on the sample. A silicon drift detector (SDD)
semiconductor with a 30 mm2 effective area provided high resolution and accommodated
up to 250,000 counts per second for the manganese Kα line.

Table 2. Colors found in the linen sample.

Points Layer Color

1 Pigment Red/Pink
2 Pigment Black
6 Pigment Brown

Two experimental configurations were employed to optimize detection: one for ele-
ments with atomic numbers below 20 and another for elements above 20. Samples were
mounted on a support with a thin film base to minimize interference during measurements.
Table 3 presents the experimental configurations for the XRF analyses of the cartonnage
samples. The XRF spectra were analyzed using PyMCA version 3.9.4, provided by the
European Synchrotron Radiation Facility (ESRF), which is specifically designed for the
processing of X-ray fluorescence data. Two-dimensional maps were generated using the
software associated with the M4 Tornado spectrometer.

Table 3. Experimental setups for µXRF analyses of cartonnage samples.

µXRF Setup

Elements with low Z

Voltage 20 kV
Current 400 µA

Time per pixel 100 ms
Cycles 3
Filter Not used

Pixel size 200 µm
Vacuum Yes

Elements with high Z

Voltage 50 kV
Current 600 µA

Time per pixel 100 ms
Cycles 3
Filter Not used

Pixel size 200 µm
Vacuum No

XRD: The XRD technique was utilized to analyze the preparation layers, with a small
amount of material scraped from the cartonnage samples using a steel-blade scalpel, which
was then placed in the sample holder. Measurements were conducted with the D2 Phaser
(Bruker, Billerica, MA, USA), a diffractometer operating in the Bragg–Brentano geometry.
This instrument features a LYNXEYE XE-T detector, a copper (Cu) anode X-ray tube
emitting a characteristic line at 1.541 Å/8.047 keV (Cu-Kα1), and a maximum power of
300 W (30 kV × 10 mA). Additionally, it includes an integrated flat-panel monitor and
DIFFRAC (Eva™ by BRUKER) analysis software v.3.2.

The cartonnage samples were placed in a sample holder with an approximate diameter
of 25 mm. The instrument is equipped with automatic goniometric alignment and offers an
angular precision of ±0.002◦ across the range of −2◦ to 150◦ in 2θ. Measurements were
performed at a voltage of 30 kV and a current of 10 mA, with a scanning range from 20◦ to
100◦ and a step size of 0.1◦.

Raman spectroscopy: Raman spectroscopy analyses were performed on samples of
black pigment (point a), yellow pigment (point b), and the preparation layers (points c and
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d) from the cartonnage sample. Figure 3 depicts the points analyzed using this technique.
Measurements were conducted using a LabRam HR Evolution spectrometer (Horiba Jobin
Yvon, Paris, France).
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Figure 3. Points analyzed in the cartonnage sample via Raman spectroscopy.

The samples were excited with laser lines at 488 nm, 514 nm, 633 nm, and 785 nm
(selected for optimal quality), and the emitted light was captured using a microscope
objective at 100x magnification. Spectra were obtained within the range of 100–2000 cm−1

using a 600 lines/mm grating, with a 2 s acquisition time and 5 accumulations.
FTIR: The FTIR analyses were performed in the mid-infrared region (400–4000 cm−1)

using a Vertex 70v FT-IR spectrometer (Bruker, Berlin, Germany), applying the transmission
method. This involved preparing tablets by mixing 2 mg of the sample with 100 mg of
KBr. Absorbance spectra were collected with a resolution of 2 cm−1 and 32 scans for
each sample.

The samples were prepared as pellets consisting of a mixture of 2 mg of pigment
extracted from cartonnage and 100 mg of KBr, both ground into a fine powder and subse-
quently pressed using a hydraulic press. The resulting pellets were placed in the sample
holder of the spectrometer. Sampling was conducted for the pink pigment (point 1), the
greenish pigment (point 2), and the yellow pigment (point 3). The sampling points are
depicted in Figure 4.
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MicroCT: The cartonnage sample’s structure (Figure 4) was analyzed using microCT.
The microCT images were acquired using the Phoenix Vtomex system (General Electric
Company, Hürth, Germany), which includes a microfocus X-ray tube with a maximum
voltage of 300 kV and a maximum power of 500 W, along with a digital a-Si detector array
measuring 410 mm × 410 mm, featuring a pixel size of 200 µm and 14-bit depth. Scanning
parameters included a voltage of 60 kV, a current of 310 µA, and a voxel size of 20 µm. The
acquisition time was 250 ms per step, with projections obtained over 360◦ at intervals of
0.20◦. Table 4 presents the experimental configurations employed for data acquisition.
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Table 4. Experimental setups used for the microCT measurements of the car tonnage sample.

Micro-CT Experimental Setups

Voltage 60 kV
Current 310 µA

Voxel size 20 µm
Acquisition time 250 ms/step

Step 0.20◦

3. Results and Discussion
3.1. Cartonnage

A stratigraphic analysis was performed on a cross-sectional fragment of cartonnage,
measuring approximately 8 mm thick (Figure 5). µXRF measurements were conducted on
the linen of the cartonnage samples to determine the elemental composition of the white
linen material, which was free from pigments.

Quantum Beam Sci. 2024, 8, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 4. Pigment points analyzed using the FTIR technique. 

MicroCT: The cartonnage sample’s structure (Figure 4) was analyzed using mi-
croCT. The microCT images were acquired using the Phoenix Vtomex system (General 
Electric Company, Hürth, Germany), which includes a microfocus X-ray tube with a 
maximum voltage of 300 kV and a maximum power of 500 W, along with a digital a-Si 
detector array measuring 410 mm × 410 mm, featuring a pixel size of 200 µm and 14-bit 
depth. Scanning parameters included a voltage of 60 kV, a  current of 310 µA, and a 
voxel size of 20 µm. The acquisition time was 250 ms per step, with projections obtained 
over 360° at intervals of 0.20°. Table 4 presents the experimental configurations employed 
for data acquisition. 

Table 4. Experimental setups used for the microCT measurements of the car tonnage sample. 

Micro-CT Experimental Setups 
Voltage 60 kV 
Current 310 µA 

Voxel size 20 µm 
Acquisition time 250 ms/step 

Step 0.20° 

3. Results and Discussion 
3.1. Cartonnage 

A stratigraphic analysis was performed on a cross-sectional fragment of carton-
nage, measuring approximately 8 mm thick (Figure 5). µXRF measurements were 
conducted on the linen of the cartonnage samples to determine the elemental compo-
sition of the white linen material, which was free from pigments. 

 
Figure 5. Cartonnage fragment subjected to cross-sectional analysis. 

Figure 5. Cartonnage fragment subjected to cross-sectional analysis.

Subsequently, a µ-XRF elemental distribution map of the cartonnage fragment cross-
section was generated to investigate potential multiple ground layers (Figure 6). This
mapping revealed two distinct underlying structures. Analysis showed that the lower
layer is predominantly composed of calcium, while the upper layer, although thin, contains
both calcium and sulfur. Eleven elements were detected using µXRF: magnesium (Mg),
aluminum (Al), silicon (Si), sulfur (S), chlorine (Cl), potassium (K), calcium (Ca), titanium
(Ti), manganese (Mn), iron (Fe), and arsenic (As). The µXRF spectra of the preparation
layers are shown in Figures 7 and 8. The presence of chlorine in the preparation layers is
likely associated with halite salt present in Natron (Na2CO3, NaHCO3, NaCl, and Na2SO4),
potentially due to contact with the mummified body [41,42].
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Raman spectroscopy analyses directly examined the ground layers. However, FTIR
analyses focused on the pigments. Raman spectroscopy (Figure 9) identified specific bands
corresponding to calcite (CaCO3) in the first ground layer (163, 284, and 1085 cm−1) and
gypsum (CaSO4 2H2O) in the second layer (1010 and 1120 cm−1) [43,44].
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Table 5 summarizes the results obtained from µXRF and Raman spectroscopy analyses
of the cartonnage sample’s ground layers.
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Table 5. Analysis of ground layers.

Ground Layers

Technique First/Lower Layer Second/Upper Layer

µ-XRF (elements) Mg, Al, Si, S, Cl,
K, Ca, Ti, Mn, Fe, As Si, S, Cl, K, Ca, Fe

Raman (bands in cm−1) 163, 284, 1085 1010, 1120

The cartonnage sample’s structure was further analyzed using microCT imaging
(Figure 10), revealing uniform distributions in both the ground layers (white region) and
the linen section (blue region). Figure 10 highlights the high-density material (represented
by red points) distributed on the cartonnage surface. This finding supports the results
from µXRF, Raman spectroscopy, and FTIR analyses, suggesting that the internal ground
layer is composed of less dense calcite, while the external ground layer is likely gypsum
(CaSO4·0.5H2O) or anhydrite (CaSO4). The densities of these materials are 2.71 g/cm3 for
calcite, 2.98 g/cm3 for anhydrite, and 2.31 g/cm3 for gypsum. Therefore, the microCT data
suggest that the red points in the images may be anhydrite crystals.
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Figure 10. Analysis of the cartonnage using microCT technique.

These results are consistent with previous studies reporting ground layers composed
of gypsum, calcite, and anhydrite, with possible variations in layer order and occasionally
other ground layers [35,38,41]. The author of [45] investigated cartonnage fragments from
the 1st century A.D. (Roman Period) and found comparable results. His analysis revealed
two preparation layers: a lower layer predominantly made of calcite and an upper layer
containing gypsum, hemi-hydrated quartz (SiO2), and occasionally anhydrite and halite
(NaCl). Scott’s research indicated that two preparation layers were sometimes applied: a
coarser lower layer and a finer upper layer, which could include materials such as calcite,
magnesite/dolomite (CaMg(CO3)4), and lead white (Pb3(CO3)2(OH)2), among others. This
stratigraphy was designed to provide a smoother and purer white base for the subsequent
pictorial layer.

The four pigments in the paint layer of the cartonnage were analyzed using µXRF
(Figure 11) and FTIR techniques (Figure 12). Additionally, Raman spectroscopy was
employed specifically to examine the yellow and black pigments (as shown in Figure 9).

White Background. The white background spectrum (Figure 11) shows a predomi-
nance of calcium, which is a common component of the base layer and is consistent across
all analyzed points. Silicon, strontium, and iron are also present, but their roles or origins
are not definitively established [46]. The presence of the calcium mineral is confirmed
by the FTIR spectra (Figure 12), where it is possible to visualize the bands 711, 878, and
1402 cm−1, which can be attributed to calcite (CaCO3). Bands at around 1032 and 1132 cm−1

were also visualized in the spectra, which can be related to the Si-O bond indicating the
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presence of quartz (SiO4). Even the band at 984 cm−1 can be associated with the vibration
of the Al(OH) structure, present in the mineral kaolinite [Al2Si2O5(OH)4]. All these bands
were detected in all FTIR spectra recorded, justifying the detection of calcium and silicon at
all points where elemental analysis was performed. [44,47]
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Red/Pink pigment. Analysis of the red/pink pigment using µXRF and FTIR revealed
a significant presence of aluminum. Raman spectroscopy was not feasible due to induced
fluorescence interference with Raman bands. The FTIR band at 667 cm−1, associated with
Al-O vibrations, suggests the presence of hydrated alumina (Al2O3 3H2O). µXRF images
indicate a high intensity of aluminum in the pink pigment area (Figure 13). This suggests
the use of a pigment like Madder Lake, derived from red dyes extracted from Rubia species
roots and dissolved in alumina, tin chloride, and other substances. This dyeing method
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was likely introduced to Egypt during the Eighteenth Dynasty (1550–1292 BCE). The rarity
of Madder Lake implies the artifact’s uniqueness [48–50].
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Yellow pigment. The yellow paint layer was analyzed using µXRF and Raman spec-
troscopy. µXRF revealed high concentrations of arsenic and iron (Figure 13). The pres-
ence of arsenic suggests pigments such as Realgar (As4S4) or Orpiment (As2S3), with
Raman spectroscopy confirming Realgar through bands at 133, 149, 199, 288, 306, 352, and
379 cm−1 [22,51,52]. Realgar was likely imported from regions like Kurdistan or Cyprus
and was used extensively in Egyptian art from the Middle Kingdom to the end of the Third
Intermediate Period [53]. The detection of arsenic and iron elements in pigment-containing
areas supports the presence of a Realgar and Goethite mixture in the analyzed carton-
nage sample, consistent with earlier studies on artifacts from the early Roman Period [35].
Figure 14 presents a 100× magnified image of the yellow pigment showing an arsenic grain
and a white grain identified as anhydrite due to its high sulfur content. This supports the
hypothesis of gypsum in the outer ground layer.
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Greenish Pigment. The greenish pigment analysis identified the presence of mer-
cury, suggesting the use of Vermilion (HgS). Over time, Vermilion can darken due to
environmental factors such as humidity and light [8]. This phenomenon occurs due to
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the transformation of the trigonal structure α-HgS (cinnabar), which has a red hue, into
the cubic structure β-HgS (metacinnabar) with a black hue. The distribution of mercury
elemental mapping (Figure 15) corroborates this identification, where the Hg mapping is
associated with regions where in the visible image it has a black hue [54,55]. Vermilion’s
presence indicates that the mummy Kherima held a high social status, as it was a rare and
valuable pigment [45,53].
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The µXRF spectrum showed a significant silicon peak, suggesting Egyptian blue or
green pigment (CaO.CuO.4SiO2) may also be present. Egyptian blue, like Vermilion, can
darken over time due to varnish application [10]. The Malachite pigment is typically
identified by FTIR through the vibrational modes of CO3 at 878 and 1402 cm−1, which are
also characteristic of calcite. However, in the spectrum of the greenish pigment (Figure 12),
a broadening of the band around 1402 cm−1 is observed. This broadening may be attributed
to the presence of a reinforcing band near 1469 cm−1, also associated with Malachite, which
exhibits two distinctive bands within the 1300–1500 cm−1 region [56–59].

Black Pigment. Raman spectroscopy of the black pigment revealed characteristic bands
around 1346 and 1535 cm−1, indicating Carbon Black pigment (Ca5(OH)(PO4)3) [40,60,61].
This aligns with ancient Egyptian practices of using carbon-based compounds such as soot,
charcoal, or burned animal bones for black pigments [62].

In all pigments. The FTIR peak observed at 1635 cm−1 may indicate the presence of
proteins, suggesting the use of a binder in the painting, likely pointing to the application of
tempera [63,64]. Additionally, the peaks at 3154 and 3436 cm−1, also present in all analyzed
pigments, are indicative of the stretching vibrations of water, suggesting moisture in the
analyzed samples [59,64,65].

Microscopy and Additional Analysis. High-resolution optical microscopy (OM) pro-
vided insights into the degradation characteristics of pigments and materials in the car-
tonnage. Figure 16a,b show dark areas and changes in texture indicative of degradation
over time [66]. Microscopic analysis also revealed green crystals likely corresponding
to Malachite pigment (Cu2(CO3)2(OH)2). µXRF and FTIR analyses further support the
presence of Egyptian blue or green pigment (CaO·CuO·4SiO2).

Figure 17a,b show µXRF elemental distribution maps of sulfur (S) and copper (Cu).
The spatial correlation of these elements suggests a potential link to the dark pigmentation
observed in this cartonnage region. This dark coloration may be due to compounds such as
iron (II) sulfide (FeS), iron (III) sulfide (Fe2S3), or iron and copper sulfide (FeCuS2). Mercury
(Hg) highlighted in purple in Figure 17b, detected in the red-colored region, supports the
use of Vermilion (HgS). Cinnabar can degrade into metacinnabar (HgSx), which appears
darker, consistent with the images in Figures 3 and 16a [67,68].

The results obtained are summarized and presented in Table 6, and XRF spectra are
shown in Figure 11.
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Table 6. Analysis of pigments.

Pigment XRF (Elements) FTIR
(Bands in cm−1)

Raman
(Bands in cm−1)

Yellow Al, Si, S, Cl, K, Ca,
Ti, Mn, Fe, As, Sr - 133, 149, 199, 288, 306, 352, 379

Red/Pink Al, Si, S, Cl, K, Ca,
Ti, Mn, Fe, As, Sr 667 -

Greenish
Al, Si, S, Cl, K, Ca, Ti,
Mn, Fe, Cu, Hg, As,

Sr
878, 1402 -

Black - - 1346, 1535

3.2. Linen

Figure 18 presents the analyzed linen sample, while Figure 19 illustrates the XRD
spectrum obtained from the analysis of the fiber of the linen.
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XRD analysis of the linen provided insights into the composition of both the fabric
and the black pigment, while µXRF identified the elements present in the fabric, suggesting
potential pigments used in its dyeing. The results and spectra are presented in Table 7 and
Figure 20.
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Linen Fiber. Using the XRD technique, it was possible to detect the compounds:
gypsum, bassanite, and anhydrite, commonly employed for shaping linen and as a ground
layer [35,38,41]. The chlorine detected via µXRF likely originates from halite salts found in
the Natron used during embalming.
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Pink Pigment. The pink pigment analyzed by µXRF was found to contain aluminum,
sulfur, and calcium as its primary elements. The presence of aluminum likely indicates
the use of hydrated alumina, suggesting that a red pigment such as Madder Lake was
employed [48,49], thereby contributing to the pink pigment observed in the cartonnage
sample. Additionally, the presence of arsenic implies that pigments such as Realgar or
Orpiment, which are often blended to produce brighter hues [38], were also used. XRD
analysis did not provide conclusive information regarding the composition of the red/pink
pigment. Consequently, while the µXRF analysis is qualitative, the detected elements
suggest that the red pigment is probably a mixture of Madder Lake with Realgar (As4S4) or
Orpiment (As2S3) [69].

Brown Pigment. The µXRF technique enabled the detection of 11 elements: silicon,
sulfur, chlorine, potassium, calcium, titanium, manganese, iron, copper, zinc, and arsenic.
The analysis of the brown pigment detected a significantly higher count of copper compared
to the linen fiber without pigment. This suggests the pigment may be green, resembling
Malachite (Cu2(CO3)2(OH)2), rather than brown.

Black Pigment. µXRF analysis was inconclusive in characterizing the black pigment,
but XRD analysis identified graphite (C) and hydroxyapatite (Ca5(OH)(PO4)3), suggesting
that it might be Carbon Black [53,70]. This information indicates that the black pigment
used in the decorated linen is the same pigment used in its cartonnage.

The analyses conducted on the cartonnages, and decorated linen samples enabled
the characterization of the preparation layers and pigments utilized. Table 8 summarizes
the results obtained for the characterization of the ground layers and pigments in the
cartonnages and decorated linen samples.

Table 8. Proposed characterization of the ground layers and pigments in the cartonnages and
decorated linen samples.

Sample Layer/Pigment Techniques
Employed Suggested Pigments

Cartonnages

Internal
Ground Layer

µXRF, Raman, FTIR,
microCT Calcite

External
Ground Layer µXRF, Raman, FTIR Plaster

Yellow µXRF, Raman, FTIR Realgar/Orpiment
Red/Pink µXRF, FTIR Madder Lake

Greenish µXRF, FTIR Vermilion and Egyptian
Blue/Green or Malachite

Black µXRF, Raman Carbon Black

Linen

Base Layer/Fiber µXRF, XRD Plaster and Calcite

Red/Pink µXRF Madder Lake and
Orpiment

Black µXRF, XRD Carbon Black
Brown µXRF Malachite

4. Conclusions

This study offers a comprehensive multi-analytical characterization of the pigments
and materials used in the decorative paintings of the cartonnage and linen covering the
mummy Kherima. Through the integration of techniques such as µXRF, XRD, FTIR, Raman
spectroscopy, and microCT, the research successfully revealed new details about the arti-
fact’s chemical composition, identified the pigments and ground layers utilized by ancient
Egyptian artists, and provided fresh insights into their artistic practices.

The analysis revealed that the cartonnage was constructed with a linen base, overlaid
with a calcite-rich layer. The instrumental investigation identified the use of both traditional
and complex pigments from the Egyptian color palette in the cartonnage’s decoration,
including Orpiment, Vermilion, Malachite, Egyptian blue, Realgar, and Carbon Black. The
white pigment in the linen sample was determined to be a combination of calcite and
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quartz, while the red pigments were confirmed as Orpiment and Madder Lake. Although
the precise composition of the green pigment remains unresolved, it is hypothesized to be
a mixture of Vermilion and either Egyptian blue or Malachite.

Despite these significant findings, further investigations are necessary to identify the
organic compounds that constitute the paintings, particularly the binders used. Under-
standing these organic components is crucial for a more complete picture of the materials
and techniques employed by ancient Egyptian artists.
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47. Klisińska-Kopacz, A.; Fraczek, P.; Obarzanowski, M.; Czop, J. Non-invasive study of pigment palette used by Olga Boznańska
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