Association between Transcription Factor 7-like-2 Polymorphisms and Type 2 Diabetes Mellitus in a Ghanaian Population
Abstract
:1. Background
2. Results
2.1. Characteristics of the Study Participants
Genotype and Allele Frequencies of TCF7L2 Gene Polymorphism
2.2. Linkage Disequilibrium between rs7903146 and rs12255372
2.3. Association between TCF7L2 Polymorphisms and T2DM
3. Discussion
4. Materials and Methods
4.1. Sample Size Calculation
4.2. Recruitment Process
4.3. Biochemical Measurements and Definition of Cardiometabolic Risk Factors
4.4. Genomic DNA Extraction
4.5. Primer Design and Primer Information
4.6. Genotyping of TCF7L2 rs7903146 and rs12255372
4.7. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- IDF. IDF Diabetes Atlas, 8th ed.; IDF: Brussels, Belgium, 2017; Available online: https://diabetesatlas.org/upload/resources/previous/files/8/IDF_DA_8e-EN-final.pdf (accessed on 14 May 2019).
- Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of Type 2 Diabetes-Global Burden of Disease and Forecasted Trends. J. Epidemiol. Glob. Health 2020, 10, 107–111. [Google Scholar] [CrossRef] [Green Version]
- da Rocha Fernandes, J.; Ogurtsova, K.; Linnenkamp, U.; Guariguata, L.; Seuring, T.; Zhang, P.; Cavan, D.; Makaroff, L.E. IDF Diabetes Atlas estimates of 2014 global health expenditures on diabetes. Diabetes Res. Clin. Pract. 2016, 117, 48–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hudspeth, B. The burden of cardiovascular disease in patients with diabetes. Am. J. Manag. Care 2018, 24, S268–S272. [Google Scholar]
- Beagley, J.; Guariguata, L.; Weil, C.; Motala, A.A. Global estimates of undiagnosed diabetes in adults. Diabetes Res. Clin. Pract. 2014, 103, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Asamoah-Boaheng, M.; Sarfo-Kantanka, O.; Tuffour, A.B.; Eghan, B.; Mbanya, J.C. Prevalence and risk factors for diabetes mellitus among adults in Ghana: A systematic review and meta-analysis. Int. Health 2018, 11, 83–92. [Google Scholar] [CrossRef]
- Issaka, A.; Paradies, Y.; Stevenson, C. Modifiable and emerging risk factors for type 2 diabetes in Africa: A systematic review and meta-analysis protocol. Syst. Rev. 2018, 7, 139. [Google Scholar] [CrossRef] [Green Version]
- Meigs, J.B.; Cupples, L.A.; Wilson, P. Parental transmission of type 2 diabetes: The Framingham Offspring Study. Diabetes 2000, 49, 2201–2207. [Google Scholar] [CrossRef] [Green Version]
- Poulsen, P.; Kyvik, K.O.; Vaag, A.; Beck-Nielsen, H. Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance–a population-based twin study. Diabetologia 1999, 42, 139–145. [Google Scholar] [CrossRef]
- Zaman, G.S. Pathogenesis of Insulin Resistance. In Cellular Metabolism and Related Disorders; IntechOpen: London, UK, 2020. [Google Scholar]
- Herman, M.A.; Kahn, B.B. Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony. J. Clin. Investig. 2006, 116, 1767–1775. [Google Scholar] [CrossRef] [Green Version]
- Cauchi, S.; El Achhab, Y.; Choquet, H.; Dina, C.; Krempler, F.; Weitgasser, R.; Nejjari, C.; Patsch, W.; Chikri, M.; Meyre, D.; et al. TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: A global meta-analysis. J. Mol. Med. 2007, 85, 777–782. [Google Scholar] [CrossRef]
- Danquah, I.; Othmer, T.; Frank, L.K.; Bedu-Addo, G.; Schulze, M.B.; Mockenhaupt, F.P. The TCF7L2 rs7903146 (T) allele is associated with type 2 diabetes in urban Ghana: A hospital-based case–control study. BMC Med. Genet. 2013, 14, 96. [Google Scholar] [CrossRef] [Green Version]
- Dieudonne, N.; Sobngwi, E.; Atogho-Tiedeu, B.; Noubiap, J.J.; Donfack, O.; Mato-Mofo, E.; Guewo Fokeng, M.; Metsadjio, A.; Elvis, N.N.; Fosso, P.; et al. Association between the TCF7L2 rs12255372 (G/T) gene polymorphism and type 2 diabetes mellitus in a Cameroonian population: A pilot study. Clin. Trans. Med. 2015, 4. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.-Q.; Liao, Y.-Q.; Huang, R.-Z.; Chen, J.-P.; Sun, H.-L. Possible role of TCF7L2 in the pathogenesis of type 2 diabetes mellitus. Biotechnol. Biotechnol. Equip. 2018, 32, 830–834. [Google Scholar] [CrossRef] [Green Version]
- Katsoulis, K.; Paschou, S.A.; Hatzi, E.; Tigas, S.; Georgiou, I.; Tsatsoulis, A. TCF7L2 gene variants predispose to the development of type 2 diabetes mellitus among individuals with metabolic syndrome. Hormones 2018, 17, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Shu, L.; Sauter, N.S.; Schulthess, F.T.; Matveyenko, A.V.; Oberholzer, J.; Maedler, K. Transcription factor 7-like 2 regulates β-cell survival and function in human pancreatic islets. Diabetes 2008, 57, 645–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant, S.F.; Thorleifsson, G.; Reynisdottir, I.; Benediktsson, R.; Manolescu, A.; Sainz, J.; Helgason, A.; Stefansson, H.; Emilsson, V.; Helgadottir, A. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat. Genet. 2006, 38, 320. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Xu, L.; Zhang, L.; Han, Z.; Jiang, Q.; Wang, Z.; Jin, S. Meta-analysis of association between TCF7L2 polymorphism rs7903146 and type 2 diabetes mellitus. BMC Med. Genet. 2018, 19, 38. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Li, L.; Wang, Y.; Wang, Q.; Zhai, Y.; You, H.; Hu, D. Association of rs12255372 in the TCF7L2 gene with type 2 diabetes mellitus: A meta-analysis. Brazil. J. Medical Biol. Res. Revista Brasil. Pesquisas Med. Biol. 2013, 46, 382–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyssenko, V.; Lupi, R.; Marchetti, P.; Del Guerra, S.; Orho-Melander, M.; Almgren, P.; Sjögren, M.; Ling, C.; Eriksson, K.-F.; Mancarella, R. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J. Clin. Investig. 2007, 117, 2155–2163. [Google Scholar] [CrossRef] [Green Version]
- Ip, W.; Chiang, Y.-T.A.; Jin, T. The involvement of the wnt signaling pathway and TCF7L2 in diabetes mellitus: The current understanding, dispute, and perspective. Cell Biosci. 2012, 2, 28. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.-H.; Li, Y.-L.; Liu, N.-J.; Yang, Z.; Tao, X.-M.; Du, Y.-P.; Wang, X.-C.; Lu, B.; Zhang, Z.-Y.; Hu, R.-M. TCF7L2 regulates pancreatic β-cell function through PI3K/AKT signal pathway. Diabetol. Metab. Syndr. 2019, 11, 55. [Google Scholar] [CrossRef]
- Asamoah, E.A.; Obirikorang, C.; Acheampong, E.; Annani-Akollor, M.E.; Laing, E.F.; Owiredu, E.-W.; Anto, E.O. Heritability and Genetics of Type 2 Diabetes Mellitus in Sub-Saharan Africa: A Systematic Review and Meta-Analysis. J. Diabetes Res. 2020, 2020, 1–11. [Google Scholar] [CrossRef]
- Helgason, A.; Pálsson, S.; Thorleifsson, G.; Grant, S.F.; Emilsson, V.; Gunnarsdottir, S.; Adeyemo, A.; Chen, Y.; Chen, G.; Reynisdottir, I. Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nat. Genet. 2007, 39, 218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yako, Y.Y.; Madubedube, J.H.; Kengne, A.P.; Erasmus, R.T.; Pillay, T.S.; Matsha, T.E. Contribution of ENPP1, TCF7L2, and FTO polymorphisms to type 2 diabetes in mixed ancestry ethnic population of South Africa. Afr. Health Sci. 2015, 15, 1149–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandour, I.; Darwish, R.; Fayez, R.; Naguib, M.; El-Sayegh, S. TCF7L2 Gene Polymorphisms and Susceptibility to Type 2 Diabetes Mellitus, a Pilot Study. Biomed. Pharmacol. J. 2018, 11, 1043–1049. [Google Scholar] [CrossRef]
- Guewo-Fokeng, M.; Sobngwi, E.; Atogho-Tiedeu, B.; Donfack, O.S.; Noubiap, J.J.N.; Ngwa, E.N.; Mato-Mofo, E.P.; Fosso, P.P.; Djahmeni, E.; Djokam-Dadjeu, R. Contribution of the TCF7L2 rs7903146 (C/T) gene polymorphism to the susceptibility to type 2 diabetes mellitus in Cameroon. J. Diabetes Metabol. Disord. 2015, 14, 26. [Google Scholar] [CrossRef] [Green Version]
- Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank. Nucleic Acids Res. 2016, 44, D67–D72. [Google Scholar] [CrossRef] [Green Version]
- Lehman, D.M.; Hunt, K.J.; Leach, R.J.; Hamlington, J.; Arya, R.; Abboud, H.E.; Duggirala, R.; Blangero, J.; Göring, H.H.; Stern, M.P. Haplotypes of transcription factor 7-like 2 (TCF7L2) gene and its upstream region are associated with type 2 diabetes and age of onset in Mexican Americans. Diabetes 2007, 56, 389–393. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.-Y.; Yang, X.-X.; Geng, H.-Y.; Gong, G. Type 2 diabetes mellitus and TCF7L2 gene rs12255372 G/T polymorphism: A meta-analysis involving 7990 subjects. Int. J. Diabetes Dev Ctries. 2018, 38, 55–61. [Google Scholar] [CrossRef]
- Xi, X.; Ma, J. A meta-analysis on genetic associations between Transcription Factor 7 Like 2 polymorphisms and type 2 diabetes mellitus. Genomics 2020, 112, 1192–1196. [Google Scholar] [CrossRef]
- Kibirige, D.; Lumu, W.; Jones, A.G.; Smeeth, L.; Hattersley, A.T.; Nyirenda, M.J. Understanding the manifestation of diabetes in sub Saharan Africa to inform therapeutic approaches and preventive strategies: A narrative review. Clin. Diabetes Endocrinol. 2019, 5, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wunsch, C.; Dornelles, T.F.; Girardi, P.; Arndt, M.E.; Genro, J.P.; Contini, V. Lack of association between TCF7L2 gene variants and type 2 diabetes mellitus in a Brazilian sample of patients with the risk for cardiovascular disease. Endocr. Regul. 2019, 53, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Bonetti, S.; Trombetta, M.; Malerba, G.; Boselli, L.; Trabetti, E.; Muggeo, M.; Stoico, V.; Negri, C.; Pignatti, P.F.; Bonora, E.; et al. Variants and haplotypes of TCF7L2 are associated with β-cell function in patients with newly diagnosed type 2 diabetes: The Verona Newly Diagnosed Type 2 Diabetes Study (VNDS) 1. J. Clin. Endocrinol. Metab. 2011, 96, E389–E393. [Google Scholar] [CrossRef] [Green Version]
- Loos, R.J.; Franks, P.W.; Francis, R.W.; Barroso, I.; Gribble, F.M.; Savage, D.B. TCF7L2 polymorphisms modulate proinsulin levels and β-cell function in a British Europid population. Diabetes 2007, 56, 1943–1947. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Ayala, I.; Shannon, C.; Fourcaudot, M.; Acharya, N.K.; Jenkinson, C.P. The Diabetes Gene and Wnt Pathway Effector TCF7L2 Regulates Adipocyte Development and Function. Diabetes 2018, 67, 554–568. [Google Scholar] [CrossRef] [Green Version]
- Shu, L.; Matveyenko, A.V.; Kerr-Conte, J.; Cho, J.-H.; McIntosh, C.H.; Maedler, K. Decreased TCF7L2 protein levels in type 2 diabetes mellitus correlate with downregulation of GIP-and GLP-1 receptors and impaired beta-cell function. Hum Mol Genet. 2009, 18, 2388–2399. [Google Scholar] [CrossRef] [PubMed]
- Kelsey, J.L.; Whittemore, A.S.; Evans, A.S.; Thompson, W.D. Methods in Observational Epidemiology, 2nd ed.; Monographs in Epidemiology and Biostatistics; Oxford University Press: New York, NY, USA, 1996; Volume 10, pp. 1–59. [Google Scholar]
- Graham, I.; Atar, D.; Borch-Johnsen, K.; Boysen, G.; Burell, G.; Cifkova, R.; Dallongeville, J.; De Backer, G.; Ebrahim, S.; Gjelsvik, B. European guidelines on cardiovascular disease prevention in clinical practice: Executive summary: Fourth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (Constituted by representatives of nine societies and by invited experts). Eur. Heart J. 2007, 28, 2375–2414. [Google Scholar]
- Semenkovich, C.F. Insulin resistance and atherosclerosis. J. Clin. Invest. 2006, 116, 1813–1822. [Google Scholar] [CrossRef]
- WHO, E.P. Executive summary of the clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults. Arch. Intern. Med. 1998, 158, 1855–1867. [Google Scholar]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2004, 21, 263–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devlin, B.; Risch, N. A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics 1995, 29, 311–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hudson, R.R.; Kaplan, N.L. Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 1985, 111, 147–164. [Google Scholar] [CrossRef]
- Wang, N.; Akey, J.M.; Zhang, K.; Chakraborty, R.; Jin, L. Distribution of recombination crossovers and the origin of haplotype blocks: The interplay of population history, recombination, and mutation. Am. J. Hum. Genet. 2002, 71, 1227–1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Cases (N = 106) | Controls (N = 110) | p-Value |
---|---|---|---|
Sex | |||
Male | 46 (43.4) | 37 (33.6) | 0.140 |
Female | 60 (56.6) | 73 (66.4) | |
Family history of T2DM | |||
No | 61 (57.7) | 97 (88.2) | |
Yes | 45 (42.5) | 13 (11.8) | <0.001 |
Age (years) | 53.90 ± 12.31 | 45.80 ± 12.14 | <0.001 |
<60 years | 73 (68.9) | 91 (82.7) | |
≥60 years | 33 (31.1) | 19 (17.3) | 0.017 |
Anthropometric variables # | |||
BMI (kg/m2) | 28.18 ± 5.53 | 26.10 ± 4.41 | 0.002 |
Systolic BP (mmHg) | 133.35 ± 19.76 | 121.25 ± 18.41 | <0.001 |
Diastolic BP (mmHg) | 83.68 ± 11.74 | 76.22 ± 11.17 | <0.001 |
Biochemical parameters # | |||
Triglycerides (mmol/L) | 1.69 ± 0.64 | 1.29 ± 0.50 | <0.001 |
T. Chol (mmol/L) | 5.25 ± 1.03 | 4.65 ± 1.06 | <0.001 |
HDL-C(mmol/L) | 0.99 ± 0.24 | 1.23 ± 0.27 | <0.001 |
LDL-C (mmol/L) | 3.44 ± 0.95 | 3.32 ± 0.72 | 0.288 |
FPG (mmol/L) | 8.72 ± 4.66 | 4.85 ± 0.91 | <0.001 |
HbA1c (%) | 6.99 ± 1.87 | 4.83 ± 0.60 | <0.001 |
Cardiometabolic factors | |||
High BP | 36 (34.0) | 10 (9.1) | <0.001 |
High TC | 13 (12.3) | 6 (5.5) | 0.077 |
High TG | 61 (57.5) | 16 (14.5%) | <0.001 |
Low HDL-C | 81 (76.4) | 52 (47.3) | <0.001 |
High LDL-C | 64 (60.4) | 36 (32.7) | <0.001 |
Atherogenic dyslipidaemia | 44 (41.6) | 5 (4.5) | <0.001 |
Overweight | 43 (40.6) | 39 (35.5) | 0.441 |
Obesity | 29 (27.4) | 21 (19.1) | 0.149 |
MetS | 70 (66.0) | 14 (12.7) | <0.001 |
SNP | Controls (N = 110) | Cases (N = 106) | p-Value | ||||
---|---|---|---|---|---|---|---|
% | Allele Frequency | N (%) | Allele Frequency | ||||
C | T | C | T | ||||
rs7903146 | 0.667 | 0.333 | 0.495 | 0.505 | 0.011 | ||
CC | 49 (44.5) | 26 (24.5) | 0.002 | ||||
CT | 56 (50.9) | 66 (62.3) | 0.092 | ||||
TT | 5 (4.5) | 14 (13.2) | 0.024 | ||||
rs12255372 | G | T | G | T | |||
0.857 | 0.143 | 0.759 | 0.241 | 0.068 | |||
GG | 81 (73.6) | 61 (57.5) | 0.013 | ||||
GT | 24 (21.8) | 38 (35.8) | 0.023 | ||||
TT | 5 (4.5) | 7 (6.6) | 0.501 |
SNPs | Crude Model | Adjusted Model | Multivariate Model | |||
---|---|---|---|---|---|---|
OR (95% CI) | p- Value | OR (95% CI) | p- Value | OR (95% CI) | p- Value | |
rs7903146 | ||||||
Codominant | 2.22 (1.23–4.02) | 0.008 | 2.29 (1.14–4.58) | 0.019 | 2.18 (1.08–4.39) | 0.030 |
Recessive | 5.28 (1.71–16.27) | 0.004 | 4.92 (1.45–16.72) | 0.011 | 5.01 (1.44–17.44) | 0.011 |
Additive | 2.47 (1.38–4.42) | 0.002 | 2.25 (1.32–3.83) | 0.003 | 2.25 (1.31–3.84) | 0.003 |
rs12255372 | ||||||
Codominant | 2.10 (1.14–3.87) | 0.017 | 1.80 (0.92–3.52) | 0.085 | 1.72 (0.86–3.43) | 0.124 |
Recessive | 1.86 (0.56–6.14) | 0.309 | 1.13 (0.29–4.43) | 0.859 | 1.26 (0.32–5.044) | 0.742 |
Additive | 1.70 (1.06–2.71) | 0.026 | 1.40 (0.83–2.36) | 0.206 | 1.39 (0.82–2.38) | 0.222 |
Risk Factors | rs7903146 | rs12255372 |
---|---|---|
OR (95% CI) | OR (95%CI) | |
Age | ||
<60 years | 2.16 (1.11–4.22) * | 1.18 (0.62–2.26) |
60 and above | 4.06 (1.25–13.19) ** | 52.45 (2.92–942.04) ** |
Family history | ||
NFH | 2.71 (1.35–5.45) ** | 2.07 (1.04–4.12) * |
PFH | 1.00 (0.25–3.98) | 1.01 (0.31–3.36) |
Sex | ||
Male | 1.90 (0.75–4.84) | 1.53 (0.64–3.68) |
Female | 2.71 (1.30–5.65) ** | 2.34 (1.11–4.95) ** |
BMI Status | ||
Normal weight | 2.52 (1.02–6.26) * | 1.28 (0.47–3.45) |
Overweight/obese | 2.15 (1.01–4.56) * | 2.43 (1.19–4.98) * |
BP status | ||
Normal | 2.93 (1.51–5.66) ** | 1.55 (0.81–2.95) |
Hypertensive | 1.35 (0.32–5.66) | 2.81 (0.67–11.80) |
Dyslipidaemia | ||
Normal TG | 1.45 (0.70–2.99) | 1.64 (0.76–3.55) |
Elevated TG | 3.87 (1.21–12.41) ** | 1.23 (0.42–3.61) |
Normal HDL-C | 1.57 (0.60–4.13) | 1.48 (0.56–3.95) |
Low HDL-C | 2.95 (1.40–6.24) ** | 2.35 (1.10–5.00) * |
Component | Standard Criteria [43] | Criteria Used in the Present Study |
---|---|---|
Elevated waist circumference | Population- and country-specific definitions | BMI ≥ 30 kg/m2 |
Elevated TG | TG ≥ 150 mg/dL (1.7 mmol/L), or drug treatment | Fasting TG ≥ 150 mg/dL (1.7 mmol/L) |
Reduced HDL-C | HDL-C < 40mg/dL (1.0 mmol/L) in males; HDL-C < 50 mg/dL (1.3 mmol/L) in females; or drug treatment | HDL-C < 40 mg/dL (1.0mmol/L) in males HDL-C < 50 mg/dL (1.3 mmol/L) in females |
Elevated blood pressure | Systolic ≥ 130 and/or diastolic ≥ 85mmHg, or drug treatment | Systolic ≥ 130 and/or diastolic ≥ 85 mmHg |
Elevated glucose | ≥100 mg/dL in plasma, or drug treatment | Fasting blood glucose ≥ 100 mg/dL (5.5 mmol/L) and/or T2DM based on hospital records |
SNP | Primer Name | Primer Sequence (5′->3′) | Melting Temp (°C) | Product (BP) |
---|---|---|---|---|
rs7903146 | FIP (T allele) | TAGAGAGCTAAGCACTTTTTAGAGAT | 57.5 | 395 |
rs7903146 | RIP (C allele) | GCCTCATACGGCAATTAAATTATAGAG | 58.3 | 285 |
rs7903146 | FOP | AAAACCTTTCCAATTTTTTCACCTG | 57.5 | 628 |
rs7903146 | ROP | ATCCATCCACAAGCTAACCCT | 59.1 | 628 |
rs12255372 | FIP (T allele) | CCAGGAATATCCAGGCAAGATTG | 55.8 | 171 |
rs12255372 | RIP (C allele) | GGCCTGAGTAATTATCAGAATATGCTG | 58.3 | 106 |
rs12255372 | FOP | GTCCCTTGAGGTGTACTGCAA | 56.7 | 228 |
rs12255372 | ROP | TATTTGGCATTCAAATGGACGC | 55.0 | 228 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obirikorang, C.; Adu, E.A.; Anto, E.O.; Acheampong, E.; Quaye, L.; Amoah, B.Y.; Annani-Akollor, M.E.; Kwakye, A.S.; Fokuoh, F.; Appiah, M.; et al. Association between Transcription Factor 7-like-2 Polymorphisms and Type 2 Diabetes Mellitus in a Ghanaian Population. Sci 2021, 3, 40. https://doi.org/10.3390/sci3040040
Obirikorang C, Adu EA, Anto EO, Acheampong E, Quaye L, Amoah BY, Annani-Akollor ME, Kwakye AS, Fokuoh F, Appiah M, et al. Association between Transcription Factor 7-like-2 Polymorphisms and Type 2 Diabetes Mellitus in a Ghanaian Population. Sci. 2021; 3(4):40. https://doi.org/10.3390/sci3040040
Chicago/Turabian StyleObirikorang, Christian, Evans Asamoah Adu, Enoch Odame Anto, Emmanuel Acheampong, Lawrence Quaye, Brodrick Yeboah Amoah, Max Efui Annani-Akollor, Aaron Siaw Kwakye, Foster Fokuoh, Michael Appiah, and et al. 2021. "Association between Transcription Factor 7-like-2 Polymorphisms and Type 2 Diabetes Mellitus in a Ghanaian Population" Sci 3, no. 4: 40. https://doi.org/10.3390/sci3040040
APA StyleObirikorang, C., Adu, E. A., Anto, E. O., Acheampong, E., Quaye, L., Amoah, B. Y., Annani-Akollor, M. E., Kwakye, A. S., Fokuoh, F., Appiah, M., Nyarko, E. N. Y., Aidoo, F., Adua, E., Afrifa-Yamoah, E., Balmer, L., & Wang, W. (2021). Association between Transcription Factor 7-like-2 Polymorphisms and Type 2 Diabetes Mellitus in a Ghanaian Population. Sci, 3(4), 40. https://doi.org/10.3390/sci3040040