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Abstract: This work investigates the enhancement of optical energy in the synchronized dynamics
of three erbium-doped fiber lasers (EDFLs) that are diffusively coupled in a unidirectional ring
configuration without the need for external pump modulation. Before the system shows stable high-
energy pulses, different dynamic behaviors can be observed in the dynamics of the coupled lasers.
The evolution of the studied system was analyzed using different techniques for different values
of coupling strength. The system shows the well-known dynamic behavior towards chaos at weak
coupling, starting with a fixed point at low coupling and passing through Hopf and torus bifurcations
as the coupling strength increases. An interesting finding emerged at high coupling strengths, where
phase locking occurs between the frequencies of the three lasers of the system. This phase-locking
leads to a significant increase in the peak energy of the EDFL pulses, effectively converting the
emission into short, high amplitude pulses. With this method, it is possible to significantly increase
the peak energy of the laser compared to a continuous EDFL single pulse.

Keywords: optical energy; laser; network; ring; dynamics; phase-locking; coupling

1. Introduction

In recent years, the demand for high-power short-pulse lasers for various applications
such as cutting, welding, surgery, material processing, photonic materials, and especially
for optical communication has increased significantly [1–7] to maintain the transmission of
the optical signal over a long distance without repetitive amplifiers. Recently, we were able
to achieve giant pulses in the EDFL array by selectively controlling the multistability [8].
In addition, the temporal phase-locking among intensities of the lasers is considered one of
the methods to generate high-energy ultrashort laser pulses, which can be either active or
passive. Through this paper, we will refer to this technique as phase locking. Since 1964 [9],
various phase-locking resonators have been developed for a fiber laser. These resonators
require a complex, controllable amplitude and phase modulator. There are also several
passive phase-locking techniques, such as a saturable semiconductor absorber [10,11],
nonlinear polarization rotation [12,13], nonlinear optical loop mirror [14] and nonlinear
amplifier loop mirror [15].

Among the different types of fiber lasers, EDFLs stand out from other devices due
to their advantages in applications for optical information transmission systems, as their
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implementation and optical components are small and their handling is simple; The laser
emission of an EDFL is at 1550 nm, which is optimal for communication applications
due to the low absorption of this type of radiation in the optical fibers [16], and; some
results show that EDFLs exhibit rich dynamic behavior, including period doubling, chaos,
and multistability [17,18]. As mentioned above, EDFLs have some properties known for
use in optical communication [3,19], but also other applications, such as optical coher-
ence tomography [20], spectral interferometry [21], optical metrology [22], optical sensor
technology [23], industrial micromachining [24], LIDAR systems [25] and medicine [26].

Isolated oscillators follow a simple path in phase space. When two or more of these
systems are connected, the probability of possible complex behaviors becomes high and the
equations that define their behavior become intractable. Every oscillator is only able to in-
teract with a limited number of nearby neighbors. [27]. When considering different coupled
network structures [28], the connection of three nodes in a ring arrangement is of particular
interest as it could allow the occurrence of a phenomenon called rotating phase oscillations
(RPO) along the coupled nodes [29–32]. This oscillation phenomenon was first described on
the basis of results in ring reactors of reaction-diffusion systems [33,34]. In 1966, Nekorkin
and others showed the phenomenon of traveling oscillations in a ring of connected bistable
systems that preserve sinusoidal nonlinear dynamics [35]. It is important to emphasize
that unidirectional coupling is particularly important as It enables the transmission of a
signal from one subsystem to another without receiving any feedback. In particular, unidi-
rectional coupling in motif-ring arrays has been found to induce phase synchronization,
which leads to a significant increase in peak pulse energy through mechanisms such as
Q-switching [36]. In addition, unidirectional coupling is often used in electrical systems
based on the models of Duffing [37], Chua [38] and Lorenz [39,40], where RPO was ob-
tained. As the coupling strength changed, rings of unidirectionally coupled oscillators
showed an evolution from stable equilibrium to quasiperiodicity. Subsequently, there is
a change to chaos and hyperchaos as in the Rulkov [41], Duffing [42] and Lorenz [39,43]
oscillator results.

However, one of the challenges is to increase the optical energy output of EDFLs
without introducing external modulation, which can complicate system design and reduce
reliability. A promising approach to overcome this challenge is the synchronization of
multiple EDFLs in a motif array configuration [8]. This work investigates the potential to
increase the optical energy in a coupled motif-ring array of autonomous EDFLs by carefully
tuning the coupling strength between the lasers. To achieve this, we analyze the evolution
of the behavior in the system using different characterization techniques based on the study
of the obtained time series. In previous results, Barba-Franco et. al. have shown that the
dynamics of this three-ring node network, while similar to other coupled systems, still
exhibit unique properties specific to laser systems [42].

The organization of this paper is: The model of a single EDFL without pump modula-
tion is described in detail in Section 2. Section 3 outlines the model for three ring-connected
EDFLs. Section 4 analyzes the resulting energy and the phase-locking phenomenon as
an advantage to synchronize the laser’s emission. The main conclusions are presented in
Section 5.

2. Autonomous EDFL Model

The emission of a single-mode laser is described by three differential equations, where
the primary state variables are the optical field, the population inversion and the polariza-
tion. The decay rates of these variables differ depending on the laser type (A, B or C). If the
value of one variable is significantly greater than the others, it decays faster, which allows
the equations to be simplified. For class A lasers, the population inversion and polarization
decay quickly in relation to the optical field. For class B lasers, only the polarization decays
quickly. For class C lasers, all three variables have similar decay rates. Consequently,
the solution to the equations for Class A lasers is a single stable fixed point. For Class B
lasers, the solution is a fixed focal point that attracts the phase trajectory in the optical field
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and population inversion space, leading to relaxation oscillations. Class C lasers exhibit
undamped periodic or non-periodic (chaotic) pulsations. In addition, Class B lasers may
exhibit periodic or chaotic oscillations when subjected to periodic external forces or delayed
feedback on any of the laser parameters or variables.

The EDFL discussed in this paper is classified as a class B laser, similar to solid-state
lasers, semiconductor lasers and externally discharged gas lasers (such as CO2 and CO
lasers) [44]. The basic dynamic properties of the EDFL are very similar to those of other class
B lasers. In particular, the polarization is adiabatically eliminated and the laser dynamics
is described by two rate equations for the field and population inversion, with multiple
routes to chaos identified. However, despite the extensive research on EDFLs, the dynamics
of networks of coupled EDFLs has not yet been thoroughly explored.

To know what the dynamics of the laser-pumped EDFL looks like, a power balance
approach is used that takes into account the excited state absorption (ESA) in erbium at
the 1.5-µm wavelength and averages the population inversion along the pumped active
fiber. This model accounts for key factors such as the ESA at the laser wavelength and the
depletion of the pump wave as it propagates along the active fiber, resulting in undamped
self-oscillations in the laser that are observed experimentally without external modula-
tion [18,45,46]. The balance equations for the laser power P (the sum of the powers of the
counterpropagating waves inside the cavity, measured in s−1) and the averaged population
y of the upper level (a dimensionless variable, 0 ≤ y ≤ 1) are defined as follows.

Ṗ =
2L
Tr

P{rwα0(N[ξ − η]− 1)− αth}+ Psp

Ṅ = −σ12rwP
πr2

0
(ξN − 1)− N

τ
+ Ppump.

(1)

In this context, L refers to the length of the erbium-doped fiber (EDF), and
Tr = 2n0(L+l0)

c represents the photon lifetime within the cavity, where l0 takes into ac-
count the tails within the cavity of the fiber Bragg grating couplers (FBG). The variable
P corresponds to the laser emission within the cavity and serves as an initial condition.

The other parameters in the Equation (1) include rw = 1 + exp
[

2
(

r0
w0

)2
]

, a factor that

quantifies the match between the fundamental mode of the laser and the erbium-doped
core volumes within the active fiber, where r0 is the fiber core radius and w0 is the radius
of the fundamental mode of the fiber. The small-signal absorption of the erbium fiber at
the laser emission wavelength is denoted by α0 = N0σ12, where N0 = N1 + N2 is the total
number of erbium ions in the active fiber. The population N of the upper laser level 2 is
expressed as:

N =
1

n0L

∫ L

0
N2(z)dz, (2)

here N2 denotes the inversion of population of the upper laser level “2”, and n0 is the
refractive index of a “cold” EDF core. The coefficient in brackets represents the ratio
between the cross-section absorption in the excited state (ESA) σ23 and the absorption cross-
sections in the ground state at the laser wavelength. More precisely: ξ = σ12+σ21

σ12
= 2 and

η = σ23
σ12

. It is important to note that the cross-section σ12 of the return stimulated transition
has almost the same energy. The cavity loss parameter is given by αth and is defined as
αth = γ0 +

1
2L ln

(
1
R

)
at the initial lasing, where γ0 corresponds to the non-resonant fiber

loss and R is the reflection coefficient of the FBG couplers. The spontaneous emission into
the fundamental laser mode is defined as

Psp =
10−3N

τTr

(
λg

w0

)2 r2
0α0L

4π2σ12
(3)
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for which τ, given in seconds, is the time duration of the erbium ions in state 2 and λg is
the laser wavelength. Finally, the pump power Ppump is defined as

Ppump = Pp
1 − exp[−βα0L(1 − N)]

n0πr2
0L

, (4)

where Pp stands for the light emitted by a pump laser diode at the fiber input and the
parameter β = αp/α0 defines the relationship between the absorption coefficients of the
erbium fiber at the pump wavelength λp and the laser wavelength λg. In this study, the laser
spectrum has a width equal to 10−3 of the spectral bandwidth of erbium luminescence. It
should be noted that Equation (1) represents an autonomous EDFL, which operates in a
fixed-point regime.

The given model uses parameters feed from real values corresponding to an experi-
mental EDFL with an active EDF. In this case, the EDF has a length L = 80 cm [47]. Another
parameter for which real values are used is the refractive index n0 = 1.45, the tails inside
the cavity l0 = 20 cm, the time a photon remains in the laser cavity Tr = 8.7 ns, the half of
the fiber core diameter r0 = 1.5, cm and the half of the diameter of the fundamental fiber
core w0 = 3.5 × 10−4 cm. The last value was measured experimentally and was slightly
higher than 2.5 × 10−4 cm, which is derived from the definition for single-mode fiber with
step index w0 = r0(0.65 + 1.619/V1.5 + 2.879/V6), with the parameter V, that refers to the
numerical aperture NA and r0 as V = 2πr0NA/λg, with the values r0 and w0 results in
rw = 0.308.

Table 1, presents the coefficients that characterize the resonance absorption properties
of the erbium-doped fiber at both laser and pump wavelengths for a heavily doped fiber
with an erbium concentration of 2300 ppm.

Table 1. Coefficients used in numerical simulations.

Coefficient Value Coefficient Value Coefficient Value

α0 0.4 cm−1 β 0.5 σ12 2.3 × 10−21 cm2

ξ 2.0 η 0.4 σ21 2.3 × 10−21 cm2

τ 10−2 s γ0 0.038 σ23 2.3 × 10−21 cm2

R 0.8 αth 0.6 × 10−21 cm2 λg 1.56 × 10−4 cm

Finally, the emission wavelength λg = 1.56 × 10−4 cm (hν = 1.274 × 10−19 J) and this
value is given by the one experimentally obtained, with the maximum reflection coefficients
of both fiber Bragg gratings (BGs) centered on this wavelength, as shown in [48]. The pump
parameters are the excess of the laser threshold ε, which is defined as Pp = εPth, where the
pump power of the threshold is

Pth =
Nth
τ

n0Lπw2
p

1 − exp[−α0Lβ(1 − Nth)]
(5)

and the threshold population of the level “2”

Nth =
1
ξ

(
1 +

αth
rwα0.

)
(6)

By numerical simulation of Equation (1), the time series data show the evolution of
the dynamics in the EDFL. To simulate the behavior of the laser, parameters were used that
are very close to those of the experimental setup described in [49]. Here, a pump power
of P0

p = 7.4 × 1019 s−1 was chosen, which corresponds to the value required to achieve a
relaxation oscillation frequency of the laser of f0 = 28.724 kHz, as shown in the time series
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and Fourier spectrum in Figure 1 (left) and Figure 1 (right) respectively. The solution of the
laser Equation (1) is a stable fixed point.

Figure 1. Each laser shows a (left) time series of the relaxing oscillation and (right) the corresponding
relaxation frequency fr for the autonomous EDFL described by the Equation (1).Original data obtained
from the numerical simulation of our experiments please see Supplementary Materails.

3. Evolution of the System to Achieve Stable Energy

Ring-shaped connected systems can be understood as a cyclic sequence of interac-
tions [50]. Even for simple network motifs consisting of only three oscillators, there are
thirteen ways in which they can be coupled [51]. As mentioned above, in this work we
focus on studying the energy of the simplest network of three unidirectionally coupled
EDFLs, and its evolution while the coupling strength k increases where each laser injects
radiation into the next device in the link, as shown in the schematic representation in
Figure 2. The lasers studied have no modulation and are therefore in a fixed-point regime
with minimum energy, but by increasing the coupling between the lasers in the ring it is
possible to observe different behaviors before obtaining a signal with stable energy many
times greater than the initial energy. The following pages explain how the system behavior
develops until a maximum energy value is reached. Using the normalized equations from
Equation (1) as presented in [52,53], the dynamic behavior of this ring is described by the
following differential equations for the laser intensity xj (j = 1, 2, 3) and the population
inversion yj (Equations (7) and (8)):

dxj

dt
= axjyj − bxj + c(yj + 0.3075) (7)

dyj

dt
= dxjyj − (yj + 0.3075) + Ppmodj

(1 − e−18(1−
1−(yj+0.3075)

0.6150 )) (8)

with pumping
Ppmodj

= 506(1 + k(xj−1 − xj)) (9)

with 0 < k < 0.20 as the coupling coefficient, having a = 6.620 × 107, b = 7.4151 × 106,
c = 0.0163, and d = 4.0763 × 103. The lasers are coupled in a diffusive form which means
that for laser 1 We add a term k ∗ (x2 − x1), as Equation (9) mentions, which means that
laser 1 is coupled with laser 2, and “k” is the coupling strength. Similarly, the coupling
between laser 2 with laser 3, and laser 3 with laser 1 is implemented. Also, We must consider
that a change in the parameter k directly affects the pump power, then the behavior of the
system could change after a threshold value for k.
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Figure 2. Schematic arrangement of a three EDFL in a ring connection with phase shift for laser 2 and
laser 3.

Due to the symmetry of the ring configuration, the behavior of each EDFL follows the
same dynamics. Therefore, we show in Figure 3 (top) the dynamic evolution of one of the
lasers in the ring (x1), and Figure 3 (bottom) shows λ, the maximum Lyapunov exponent
(MLE), as a function of the coupling k between the lasers. The bifurcation diagram shows
the Landau path leading from a stable fixed point to a chaotic behavior through a quasi-
periodicity regime characterized by different Hopf bifurcations [54,55]. This scenario was
identified by Newhouse, Ruelle, and Takens (known as the NRT scenario [56]), who found
that a chaotic attractor resembling a 3D torus forms shortly after the third Hopf bifurcation.
Our model, which is described by Equations (7) and (8), shows a similar hyperchaotic
behavior when the coupling strength k is varied.

Figure 3. (Top) Bifurcation diagram of the time-series peak energy of an EDFL (x1 (in arbitrary units),
showing the dynamic evolution of each laser in the ring configuration as the coupling k increases,
and (button) the MLE as a function of k.
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To confirm the dynamic evolution of the coupled oscillators in Figure 3, the time series
and Poincaré sections are shown in Figure 4, which illustrate the dynamic transitions when
the system moves from a constant fixed point to chaotic dynamics. The Poincaré section is
particularly useful for identifying patterns like limit cycles or chaotic behavior in systems
of oscillators, especially when studying nonlinear differential equations. For a limit cycle
behavior, only one point is identified in the Poincaré section, when dynamics is a 2D torus,
the Poincaré section shows a closed loop, for a 3D torus two closed cycles will be shown,
and for chaotic behavior, it will show a cloud of points. For the three lasers system, when
the coupling strength increases from the initial value k to (k1 ≈ 0.0258), the equilibrium
(Figure 1) undergoes a Hopf bifurcation and evolves into a periodic oscillation (Figure 4a),
with the MLE tending towards zero. This periodic behavior is maintained within the narrow
range (0.0258 < k < 0.0381). At (k2 = 0.0382), the limit cycle changes to a quasi-periodic
state (2D torus), as shown in Figure 4b, which occurs when the MLE reaches zero. If (k)
continues to increase, a 3D torus appears at (k3 = 0.0549) (Figure 4c), marked by the MLE
reaching zero This regime remains within the interval (0.0549 < k < 0.0583). When (k)
reaches (k4 = 0.0584), the system becomes chaotic (Figure 4d), as the MLE becomes positive.
A further increase in the coupling strength finally leads to the system returning to a stable
limit cycle at (k7 = 0.1481) (Figure 4e), which is indicated by the MLE returning to zero.
The region shown in (Figure 3a) as k6 corresponds to a region for which we can obtain
a coexisting chaos and stable oscillation. Next Table 2 shows the relationship between
the results in Figure 4 with the analyzed behaviors using the Poincaré section, and power
spectrum, explained in the following sections.

Table 2. Evolution of the systems as a function of k.

kn Range Behavior Description

k1 0.0000 ≤ k ≤ 0.0258 Fixed point Shows the natural frequency of the
system (Figure 1)

k2 0.0258 < k ≤ 0.0381 Periodic oscillation
A dot in Poincaré section, Figure 4a(ii),

show a peak in frequency (Ω0)
Figure 7a

k3 0.0381 < k ≤ 0.0549 2D Tourus

A closed trajectory in Poincaré section,
Figure 4b(ii),

show two peaks in frequency (Ω0, Ω1)
Figure 7b

k4 0.0549 < k ≤ 0.0583 3D Tourus

Double closed trajectory in Poincaré
section, Figure 4c(ii),

show three peaks in frequency (Ω0, Ω1,
Ω2) Figure 7c

k5 0.0583 < k ≤ 0.1300 Chaos

A dot cloud in Poincaré section,
Figure 4d(ii),

show wide spectrum frequency,
Figure 7d

k6 0.1300 < k ≤ 0.1481 Chaos + Fixed
point

Coexistence of chaos and periodic
behavior

k7 0.1481 < k ≤ 0.2000 Stable limit cycle A dot in Poincaré section, Figure 4e(ii)
high energy, high frequency
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Figure 4. (i) Time series and (ii) the corresponding Poincaré sections at (a) k = 0.0258, (b) k = 0.0382,
(c) k = 0.0549, (d) k = 0.0584, and (e) k = 0.1481.

3.1. Rotating Phase Oscillations

Now, consider an intriguing phenomenon known as rotating phase oscillations (RPO).
As can be observed in Figure 4b–d, the time series shows a slow envelope (which can be
periodic, quasi-periodic or chaotic). These low-frequency oscillations arise from an RPO
(also periodic, quasi-periodic or chaotic) that propagates along the ring of unidirection-
ally coupled oscillators and is driven by the phase difference between the high-frequency
oscillations of the individual lasers. The RPO phenomenon was first observed in a ring
of coupled Chua oscillators [57,58] and later also in ring arrays of coupled Lorenz oscilla-
tors [43,59] and also in Duffing systems [37,60,61]. The RPO has a similar effect to external
modulation and favors the oscillation in a low-frequency regimen [62]. For the case of
a shift in frequency due to the change of k causes the interaction between the periodic
rotating wave and the local oscillation of each laser, a dynamic behavior corresponding
to a local 2D torus in which the RPO produces a quasi-periodic behavior (as shown in
Figure 4c). If the coupling strength k increases a little further, the local 2D torus mixes with
the quasi-periodic RPO, (Figure 4d) shows resulting in the formation of a local 3D torus.
With a further increase in k, the rotating wave begins having interaction with the local
3D torus, and then a chaotic behavior results (Figure 4e). If the coupling is stronger than
k = 0.0381, the rotating wave finally interacts with the chaotic dynamics and the chaotic
trajectory stabilizes in a limit cycle. For higher values of k, the limit cycle is maintained.
It can be observed that the ring system eventually generates momentum as a saturable
absorber after developing different dynamical behaviors.

In oscillating modes, it can be seen that the time series of all oscillators vary only
in phase, leading to phase shifts at each subsequent node and generating a phase wave
that rotates through the cyclic ring. The wave dynamics for rings with 3 lasers are shown
in Figure 5 for four different values of the coupling strength: k = 0.0257, k = 0.0381,
k = 0.0548 and k = 0.0583. In the upper part, the time series patterns for all oscillators are
shown, where the rotating waves manifest themselves as oblique stripes. The phase waves
traveling along the ring of oscillators are visible. The bottom row shows the phase portraits
of the corresponding laser, which are the same for all oscillators due to their identical nature.
Here, we can see that the size of the attractor increases as the coupling strength increases.
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Figure 5. (i) Rotating phase oscillations and (ii) phase portraits for (a) k = 0.0257, (b) k = 0.0381,
(c) k = 0.0548 and (d) k = 0.0583.

3.2. Frequency Spectrum Analysis

The study of the fast Fourier transform (FFT) complements traditional qualitative and
quantitative tools in dynamical systems, such as Poincaré maps, bifurcation diagrams of
local maxima, and Lyapunov exponents. FFT spectral analysis is a powerful technique in
science and engineering to study the dynamics of systems [63,64].

Figure 6 shows the bifurcation diagram of the evolution of the frequency-power
spectrum of x1 as a function of the coupling strength k. When k1 appears, it means that
the dynamic behavior changes by a Hopf bifurcation as shown in (Figure 6), there is a
system that shifts from a steady-state to a periodic solution, and the initial oscillation
frequency Ω0 appears as a distinct peak in Figure 7a. At k2 the second Hopf bifurcation
occurs. Now we see the occurrence of two different or incommensurable frequencies, Ω0
and Ω1, which generate the 2D torus dynamics. (see Figure 7b). The 2D torus persists until
the next Hopf bifurcation at k3, where the system transitions from a 2D torus to a quasi-
periodic solution with three frequencies (3D torus). At this 3D torus, a third independent
frequency Ω2 appears in the power spectrum (see Figure 7d). The 3D torus is predominant
in the range k3 < k < k4. If the coupling strength k3 < k < k4 is increased further,
the frequency interactions lead to the annihilation of the 3D torus behavior, resulting in
a broad frequency spectrum that leads to chaotic dynamics for k4 < k < k5. This chaotic
behavior is manifested in the FFT spectrum by various randomly distributed frequency
peaks with different amplitudes. Similar phenomena when examining other oscillators
in the same ring arrangement. For example, Sánchez et al. [43] observed RPO in a ring
of unidirectionally coupled Lorenz oscillators while studying the evolution from an RPO
to a chaotic rotating wave through quasi-periodicity. Subsequently, in [65], the authors
explained the phenomenon of RPO in a ring of seven unidirectionally coupled Duffing
oscillators using FFT bifurcation analysis.
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Figure 6. Bifurcation diagram showing the development of the frequency-power spectrum of x1 as a
function of the coupling strength k.

Figure 7. Power spectrum at (a) k = 0.0325 Ω0 = 28 kHz, (b) k = 0.0415, Ω0 = 52.32 kHz,
Ω1 = 25.83 kHz, (c) k = 0.0565, Ω0 = 25.83 kHz, Ω1 = 49.01 kHz, Ω2 = 74.83 kHz, and (d) k = 0.1.

3.3. Coexistence of Attractors

Another phenomenon that occurs when studying the evolution of this system is the
coexistence of attractors. As already mentioned, when the chaotic behavior ends and the
final stable dynamics appear, two different behaviors can be seen in the transition when
k5 < k < k6. In Figure 3 for k < 0.14 we see the born stable energy region surrounded by
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chaotic behavior. The phase space and power spectra of these coexisting regimes are shown
in Figure 8 for k = 0.1408, for which one can identify the periodic and chaotic behavior.
By using fractional-order calculus tools, similar multistable dynamics were observed by
Barba et al., who studied a motif of three double-well Duffing oscillators [66]. By randomly
changing the initial conditions of their system, they observed the coexistence of stable
fixed points, limit cycles, 2D and 3D tori, and chaos for certain fractional order indices and
coupling strengths. In particular, for the region 0.13 < k6 < 0.1481, the dynamical behavior
of a stable limit cycle exists in the same region where chaos exists (see bifurcation diagram
in Figure 3). In this system, chaotic and periodic orbits interact with the rotating wave,
leading to a monostable limit cycle. Similar results were explained by other researchers
(e.g., [67,68]), where a periodic perturbation was used to generate multistable dynamics
Here, the rotating wave serves as this secondary perturbation, which significantly increases
the power of the laser pulses and causes the lasers to operate in a Q-switching mode with
short high-amplitude pulses.

Figure 8. Bistable region for k = 0.1409 containing (a) a stable limit oscillation and (b) chaotic
dynamics for (i) the phase spaces of the behavior and (ii) the frequency-power spectra.

4. Increase of the Optical Pulse Energy Through Synchronized Phase-Looked EDFLs

After k = 0.1481 the dynamic behavior obtains a stable oscillation for all lasers in the
ring. Now we can observe temporal series with the same energy intensity for all lasers
in the system and with a constant phase difference between them. This phenomenon
is called phase − locking and occurs due to the interaction of the oscillators in the ring
configuration [39,40]. This phase discrepancy arises from the sequential nature of the light
propagation of the system, where each signal experiences a time delay with respect to the
others. We have numerically investigated the strength and direction of the relationship
between x1, x2 and x3 using the cross-correlation function, which is represented as follows:

Rx1,x2(τ) = E[x1(t)x2(t + τ)] (10)

where x1(t) and x2(t) are the signals to be compared, which correspond to the individual
oscillators, E denotes the expected value and τ is the time lag between the peak values.
With this function, we can quantify the difference between the signals and determine their
relative phase shifts. Figure 9 shows on the left side the time series of the three coupled
lasers obtained after k = 0.1481, and we can see that the phase difference is constant (phase-
locking), which is confirmed by using the Equation (10). On the right side of Figure 9 we
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can see the temporal series corresponding to the laser of the ring adding a phase shift, then
the phase difference is reduced to zero.

Figure 9. Temporal oscillations of the three lasers in the ring (laser 1 in red, laser 2 in blue, and laser 3
in green), in the left figure it is possible to appreciate the phase-locking between the lasers, and at the
right the temporal series with phase-shifting to synchronize the pulses.

From the result obtained using the cross-correlation function, we can calculate the
phase difference to prove the phase shift with the following relations

ϕij = arctan(
yij•
xij

) (11)

θij = ϕi − ϕj. (12)

Our analysis reveals complex interaction patterns in which the correlation varies
significantly with time and optical transmittance. Figure 10 shows the phase difference
between laser 1 and laser 2, which is given in radians. The corresponding difference
between laser 2 and laser 3 as well as laser 3 and laser 1 is the same.

Figure 10. Phase difference between the obtained laser energy for k > 0.1481 without phase correction
(blue), and with phase correction (pink). 0 < k < 0.2.

Figure 11 shows the phase synchronization scenarios resulting from Equations (12) and (11).
Here we show how the time-averaged phase synchronization depends on the coupling
strength k. We can also observe how the phase difference changes when applying phase
correction calculations. Figure 11a shows the phase relationship between the signals x1 and
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x2 without any phase modification. In contrast, Figure 11b shows the phase behavior after
applying a cross-correlation function to x2 to align it with the signal x1.

Figure 11. Averaged phase synchronization compared to the optical transmittance k for x1 and x2

(a) with and (b) without phase shift.

In the latter case, the phase difference approaches zero beyond k = 0.15. This shows
that the systems are phase-coupled at optical transmittance values exceeding this threshold.
Consequently, their signals can be summed, resulting in a significant increase in optical
power. Figure 12a shows the bifurcation diagram of the superposition of the three lasers
connected in the ring. For k > 0.15, the result of each coupled laser energy has a value of
20 (a.u.), which represents the individual energy of each laser and is twenty times higher
than the initial value at the low coupling. However, when the phase shift was applied,
there was a larger increase in optical energy to 60 (a.u.) as shown in Figure 12b.

Figure 12. Bifurcation diagrams of the peak intensity of the superposition of x1, x2 and x3 (a) without
phase shift and (b) with phase shift, for k = 0.18.

The corresponding time series of the total energy that can be obtained by adding
the individual laser energy for k > 0.15, taking into account the case without phase shift
and the case with phase shift, can be seen in Figure 13. The differences between them
are the oscillation frequency and the pulse intensity. In both cases, the increase in optical
energy compared to the initial energy is evident and is achieved by increasing the coupling
between the oscillators.
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Figure 13. (a) Time series of x1, x2, x3 and the sum of these three intensities (x1 + x2 + x3) without
phase shift for k = 0.18 and (b) time series of x1, x2, x3 and the sum of these three intensities
(x1 + x2 + x3) with phase shift for k = 0.18.

5. Conclusions

In this study, we performed a numerical analysis of three unidirectionally coupled
ring EDFLs, focusing on how the energy in the system increases at high coupling after a
system´s evolution with rich, dynamic behavior. Using a mathematical model with three
variables representing the laser intensities and three variables for population inversions
across all lasers, we studied the transition of the system from stable equilibrium to a stable
high-energy state within the ring. The analysis was performed using time series, bifurcation
diagrams, power spectra, Poincaré sections, and Lyapunov exponents. The results show
that the system enters chaos through a Hopf bifurcation followed by a torus bifurcation.
Depending on the strength of the coupling, the RPO through the ring can exhibit periodic,
quasi-periodic or chaotic behavior.

The research discovered that periodic and chaotic orbits can coexist within a spe-
cific range of coupling strengths as the laser coupling intensifies. This bi-stable behavior
decreases with a further increase in coupling strength, leading to a mono-stable system
characterized by a single limit cycle within a stable energy range. The stabilization is due to
the interplay between chaotic and periodic orbits with the rotating wave, which functions
as a secondary sinusoidal disturbance that ultimately removes the chaotic attractor.

A particularly significant result was observed under strong coupling conditions, where
phase-locking leads to a substantial rise in the peak power of the laser pulses. At coupling
strengths greater than (k > k6), all EDFLs operate in pulsed mode and generate short
pulses with high amplitude. This model has great potential for applications that require
huge laser pulses. In this study, we achieved nearly twenty-fold increase in peak pulse
power compared to the continuous mode for each laser, in contrast, when the lasers remain
uncoupled. With a zero phase difference by summing intensities, the lasers can increase the
output power by almost 60 times when coupled. This significant improvement is crucial
for optical communication, as optical signals transmitted over long distances through
optical fibers are significantly attenuated. With optical amplifiers that take advantage of
the nonlinear properties of EDFLs, high performance can be achieved in optical signal
transmission. In these instances, the coexistence of pulsed regimes with varying pulse
amplitudes and managed bi-stability can be advantageous for producing high-power
laser pulses.

However, this study has some limitations. We focused on the simplest configuration—
a ring with only three lasers—which limits the generalizability of our results to more
extensive laser networks. Nevertheless, some dynamic behaviors that we observed in our
system may also be relevant for more extensive networks, pointing to a promising direction
for future research.



Quantum Beam Sci. 2024, 8, 27 15 of 17

Supplementary Materials: This is supplementary data obtained from the numerical simulation of
our experiments: https://drive.google.com/drive/folders/1dxOWh2BA_KEFpQy86GARDVLe8
b4wbOP2?usp=sharing_eip&ts=6719b237.

Author Contributions: J.O.E.d.l.T.: Writing—original draft, writing—review and editing, methodol-
ogy, software, validation, visualization. J.H.G.-L.: writing—review and editing, resources, project
administration. R.J.-R.: writing—original draft, supervision, funding acquisition, writing—review
and editing, resources. J.L.E.-M.: writing—review and editing, resources. E.E.L.-M.: writing—review
and editing, resources. H.E.G.-V.: writing—review and editing, resources. G.H.-C.: writing—original
draft, writing—review and editing, methodology, software, validation, visualization, conceptualiza-
tion, data curation. All authors have read and agreed to the published version of the manuscript.

Funding: This project was supported by: Programa Presupuestario F003 CONACYT–MEXICO 367
Convocatoria “Ciencia Básica y/o Ciencia de Frontera. Modalidad: Paradigmas y Controversias de
368 la Ciencia 2022”, under project number: 320597.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Acknowledgments: J.O.E.d.l.T. thanks CONACYT for financial support (CVU-854990). R.J.-R. thanks
CONACYT for financial support, project No. 320597.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zervas, M.N.; Codemard, C.A. High power fiber lasers: A review. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 219–241. [CrossRef]
2. Digonnet, M.J. Rare-Earth-Doped Fiber Lasers and Amplifiers, Revised and Expanded; CRC Press: Boca Raton, FL, USA, 2001.
3. Luo, L.; Chu, P. Optical secure communications with chaotic erbium-doped fiber lasers. JOSA B 1998, 15, 2524–2530. [CrossRef]
4. Shay, T.; Duarte, F. Tunable fiber lasers. In Tunable Laser Applications; CRC Press: Boca Raton, FL, USA, 2009 ; pp. 179–196.
5. Pisarchik, A.; Jaimes-Reátegui, R.; Sevilla-Escoboza, R.; García-Lopez, J.; Kazantsev, V. Optical fiber synaptic sensor. Opt. Lasers

Eng. 2011, 49, 736–742. [CrossRef]
6. Mary, R.; Choudhury, D.; Kar, A.K. Applications of fiber lasers for the development of compact photonic devices. IEEE J. Sel. Top.

Quantum Electron. 2014, 20, 72–84. [CrossRef]
7. Zhao, L.; Li, D.; Li, L.; Wang, X.; Geng, Y.; Shen, D.; Su, L. Route to larger pulse energy in ultrafast fiber lasers. IEEE J. Sel. Top.

Quantum Electron. 2017, 24, 1–9. [CrossRef]
8. Jaimes-Reátegui, R.; Esqueda de la Torre, J.O.; García-López, J.H.; Huerta-Cuellar, G.; Aboites, V.; Pisarchik, A.N. Generation of

giant periodic pulses in the array of erbium-doped fiber lasers by controlling multistability. Opt. Commun. 2020, 477, 126355.
[CrossRef]

9. Hargrove, L.; Fork, R.L.; Pollack, M. Locking of He–Ne laser modes induced by synchronous intracavity modulation. Appl. Phys.
Lett. 1964, 5, 4–5. [CrossRef]

10. Okhotnikov, O.; Grudinin, A.; Pessa, M. Ultra-fast fibre laser systems based on SESAM technology: New horizons and applications.
New J. Phys. 2004, 6, 177. [CrossRef]

11. Zhang, H.; Tang, D.; Zhao, L.; Tam, H.Y. Induced solitons formed by cross-polarization coupling in a birefringent cavity fiber
laser. Opt. Lett. 2008, 33, 2317–2319. [CrossRef]

12. Matsas, V.; Newson, T.; Richardson, D.; Payne, D.N. Self-starting, passively mode-locked fibre ring soliton laser exploiting
non-linear polarisation rotation. Electron. Lett. 1992, 28, 1391–1393. [CrossRef]

13. Zhao, L.; Tang, D.; Wu, J. Gain-guided soliton in a positive group-dispersion fiber laser. Opt. Lett. 2006, 31, 1788–1790. [CrossRef]
[PubMed]

14. Yun, L.; Liu, X.; Mao, D. Observation of dual-wavelength dissipative solitons in a figure-eight erbium-doped fiber laser. Opt.
Express 2012, 20, 20992–20997. [CrossRef] [PubMed]

15. Richardson, D.J.; Laming, R.I.; Payne, D.N.; Matsas, V.; Phillips, M.W. Self-starting, passively mode-locked erbium fibre ring laser
based on the amplifying Sagnac switch. Electron. Lett. 1991, 27, 542–544. [CrossRef]

16. Castillo-Guzmán, A.; Anzueto-Sánchez, G.; Selvas-Aguilar, R.; Estudillo-Ayala, J.; Rojas-Laguna, R.; May-Arrioja, D.; Martínez-
Ríos, A. Erbium-doped tunable fiber laser. In Proceedings of the Laser Beam Shaping IX, San Diego, CA, USA, 11–12 August
2008; International Society for Optics and Photonics: Bellingham, WA, USA, 2008; Volume 7062, p. 70620Y.

17. Saucedo-Solorio, J.M.; Pisarchik, A.N.; Kir’yanov, A.V.; Aboites, V. Generalized multistability in a fiber laser with modulated
losses. JOSA B 2003, 20, 490–496. [CrossRef]

18. Reategui, R.; Kir’yanov, A.; Pisarchik, A.; Barmenkov, Y.O.; Il’ichev, N. Experimental study and modeling of coexisting attractors
and bifurcations in an erbium-doped fiber laser with diode-pump modulation. Laser Phys. 2004, 14, 1277–1281.

19. Ke, J.; Yi, L.; Xia, G.; Hu, W. Chaotic optical communications over 100-km fiber transmission at 30-Gb/s bit rate. Opt. Lett. 2018,
43, 1323–1326. [CrossRef]

https://drive.google.com/drive/folders/1dxOWh2BA_KEFpQy86GARDVLe8b4wbOP2?usp=sharing_eip&ts=6719b237
https://drive.google.com/drive/folders/1dxOWh2BA_KEFpQy86GARDVLe8b4wbOP2?usp=sharing_eip&ts=6719b237
http://doi.org/10.1109/JSTQE.2014.2321279
http://dx.doi.org/10.1364/JOSAB.15.002524
http://dx.doi.org/10.1016/j.optlaseng.2011.01.020
http://dx.doi.org/10.1109/JSTQE.2014.2301136
http://dx.doi.org/10.1109/JSTQE.2017.2771739
http://dx.doi.org/10.1016/j.optcom.2020.126355
http://dx.doi.org/10.1063/1.1754025
http://dx.doi.org/10.1088/1367-2630/6/1/177
http://dx.doi.org/10.1364/OL.33.002317
http://dx.doi.org/10.1049/el:19920885
http://dx.doi.org/10.1364/OL.31.001788
http://www.ncbi.nlm.nih.gov/pubmed/16729071
http://dx.doi.org/10.1364/OE.20.020992
http://www.ncbi.nlm.nih.gov/pubmed/23037222
http://dx.doi.org/10.1049/el:19910341
http://dx.doi.org/10.1364/JOSAB.20.000490
http://dx.doi.org/10.1364/OL.43.001323


Quantum Beam Sci. 2024, 8, 27 16 of 17

20. Lim, H.; Jiang, Y.; Wang, Y.; Huang, Y.C.; Chen, Z.; Wise, F.W. Ultrahigh-resolution optical coherence tomography with a fiber
laser source at 1 µm. Opt. Lett. 2005, 30, 1171–1173. [CrossRef]

21. Keren, S.; Horowitz, M. Interrogation of fiber gratings by use of low-coherence spectral interferometry of noiselike pulses. Opt.
Lett. 2001, 26, 328–330. [CrossRef]

22. Droste, S.; Ycas, G.; Washburn, B.R.; Coddington, I.; Newbury, N.R. Optical frequency comb generation based on erbium fiber
lasers. Nanophotonics 2016, 5, 196–213. [CrossRef]

23. Wu, Q.; Okabe, Y.; Sun, J. Investigation of dynamic properties of erbium fiber laser for ultrasonic sensing. Opt. Express 2014,
22, 8405–8419. [CrossRef]

24. Kraus, M.; Ahmed, M.A.; Michalowski, A.; Voss, A.; Weber, R.; Graf, T. Microdrilling in steel using ultrashort pulsed laser beams
with radial and azimuthal polarization. Opt. Express 2010, 18, 22305–22313. [CrossRef] [PubMed]

25. Philippov, V.; Codemard, C.; Jeong, Y.; Alegria, C.; Sahu, J.K.; Nilsson, J.; Pearson, G.N. High-energy in-fiber pulse amplification
for coherent lidar applications. Opt. Lett. 2004, 29, 2590–2592. [CrossRef] [PubMed]

26. Morin, F.; Druon, F.; Hanna, M.; Georges, P. Microjoule femtosecond fiber laser at 1.6 µm for corneal surgery applications. Opt.
Lett. 2009, 34, 1991–1993. [CrossRef] [PubMed]

27. Strogatz, S.H.; Stewart, I. Coupled oscillators and biological synchronization. Sci. Am. 1993, 269, 102–109. [CrossRef]
28. Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.U. Complex networks: Structure and dynamics. Phys. Rep. 2006,

424, 175–308. [CrossRef]
29. Ermentrout, G. The behavior of rings of coupled oscillators. J. Math. Biol. 1985, 23, 55–74. [CrossRef]
30. Keener, J.P. Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math. 1987, 47, 556–572.

[CrossRef]
31. Yamauchi, M.; Wada, M.; Nishio, Y.; Ushida, A. Wave propagation phenomena of phase states in oscillators coupled by inductors

as a ladder. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 1999, 82, 2592–2598.
32. Van der Sande, G.; Soriano, M.C.; Fischer, I.; Mirasso, C.R. Dynamics, correlation scaling, and synchronization behavior in rings

of delay-coupled oscillators. Phys. Rev. E 2008, 77, 055202. [CrossRef]
33. Cohen, D.S.; Neu, J.C.; Rosales, R.R. Rotating spiral wave solutions of reaction-diffusion equations. SIAM J. Appl. Math. 1978,

35, 536–547. [CrossRef]
34. Noszticzius, Z.; Horsthemke, W.; McCormick, W.; Swinney, H.L.; Tam, W. Sustained chemical waves in an annular gel reactor: A

chemical pinwheel. Nature 1987, 329, 619–620. [CrossRef]
35. Nekorkin, V.I.; Makarov, V.A.; Velarde, M.G. Spatial disorder and waves in a ring chain of bistable oscillators. Int. J. Bifurc. Chaos

1996, 6, 1845–1858. [CrossRef]
36. Ahmad, H.; Ruslan, N.; Ismail, M.A.; Ali, Z.; Reduan, S.; Lee, C.; Harun, S.W. Silver nanoparticle-film based saturable absorber

for passively Q-switched erbium-doped fiber laser (EDFL) in ring cavity configuration. Laser Phys. 2016, 26, 095103. [CrossRef]
37. Perlikowski, P.; Yanchuk, S.; Wolfrum, M.; Stefanski, A.; Mosiolek, P.; Kapitaniak, T. Routes to complex dynamics in a ring of

unidirectionally coupled systems. Chaos Interdiscip. J. Nonlinear Sci. 2010, 20, 013111. [CrossRef]
38. Matias, M.; Pérez-Muñuzuri, V.; Lorenzo, M.; Marino, I.; Pérez-Villar, V. Observation of a fast rotating wave in rings of coupled

chaotic oscillators. Phys. Rev. Lett. 1997, 78, 219. [CrossRef]
39. Sánchez, E.; Matías, M.A. Transition to chaotic rotating waves in arrays of coupled Lorenz oscillators. Int. J. Bifurc. Chaos 1999,

9, 2335–2343. [CrossRef]
40. Horikawa, Y. Metastable and chaotic transient rotating waves in a ring of unidirectionally coupled bistable Lorenz systems. Phys.

D Nonlinear Phenom. 2013, 261, 8–18. [CrossRef]
41. Bashkirtseva, I.A.; Ryashko, L.B.; Pisarchik, A.N. Ring of map-based neural oscillators: From order to chaos and back. Chaos,

Solitons Fractals 2020, 136, 109830. [CrossRef]
42. Barba-Franco, J.; Gallegos, A.; Jaimes-Reátegui, R.; Gerasimova, S.; Pisarchik, A. Dynamics of a ring of three unidirectionally

coupled Duffing oscillators with time-dependent damping. Europhys. Lett. 2021, 134, 30005. [CrossRef]
43. Sánchez, E.; Pazó, D.; Matías, M.A. Experimental study of the transitions between synchronous chaos and a periodic rotating

wave. Chaos Interdiscip. J. Nonlinear Sci. 2006, 16, 033122. [CrossRef]
44. Arecchi, F.T.; Harrison, R.G. Instabilities and Chaos in Quantum Optics; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 2012; Volume 34.
45. Pisarchik, A.N.; Kir’yanov, A.V.; Barmenkov, Y.O.; Jaimes-Reátegui, R. Dynamics of an erbium-doped fiber laser with pump

modulation: Theory and experiment. JOSA B 2005, 22, 2107–2114. [CrossRef]
46. Pisarchik, A.N.; Jaimes-Reátegui, R.; Sevilla-Escoboza, R.; Huerta-Cuellar, G.; Taki, M. Rogue waves in a multistable system.

Phys. Rev. Lett. 2011, 107, 274101. [CrossRef]
47. Huerta-Cuellar, G.; Pisarchik, A.; Kir’yanov, A.; Barmenkov, Y.O.; del Valle Hernández, J. Prebifurcation noise amplification in a

fiber laser. Phys. Rev. E 2009, 79, 036204. [CrossRef] [PubMed]
48. Bibi, S.; Huerta-Cuellar, G.; Echenausía-Monroy, J.L.; Jaimes-Reátegui, R.; García-López, J.H.; Pisarchik, A.N. Harnessing

Multistability: A Novel Approach to Optical Logic Gate Construction Using Erbium-Doped Fiber Lasers. Photonics 2024, 11, 176.
[CrossRef]

49. Pisarchik, A.N.; Barmenkov, Y.O.; Kir’yanov, A.V. Experimental characterization of the bifurcation structure in an erbium-doped
fiber laser with pump modulation. IEEE J. Quantum Electron. 2003, 39, 1567–1571. [CrossRef]

http://dx.doi.org/10.1364/OL.30.001171
http://dx.doi.org/10.1364/OL.26.000328
http://dx.doi.org/10.1515/nanoph-2016-0019
http://dx.doi.org/10.1364/OE.22.008405
http://dx.doi.org/10.1364/OE.18.022305
http://www.ncbi.nlm.nih.gov/pubmed/20941131
http://dx.doi.org/10.1364/OL.29.002590
http://www.ncbi.nlm.nih.gov/pubmed/15552654
http://dx.doi.org/10.1364/OL.34.001991
http://www.ncbi.nlm.nih.gov/pubmed/19571976
http://dx.doi.org/10.1038/scientificamerican1293-102
http://dx.doi.org/10.1016/j.physrep.2005.10.009
http://dx.doi.org/10.1007/BF00276558
http://dx.doi.org/10.1137/0147038
http://dx.doi.org/10.1103/PhysRevE.77.055202
http://dx.doi.org/10.1137/0135045
http://dx.doi.org/10.1038/329619a0
http://dx.doi.org/10.1142/S0218127496001181
http://dx.doi.org/10.1088/1054-660X/26/9/095103
http://dx.doi.org/10.1063/1.3293176
http://dx.doi.org/10.1103/PhysRevLett.78.219
http://dx.doi.org/10.1142/S021812749900184X
http://dx.doi.org/10.1016/j.physd.2013.06.003
http://dx.doi.org/10.1016/j.chaos.2020.109830
http://dx.doi.org/10.1209/0295-5075/134/30005
http://dx.doi.org/10.1063/1.2335815
http://dx.doi.org/10.1364/JOSAB.22.002107
http://dx.doi.org/10.1103/PhysRevLett.107.274101
http://dx.doi.org/10.1103/PhysRevE.79.036204
http://www.ncbi.nlm.nih.gov/pubmed/19392032
http://dx.doi.org/10.3390/photonics11020176
http://dx.doi.org/10.1109/JQE.2003.819559


Quantum Beam Sci. 2024, 8, 27 17 of 17

50. Alon, U. Network motifs: Theory and experimental approaches. Nat. Rev. Genet. 2007, 8, 450–461. [CrossRef]
51. Boccaletti, S.; Pisarchik, A.N.; Del Genio, C.I.; Amann, A. Synchronization: From Coupled Systems to Complex Networks; Cambridge

University Press: Cambridge, UK, 2018.
52. Jaimes-Reategui, R. Dynamic of Complex System with Parametric Modulation: Duffing Oscillators and a Fiber Laser. Ph.D.

Thesis, Centro de Investigaciones en Optica, León de los Aldama, Mexico, 2004.
53. Barba-Franco, J.; Romo-Muñoz, L.; Jaimes-Reátegui, R.; García-López, J.; Huerta-Cuellar, G.; Pisarchik, A. Electronic equivalent of

a pump-modulated erbium-doped fiber laser. Integration 2023, 89, 106–113. [CrossRef]
54. Landau, L.D. On the problem of turbulence. C. R. Acad. Sci. URSS 1944, 44, 311. [CrossRef]
55. Hopf, E. A mathematical example displaying features of turbulence. Commun. Pure Appl. Math. 1948, 1, 303–322. [CrossRef]
56. Newhouse, S.; Ruelle, D.; Takens, F. Occurrence of strange axiom A attractors near quasi periodic flows on Tm, m ≧ 3. Commun.

Math. Phys. 1978, 64, 35–40. [CrossRef]
57. Matias, M.; Güémez, J.; Pérez-Munuzuri, V.; Marino, I.; Lorenzo, M.; Pérez-Villar, V. Size instabilities in rings of chaotic

synchronized systems. Europhys. Lett. 1997, 37, 379. [CrossRef]
58. Marino, I.; Pérez-Muñuzuri, V.; Pérez-Villar, V.; Sánchez, E.; Matıas, M. Interaction of chaotic rotating waves in coupled rings of

chaotic cells. Phys. D Nonlinear Phenom. 1999, 128, 224–235. [CrossRef]
59. Matías, M.; Güémez, J. Transient periodic rotating waves and fast propagation of synchronization in linear arrays of chaotic

systems. Phys. Rev. Lett. 1998, 81, 4124. [CrossRef]
60. Borkowski, L.; Perlikowski, P.; Kapitaniak, T.; Stefanski, A. Experimental observation of three-frequency quasiperiodic solution

in a ring of unidirectionally coupled oscillators. Phys. Rev. E 2015, 91, 062906. [CrossRef]
61. Borkowski, L.; Stefanski, A. Stability of the 3-torus solution in a ring of coupled Duffing oscillators. Eur. Phys. J. Spec. Top. 2020,

229, 2249–2259. [CrossRef]
62. Barba-Franco, J.; Gallegos, A.; Jaimes-Reátegui, R.; Muñoz-Maciel, J.; Pisarchik, A. Dynamics of coexisting rotating waves in

unidirectional rings of bistable Duffing oscillators. Chaos Interdiscip. J. Nonlinear Sci. 2023, 33, 073126. [CrossRef]
63. Krysko, A.; Awrejcewicz, J.; Papkova, I.; Krysko, V. Routes to chaos in continuous mechanical systems: Part 2. Modelling

transitions from regular to chaotic dynamics. Chaos Solitons Fractals 2012, 45, 709–720. [CrossRef]
64. Awrejcewicz, J.; Krysko, A.; Papkova, I.; Krysko, V. Routes to chaos in continuous mechanical systems. Part 3: The Lyapunov

exponents, hyper, hyper-hyper and spatial–temporal chaos. Chaos Solitons Fractals 2012, 45, 721–736. [CrossRef]
65. Borkowski, L.; Stefanski, A. FFT bifurcation analysis of routes to chaos via quasiperiodic solutions. Math. Probl. Eng. 2015, 2015,

367036. [CrossRef]
66. Barba-Franco, J.; Gallegos, A.; Jaimes-Reátegui, R.; Pisarchik, A. Dynamics of a ring of three fractional-order Duffing oscillators.

Chaos Solitons Fractals 2022, 155, 111747. [CrossRef]
67. Pisarchik, A.; Jaimes-Reategui, R. Control of basins of attraction in a multistable fiber laser. Phys. Lett. A 2009, 374, 228–234.

[CrossRef]
68. Meucci, R.; Marc Ginoux, J.; Mehrabbeik, M.; Jafari, S.; Clinton Sprott, J. Generalized multistability and its control in a laser.

Chaos Interdiscip. J. Nonlinear Sci. 2022, 32, 083111. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1038/nrg2102
http://dx.doi.org/10.1016/j.vlsi.2022.11.012
http://dx.doi.org/10.1016/b978-0-08-010586-4.50057-2
http://dx.doi.org/10.1002/cpa.3160010401
http://dx.doi.org/10.1007/BF01940759
http://dx.doi.org/10.1209/epl/i1997-00159-8
http://dx.doi.org/10.1016/S0167-2789(98)00303-0
http://dx.doi.org/10.1103/PhysRevLett.81.4124
http://dx.doi.org/10.1103/PhysRevE.91.062906
http://dx.doi.org/10.1140/epjst/e2020-900276-4
http://dx.doi.org/10.1063/5.0141054
http://dx.doi.org/10.1016/j.chaos.2012.02.001
http://dx.doi.org/10.1016/j.chaos.2012.02.002
http://dx.doi.org/10.1155/2015/367036
http://dx.doi.org/10.1016/j.chaos.2021.111747
http://dx.doi.org/10.1016/j.physleta.2009.10.061
http://dx.doi.org/10.1063/5.0093727
http://www.ncbi.nlm.nih.gov/pubmed/36049920

	Introduction
	Autonomous EDFL Model
	Evolution of the System to Achieve Stable Energy
	Rotating Phase Oscillations
	Frequency Spectrum Analysis
	Coexistence of Attractors

	Increase of the Optical Pulse Energy Through Synchronized Phase-Looked EDFLs
	Conclusions
	References

