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Abstract: The proposed general theory of scientific variability for technological evolution explains
one of the drivers of technological change for economic progress in human society. Variability is
the predisposition of the elements in systems to assume different values over time and space. In
biology, the variability is basic to explaining differences and development in organisms. In economics
of technical change, the effects of variability within research fields on evolutionary dynamics of
related technologies are unknown. In a broad analogy with the principles of biology, suggested
theoretical framework here can clarify a basic driver of technological evolution: the variability within
research fields can explain the dynamics of scientific development and technological evolution. The
study sees whether statistical evidence supports the hypothesis that the rate of growth of scientific
and technological fields can be explained by the level of variability within scientific fields. The
validation is based on emerging research fields in quantum technologies: quantum imaging, quantum
meteorology, quantum sensing, and quantum optics. Statistical evidence seems in general to support
the hypothesis stated that the rate of growth can be explained by the level of scientific variability
within research fields, measured with the relative entropy (indicating the dispersion of scientific topics
in a research field underlying a specific technology). Nonparametric correlation with Spearman’s rho
shows a positive coefficient of 0.80 between entropy measures and rates of growth between scientific
and technological fields. The linear model of the relation between rate of growth and scientific
variability reveals a coefficient of regression equal to 1.63 (R2 = 0.60). The findings here suggest
a general law that variability within research fields positively drives scientific development and
technological evolution. In particular, a higher variability within research fields can support a high
rate of growth in scientific development and technological evolution. The proposed general theory of
scientific variability is especially relevant in turbulent environments of technology-based competition
to clarify a basic determinant of technological development to design strategies of technological
forecasting and management of promising innovations.

Keywords: scientific variability; scientific development; technological evolution; technological
change; technological trajectories; entropy; systems development; science and technology; creative
destruction; quantum technology; quantum science

1. Introduction and Observations on Evolution in Science and Technology

Technological evolution and scientific change have a basic role in the economic and
social development of human society [1–13]. Fleming and Sorenson [14] maintain that
invention is due to a combinatorial process of searching. Arthur [2] states that “technologies
somehow must come into being as fresh combinations of what already exists.” This combi-
nation of different elements is organized into systems to create new products/processes for
some human purpose [15,16]. Sahal [17] points out that “evolution. . .pertains to the very
structure and function of the object (p. 64). . .involves a process of equilibrium governed by
the internal dynamics of the object system (p. 69)”.
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A main problem in social studies of science and technology is how the dynamics
of science,—encompassing a complex system of scientific topics, methods, and research
fields,—supports the technological evolution [7,18–21]. This study confronts the problem
here by developing a general theory of scientific variability, which endeavors to explain the
effects of variability within research fields on the dynamics of the scientific and technolog-
ical evolution. In biology, the role of variation is well known [22,23], but in the study of
scientific development and technological evolution, the effects of variability are unknown,
but their examination can clarify the determinants and behaviour of evolutionary dynamics
in science and technology. In general, differences of topics within scientific fields create
variability that underlies the evolutionary processes of technologies and allows adaptation
and evolution in changing environments [24–26]. However, to date, no theoretical frame-
work explains how the variability within research fields affects the dynamics of scientific
development and evolution in related technologies [27,28].

In a broader analogy with biology, this study propose a general theory that endeavors
to explain how the variability within scientific fields affects technological evolution. The
general prediction of the proposed theoretical framework is that the scientific variability
of topics within research fields can clarify the dynamics of scientific and technological
trajectories to support the best practices of technological forecasting and management for
driving promising directions of technical change in socioeconomic systems.

2. Critique of Current Theories in Technological Evolution: Incompleteness of Drivers

In order to position our theory in a manner that displays similarities and differences
with existing approaches, a critical review of accepted frameworks in the evolution of
science and technology is presented here. Quantitative works on emergence and evolution
of disciplines are scarce, and this aspect is in part due to the difficulty in detecting and
measuring basic sources of scientific change [7,29–32]. Many theories of scientific devel-
opment have been inspired by the notion of paradigm shifts associated with anomalies
and contradictory results in science [33]. Some studies explain the evolution of fields
with processes of branching, caused by new discoveries [12,27] or of specialization and
fragmentation [34], such as in nanophysics, molecular biology, astrobiology, etc. [11]. Other
studies focus on the synthesis of concepts and methods in preexisting disciplines, such as in
bioinformatics, quantum computing, plasma physics, etc. [21,35]. The approaches in these
researches point to the self-organizing development of science systems [36,37]. However,
how the basic characteristics of scientific development affect technological evolution are
hardly known.

Theories of technological evolution have also been criticized in the literature because
they neglect many determinants and factors that are strongly related to the evolutionary
dynamics [38,39]. New studies suggest that technologies evolve with a relationship of
mutualistic symbiosis between inter-related research fields and technologies [40–44]. Utter-
back et al. [45] maintain that the growth of technologies will often stimulate the growth
of inter-related technologies, calling this interaction “symbiotic competition” ([45], p. 1).
Pistorius and Utterback ([38], p. 67) argue that approaches based on a multi-mode interac-
tion between technologies provide a much richer and more useful theoretical framework to
explain scientific and technological change. These approaches are based on a broad analogy
between scientific and technological evolution and biological evolution [2,3,41,42,44,46].
In fact, the similarities between biological and scientific– technological evolution have
a considerable literature [41,44,47–49]. In general, scientific and technological evolution,
alongside biological evolution, displays radiations, stasis, extinctions, and novelty [50].
Sandén and Hillman ([51], p. 407) suggest six typologies of technological interactions using
similarity to the interactions in biological species, i.e., neutralism, commensalism, amen-
salism, symbiosis, competition, and parasitism. Coccia [41], in a broad analogy with the
evolutionary ecology of parasites, explains the parasitic-dependence interaction between
technologies and related effects for the evolution of technologies [41,44,52]. Fleming and
Sorenson [14] maintain that the precise mechanism through which science accelerates the
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rate of invention remains an open question. Science progress and invention can be due
to a combinatorial search process, in which science advances can alter inventors’ search
processes by leading to useful combinations, eliminating failing paths of research, and
triggering them to continue even in the presence of negative feedback, generating learning
processes from invention and innovation failure [53]. These mechanisms seem to be useful
when inventors attempt to combine highly coupled components; therefore, the elements of
scientific research to invention creation have a systematic variability across different fields
and technological applications.

Nevertheless, in these topics of research there is an evident incompleteness because no
consistent system of factors is capable of explaining the complex structures and dynamics
of science and technology in society. In fact, current theoretical frameworks do not explain
how the variability of topics within research fields can drive the dynamics of scientific
development and technological change, as well as the diversity in evolutionary pathways
of technologies. The idea of the study here is that the variability in scientific fields and
related technologies can clarify sources and effects of scientific and technological change.
Proposed theory of scientific variability here can allow scientists, technology analysts, R&D
managers, and policymakers to make more accurate predictions of technological evolution
to improve management of promising technologies and innovations [54–58]. Hence, this
study suggests a general theory that analyzes and discusses why studying variability is
important for understanding the dynamics of scientific development and technological
evolution in order to detail challenges and opportunities in technological forecasting to
improve innovation and technology management [54,56].

3. Research Methodology
3.1. Research Philosophy of Proposed General Theory of Scientific Variability

The proposed theory of scientific variability here is developed within a perspective
of generalized or universal Darwinism to explain sources of scientific and technological
change [27,59–61]. Hodgson ([62], p. 260) maintains that “Darwinism involves a general
theory of all open, complex systems”. In this context, Hodgson and Knudsen [63] suggest a
generalization of the Darwinian concepts of selection, variation, and retention to explain
how a complex system evolves over time and space [62–65]. In the economics of technical
change and in the fields of the Science of Science [7], the generalization of Darwinian
principles (“Generalized Darwinism”) can assist in explaining the multidisciplinary nature
of scientific and technological development [46,60–66]. In fact, the heuristic principles
of “Generalized Darwinism” can explain aspects of scientific and technological change
considering analogies between evolution in the biological organisms and similar-looking
processes of systems in science and technology [67]. Arthur [2] argues that the Darwin-
ism approach can clarify technology and science progress as it has been performed for
the development of the species [48,49]. Kauffman and Macready ([68], p. 26) state that
“technological evolution, like biological evolution, can be considered a search across a
space of possibilities on complex, multipeaked ‘fitness’, ‘efficiency’, or ‘cost’ landscapes”.
Schuster ([48], p. 8) shows aspects of similarity between technological and biological
evolution, such as the principle of selection that works if there are significant differences
between elements in a population, such as in research fields, technologies, etc.; i.e., if there
is the necessary variability [69]. Variation, associated with selection, generates evolutionary
processes through which (human or technological) species evolve and adapt to environ-
mental changes. However, the role of variation within research fields as determinant for
the evolution of science and technology is hardly known, but it can be a basic driver to
explaining important sources and effects on scientific and technological change. Hence,
the theoretical background of “Generalized Darwinism” [63] can frame a broad analogy
between science, technology, and evolutionary ecology that provides a logical structure to
analyze and explain how the variability in science drives different evolutionary pathways
of research fields and technologies in society [41].
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3.2. The Extension of Postulates of the Variability in Science

Variability is the predisposition of the elements in system to assume different values
over time and space [70]. In biological systems, the role of variation is well known [71,72],
whereas the variation in the study of scientific and technological information is unknown,
but its examination can explain sources and effects on scientific development and technolog-
ical evolution. In a broad analogy with principles of biology, in a theoretical framework of
Generalized Darwinism, variability can play a central role to explain evolutionary processes
in science and technology for determining general properties to support technological fore-
casting and innovation management [56].

The proposed theory of scientific variability within research fields endeavors to clarify
one of the sources driving technological evolution [13]. In fact, the understanding of the
role of variability in science and technology can extend the theories of scientific develop-
ment and technological evolution with a new conceptual element to improve technological
forecasting and support the management of technologies towards promising innovations
for a fruitful economic and social impact. This study uses the concept “variability” inter-
changeably with terms of variation, difference, diversity, and disparity [73].

Extension of the Postulates of Variability in the Science and Technology Domain

(a) Scientific topics in research fields have different variability.
(b) Variability in research fields drives the evolution, variability ⇒ evolution.
(c) Variability in research fields is basic for evolution and adaptation to changing envi-

ronments.

3.3. Proposed Theory of Scientific Variability for Technological Evolution

The assumption is that scientific development and the evolution of technologies can
be explained by the variability in related research fields.

Figure 1 shows this logical relation.
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Prediction of the Theory of Scientific Variability for Technological Evolution

Variability in research fields drives scientific development and technological evolution.
Figure 2 shows the causal relation of the theoretical prediction that scientific variability

can drive scientific and technological evolution.

Sci 2024, 6, x FOR PEER REVIEW 4 of 17 
 

 

3.2. The Extension of Postulates of the Variability in Science 
Variability is the predisposition of the elements in system to assume different values 

over time and space [70]. In biological systems, the role of variation is well known [71,72], 
whereas the variation in the study of scientific and technological information is unknown, 
but its examination can explain sources and effects on scientific development and techno-
logical evolution. In a broad analogy with principles of biology, in a theoretical framework 
of Generalized Darwinism, variability can play a central role to explain evolutionary pro-
cesses in science and technology for determining general properties to support technolog-
ical forecasting and innovation management [56]. 

The proposed theory of scientific variability within research fields endeavors to clar-
ify one of the sources driving technological evolution [13]. In fact, the understanding of 
the role of variability in science and technology can extend the theories of scientific devel-
opment and technological evolution with a new conceptual element to improve techno-
logical forecasting and support the management of technologies towards promising inno-
vations for a fruitful economic and social impact. This study uses the concept “variability” 
interchangeably with terms of variation, difference, diversity, and disparity [73]. 

Extension of the Postulates of Variability in the Science and Technology Domain 
(a) Scientific topics in research fields have different variability. 
(b) Variability in research fields drives the evolution, variability ⇒ evolution. 
(c) Variability in research fields is basic for evolution and adaptation to changing envi-

ronments. 

3.3. Proposed Theory of Scientific Variability for Technological Evolution 
The assumption is that scientific development and the evolution of technologies can 

be explained by the variability in related research fields. 
Figure 1 shows this logical relation. 

 
Figure 1. Scientific and technological evolution as a function (φ) of the variability in research fields. 

Prediction of the Theory of Scientific Variability for Technological Evolution 
Variability in research fields drives scientific development and technological evolution. 
Figure 2 shows the causal relation of the theoretical prediction that scientific varia-

bility can drive scientific and technological evolution 

 
Figure 2. Consequential relation of variability in research fields as driver of scientific and techno-
logical change. 

The confirmation of prediction, as just mentioned, with empirical evidence can sup-
port theoretical, managerial and policy implications to improve technological forecasting 
and to direct R&D investments towards promising technologies and innovations for sci-
ence, technology, and socioeconomic progress [74–76]. 

ሾ𝑆𝑐𝑖𝑒𝑛𝑡𝑖𝑓𝑖𝑐 𝑎𝑛𝑑 𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖  = 𝜑 ሺ 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖ሻሿ  𝑖 = 𝑟𝑒𝑠𝑒𝑎𝑟𝑐ℎ 𝑎𝑛𝑑 𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑓𝑖𝑒𝑙𝑑 

Figure 2. Consequential relation of variability in research fields as driver of scientific and technologi-
cal change.

The confirmation of prediction, as just mentioned, with empirical evidence can support
theoretical, managerial and policy implications to improve technological forecasting and
to direct R&D investments towards promising technologies and innovations for science,
technology, and socioeconomic progress [74–76].
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3.4. Testable Implications of the Prediction of Proposed Theory of Scientific Variability for
Technological Evolution

1. Scientific variability changes between research fields of the same discipline.
2. The pace of technological evolution can depend on scientific variability in related

research fields.

Research Setting to Test the Predictions: Research Fields in Quantum Technologies

The predictions of the proposed theory of scientific variability for technological evo-
lution will be verified empirically in some main quantum technologies by measuring the
variation in scientific and technological information with the entropy index, a measure of
changes in a group of individual data points [14]. Quantum science and technology are
path-breaking systems having a high potential growth with manifold applications, such
as in quantum machine learning [77–79], drug discovery processes [80], cryptographic
tasks [81], information processing of big data [29,30,82], etc. [83–86]. Many research fields in
quantum technologies are at the initial stage of evolution, but they have different scientific
and technological advances that can affect the pathways of scientific development and
technological evolution [83,87–89].

The study here focuses on some emerging research fields in quantum science having
an independent topic of study, specific methodological approach, and applications [90].
This study analyzes four emerging scientific specialties in quantum science (Quantum
Meteorology, Quantum Sensing, Quantum Optics, and Quantum Imaging). The emergence
and related evolution of these fields can be due to economic and scientific variables (i.e.,
competitive position of nations) but also to activities that occur in scientific development
given by (a) intellectual factors, such as paradigm development, potential discovery, prob-
lem success, and puzzle solving and (b) social factor, such as communication, co-authorship,
colleagueship, and apprenticeship [91]. Wray [92] argues that sociological approaches focus
on social and community changes as the source of new specialties, but conceptual changes
also play an important role in the creation and evolution of some scientific specialties
and related technologies. Conceptual change in research fields can be detected with the
variability in topics that clarifies relationships with the evolution of scientific specialization
and new technological trajectories.

3.5. Study Design
3.5.1. Sources of Data, Samples, and Measures for the Analysis of Variation in
Research Fields

In order to measure the variability within research fields, this study analyzes scientific
and technological information given by the number of occurrences concerning research
topics in scientific documents (namely 160 keywords, max available number in the database
of Scopus, [93]) of four research fields in quantum technologies [94,95]: Quantum Imaging,
Quantum Meteorology, Quantum Sensing, and Quantum Optics. Data are from Scopus [93],
downloaded on 24 April 2023. In particular, the study considers all available data in:

- Quantum Meteorology: 2028 scientific documents from 1972 to 2023
- Quantum Sensing: 1726 scientific documents from 2000 to 2023
- Quantum Optics: 58,060 scientific documents from 1958 to 2023
- Finally, Quantum Imaging: 753 scientific documents from 1996 to 2023

3.5.2. Sources of Data, Samples, and Measures for Technology Analysis of the Rate of
Growth in Research Fields

The analysis of growth rate uses the number of papers in the same four research
fields of quantum technologies, i.e., Quantum Imaging, Quantum Meteorology, Quantum
Sensing, and Quantum Optics. Data are downloaded on 14 February 2024 from Scopus [96],
about one year later the data for variance analysis to logically assess the consequential
effect of variability on scientific and technological growth of research fields, as follows:
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- Quantum Meteorology: 1851 scientific documents, with 8646 occurrences concerning
the first 160 research topics (keywords) having high frequency (all data available from
1972 to 2023).

- Quantum Sensing: 1375 scientific documents, with 6618 occurrences concerning the
first 160 research topics having high frequency (data from 2000 to 2023).

- Quantum Optics: 54,332 scientific documents, with 236,887 occurrences concerning
the first 160 research topics with high frequency (data from 1958 to 2023).

- Finally, Quantum Imaging: 673 scientific documents, with 3407 occurrences concerning
the first 160 research topics having high frequency (data from 1996 to 2023).

3.5.3. Methods for Statistical Analyses of Data

# Test of the prediction n. 1 stated in Section 3.4 with the analysis of scientific variability
based on entropy index

Variation is the quantitative or qualitative difference(s) between two or more enti-
ties [70,97]. There is no universal approach to measuring variation across biological as
well as technological and other systems. Variation can be classified with numerical or
categorical aspects. Numerical variation can be continuous (e.g., differences) or discrete
(e.g., number of mutations). Depending on data type and system complexity, different
statistical approaches can be applied for quantifying properly variability in systems [98].
The analysis of scientific variability in research topics of four homogeneous groups con-
cerning quantum technologies above can clarify basic effects on scientific development
and technological evolution. One of the unifying frameworks to analyze the variability
in science is the information theory with entropy index, a measure based on information
content [99]. This approach was originally developed to study telecommunications, but
it can be also applied in many other fields, such as computer science, biology, statistics,
anthropology, economics, etc. [100].

The entropy index is a vital measure of heterogeneity to assess variability within
groups [97,101–106]. Given a population (here, scientific information in a specific quantum
technology) in which the research topics have a relative frequency Pi, Shannon suggested
the degree of indeterminacy in predicting the modality of a unit chosen at random from a
population on the basis of the entropy. The entropy index H(X) is a decreasing function of
the variability in relative frequencies [101,107–109]. Hence, the entropy H(X) of a single
distribution (X) is:

Entropy H(X) = −∑s
i=1 Pi(x)logPi(x) (1)

where Pi(x) = ni/N, s = distinct modes.
Entropy H(X) has a value of 0 when the whole frequency is concentrated in a single

modality. Entropy H(X) gradually increases the values as the heterogeneity of the modalities
increases up to the maximum number of (log s) when there are (s) distinct modes all with
the same absolute frequency N/s.

The relative entropy index H is:

H =
H(x)
logs

(2)

Moreover, the rate of scientific growth in four quantum technologies/research fields
under study here is estimated with following linear model of the relationship of the number
of publications (P) on time t

P (publications) i,t = a + b growth (time) i,t + ui,t (3)

P = Publication
a = constant
b growth = coefficient of regression (rate of growth)
u = error term
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The estimation of model (3) is performed with the Ordinary Least Squares (OLS)
method that determines the unknown parameters in regression models.

# Test of the prediction n. 2 stated in Section 3.4 that the evolution of technology
depends on variability

Correlation analysis. Considering the four research fields under study having scientific
and technological information, the association between scientific variability measured with
the relative entropy index and the rate of growth measured with the coefficient of regression
in the linear model (3) is performed with the Spearman correlation coefficient (Spearman’s
correlation, for short): a nonparametric measure of the strength and direction of association
that exists between two variables. Coefficient is denoted by the Greek letter ρ (rho). The
test is used in this case for continuous data that have failed the assumptions necessary for
conducting the Pearson’s correlation, since only four observations are obtained from four
research fields under study.

Finally, previous results of entropy indices and rates of growth are combined to
analyze the relation between evolutionary growth and scientific variability in research
fields. Model of the rate of growth (b growth = coefficient of regression in Equation (3)) as a
linear function of the entropy index h (proxy of variability) in the research fields of quantum
technologies is:

b growth i,t = k + z (h)i,t + εi,t (4)

b = rate of growth in research fields and related technologies
k = constant
z = coefficient of regression
h = relative entropy index (variability in research fields)
ε = error term
The estimation of model (4) is also with the Ordinary Least Squares (OLS) method,

which determines the unknown parameters in regression model.
Statistical analyses are performed with the IBM SPSS Statistics version 26 ®.

4. Empirical Evidence
4.1. Validation of the Prediction That Scientific Variability Changes between different Research
Fields in the Same Discipline

Table 1 shows that Quantum Optics has a higher concentration of occurrences in
research topics (lower relative entropy = H), whereas Quantum Sensing has higher hetero-
geneity of these occurrences between manifold research topics (higher relative entropy).
This result can be due to the scientific age of Quantum Sensing, which is a shorter period
(23 years, in the year 2023) than Quantum Optics, which has an evolutionary period of
65 years (in year 2023). Moreover, higher heterogeneity within a research field suggests
that the younger research field has to stabilize the scientific directions and technological
trajectories in its evolutionary pattern [110,111].

Table 1. Descriptive statistics and relative entropy in research fields of quantum technologies.

Research Fields Cases Arithmetic
Mean

Std.
Deviation

Relative Entropy
H

Quantum Optics 154 1480.48 4235.48 0.827
Quantum Metrology 154 54.04 113.00 0.853
Quantum Imaging 152 21.29 42.10 0.866
Quantum Sensing 153 41.36 46.59 0.925

Table 2 shows that Quantum Sensing has the highest rate of growth 0.27 (p-value = 0.001),
Quantum Metrology has also a significant high growth rate of 0.23, followed by Quantum
Imaging (0.12) and finally by Quantum Optics (0.08). The F-test of the models is highly
significant (p-value = 0.001) and the coefficient of determination shows a high goodness of
fit in the range between 66% and 92% in estimated relationships.
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Table 2. Results of estimated relationships of scientific production (publications) as a function of time.

Dependent Variable: Scientific Products

Coefficient
b = Growth Rate

Constant
a F-Test R2

Quantum Imaging, Log y pubs i,t 0.121 *** −240.43 *** 39.89 *** 0.66
Quantum Metrology, Log y pubs i,t 0.225 *** −449.95 *** 247.90 *** 0.92
Quantum Optics, Log y pubs i,t 0.079 *** −151.26 *** 150.47 *** 0.88
Quantum Sensing, Log y pubs i,t 0.265 *** −530.63 *** 238.76 *** 0.92

Note: Explanatory variable is time in years. *** significant at 1‰; F is the ratio of the variance explained by the
model to the unexplained variance. R2 is the coefficient of determination.

Figure 3 synthetizes the relative entropy index and rate of growth in the four research
fields of quantum technology under study.
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4.2. Preliminary Validation of the Prediction That Evolution of Scientific and Technological
Information = f(Scientific Variability)

Table 3 shows the association between the entropy indices and rates of growth in the
four research fields under study with Spearman’s correlation (rho): ρ = 0.80 (p-value = 0.17),
it suggests a positive association between variability (measured with relative entropy) and
scientific and technological development (measured with regression coefficient). In short,
the results suggest that high variability is associated with higher scientific and technological
change during evolutionary patterns of scientific and technological information.

Table 3. Nonparametric correlation between relative entropy index and rate of growth in four research
fields of quantum technologies.

Relative Entropy, H Rate of Growth

Spearman’s Correlation, rho Relative Entropy, H 1 0.800
Sig. (2-tailed) 0.17

N 4 4

Considering the results of the correlation analysis in Table 3, Table 4 shows a prelimi-
nary estimated relationship of the rate of growth (b = coefficient of regression as specified
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in Equation (3)) on the relative entropy index h (proxy of variability) in research fields of
quantum technologies: a positive coefficient of regression, z = 1.63, suggests that scientific
variability can explain and be a main driver of scientific and technological evolution (R-
square of the goodness of fit is about 61%). Figure 3 visualizes the estimated relationship of
the rate of growth (b) on the relative entropy index h (proxy of variability) in the research
fields of quantum technologies.

Table 4. Results of the estimated relationship of the rate of growth (b = coefficient of regression) on
relative entropy index h (proxy of variability) in research fields of quantum technologies

Dependent Variable: Scientific Products

Quantum Technologies,
i = 1, 2, 3, 4

Coefficient
z

Constant
k F-Test R2

b (rate of growth)i 1.63 −1.244 3.07 0.61
Note: Explanatory variable is the relative entropy index h in the quantum research fields. F is the ratio of the
variance explained by the model to the unexplained variance. R2 is the coefficient of determination.

The results suggest that higher variability can support higher rates of growth in the
research fields under study. The statistical evidence, described in Table 4 and visualized in
Figure 4, seems in general to support the theoretical prediction that the rate of scientific and
technological growth can be explained by the level of scientific variability in the research
fields (of quantum technology).
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Figure 4. Preliminary estimated relationship of rate of growth on relative entropy index (proxy of
variability) in research fields of quantum technologies. Note: Red dots indicate the coordinates of a
point given by ordered pair (x,y) where x and y indicate the distance in the direction of a respective
axis, i.e., dot = (relative entropy, growth coefficient). Dotted line is the estimated relationship with
Ordinary Least Squares (OLS) method of the empirical values. Estimated equation and coefficient of
determination (goodness of fit) are above the line.

Although we have only four observations associated with the four research fields
under study, the nonparametric correlation coefficient is 0.80. This result is also confirmed,
prima facie (accepted as correct until proved otherwise), by the estimated relationship of
the linear model with a positive estimated coefficient of regression = 1.63 (Table 4 and
Figure 4).

Hence, this empirical evidence can suggest a general law of scientific variability for
scientific and technological development given by:

Rate of growth = −1.24 + 1.63 (Variability), R2 = 61%.

Overall then, the statistical evidence seems in general to support the theoretical pre-
diction that variability within research fields drives scientific and technological evolution;
in particular, a higher variability underlying scientific development can support a high rate
of growth in technological evolution.
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5. Fundamental Considerations on the General Theory of Scientific Variability for
Technological Evolution
5.1. Explanation of Results

Variation is a basic aspect for the process of evolution in biology [72,112]. In analogy
with biology, variation can explain characteristics of scientific evolution and may confer
adaptation and development of technologies to environmental changes [113]. In particular,
in the field of science of the science, the analysis of variability can reveal main properties
of the dynamics of scientific development and technological evolution [24–26]. A main
prediction of the proposed general theory here, supported by empirical evidence, is that sci-
entific variability seems to explain technological evolution, and a higher level of variability
in research fields can increase scientific and technological development. Moreover, higher
scientific variability, such as in the field of Quantum Sensing, suggests various underlying
causes that affect in different ways the evolutionary patterns:

- The accumulation of scientific knowledge (papers having scientific and technological
information) is a factor determining variability. Lower accumulation of scientific
products in younger research fields shows a higher variability, associated with a
higher technological evolution and uncertainty in technological trajectories, whereas a
higher accumulation of scientific outputs in older research fields is associated with a
lower variability that guides more stable scientific and technological trajectories.

- The specificity and nature of the research fields and technologies affect the variability
and related evolutionary pathways. High variability within the complex system of
research fields that are more oriented to support general purpose technologies (diving
different technologies), such as Quantum Sensing, seems to induce a high rate of
growth in scientific and technological evolution [29,30,83].

Variability in a research field having scientific and technological information may
not be independent of the variation in other scientific and technological systems [114].
This mutual influence is a challenge to the study of scientific variability because the de-
terminants of variability in a single research field can have the main consequences for
variation and evolution in other scientific disciplines and related technologies [29,30]. Some
scholars suggest the concept of “nested ecosystems” [115] that can be also applied per
analogy in our context: the changes in a research field and related technology has interde-
pendencies with other research fields and technologies in a larger science and technology
ecosystem [116,117]. Thus, variability at one level might influence processes at other levels
or in other scientific and technological systems.

The results here also suggest other sources of scientific variation, such as the change
in a scientific and technological ecosystem, and related ecotone (transition or tension
zone between these domains) in which scientific research and technologies develop [116].
Moreover, endogenous variation in research fields and technologies can be associated
with external mechanisms of variability, such as the interaction with different research
fields and technologies during evolutionary pathways in turbulent environment [118].
Hence, variability in quantum technologies, driven by the interaction and convergence of
different research fields, affects the behavior and evolution of inter-related scientific fields
and technologies [44]. This source of variability in research fields can be explained with the
theorem of non-independence of any technology by Coccia [43]: the long-term behavior
and evolution of any technological innovation is not independent from the behavior and
evolution of the other technological innovations.

In general, empirical evidence here shows that variation guides scientific and techno-
logical evolution, and it is due to the systematic characteristics of the nature of the scientific
fields and related technologies, of the random scientific and technological interaction with
other technologies and research fields, and of the changes in surrounding innovation,
business and socioeconomic ecosystems and related ecotones (transition zones).
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5.2. Deductive Implications of the General Theory of Scientific Variability for
Technological Evolution

General changes in the conditions of innovation ecosystems and their interactions
in the techno-scientific ecotone (tension zone) trigger scientific and technological varia-
tion [24–26,119]. Research fields and technologies exposed to changes in the conditions
of ecosystems and related ecotone and to interactions with other research fields have dif-
ferent variability and consequential coevolutionary pathways of growth [24–26,44,120].
Conversely, if it were possible to expose all research fields and technologies over time
to absolute uniform environmental conditions, without interactions, there would be no
variability [41,86,120,121].

Basic deductions of the proposed theory of scientific variability for technological
evolution are:

- Scientific variability in research fields drives technological evolution.
- Variability in research fields and technologies is due to their specific nature, scientific

and technological interactions, and changes in the surrounding innovation ecosystem
and ecotone (transition zone) that generate turbulence (complexity and uncertainty)
and progressive convergence and evolutionary pathways.

6. Conclusions, Limitations and Prospects

The study of scientific variability is basic to explaining the causes underlying scientific
and technological evolution of radical and disruptive technologies [13,122–137]. The broad
analogy applied here between evolutionary ecology and technological evolution, within a
framework of Generalized Darwinism, keeps its validity in explaining how the variability
within and between research fields can clarify some aspects of scientific and technological
evolution. This study also shows for the first time, to my knowledge, a main prediction of
the suggested theory, verified with a preliminary empirical evidence: variability in research
fields is a driving force of the scientific development and technological evolution.

6.1. Managerial and Policy Implications

The variability in research fields can guide the decision making of policymakers, tech-
nology analysists, and R&D managers: high variability supports a higher rate of scientific
and technological evolution associated with a high uncertainty in related trajectories [14].
Efficient decisions of focused R&D investments driven by institutions, considering the role
of variability explained here, can support promising scientific and technological trajectories
and reduce the risk of innovation failure [53,83,138–140]. Hence, the proposed theory of
scientific variability, verified here by a preliminary statistical evidence in quantum tech-
nologies, can suggest implications in innovation management based on an ambidexterity
strategy [141,142]:

(a) Exploration approaches in research fields and technological pathways to detect promis-
ing trajectories, in the presence of high scientific variability, by differentiating R&D
investments between different technological and innovation projects present in port-
folio of firms and/or nations.

(b) Exploitation strategy, when variability in research fields is low, to direct R&D invest-
ments in specific technological and innovation projects having manifold potential
applications in different industries and markets.

6.2. Limitations and Future Research

This study provides some interesting but preliminary results in these complex topics
concerning the relation between scientific variability and the evolution of emerging sci-
entific fields and technologies [58]. The idea presented in the study here is adequate in
some cases but less in others because of the diversity of research fields and technologies,
their intrinsic nature and propensity to interact with different complex systems in scientific,
business and socioeconomic environments [143]. Current limitations for future challenges
to the study of scientific variability for explaining patterns of technological evolution are:
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(1) improve the measurement of variability in science and technology domains, considering
different scientific and technological information according to the research field under
study, such as also software and algorithms in computing sciences; (2) discover mani-
fold socioeconomic, institutional and political drivers of variability within and between
research fields; (3) clarify confounding factors (e.g., level of public and private R&D invest-
ments, international collaboration, etc.) that affect scientific variability and technological
evolution [138,139,144]; (4) enhance data gathering for new technological analyses and
apply complementary analysis based on patents for improving theoretical and managerial
implications also for more precise technological foresight of promising technologies and
innovations [55,145–150].

One of the principal results here is a basic hypothesis of scientific variability, but the
study encourages further theoretical exploration in the terra incognita of the variability in
scientific fields to clarify sources and effects for scientific and technological evolution.

To conclude, hence, the proposed theoretical framework of variability here based on
the analogy of scientific and technological evolution with some evolutionary aspects present
in ecology and biology, validated with empirical evidence, suggests to reiterate preliminary
results. However, there is need for much more detailed research into the investigation of
the role that the variability plays to clarify evolutionary patterns of research fields and
technologies in order to support stronger implications for technological forecasting and
innovation management having fruitful economic and societal impact in turbulent markets.
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