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Abstract: The well-known Gaussian plume model has proven to be very useful in simulating the
atmospheric dispersion of air pollutants (both gaseous and particulates). Nevertheless, the nature of
the model presents problems in the actual computation of concentrations when the plume is confined
between two parallel boundaries due to the occurrence of multiple reflections. The ground and
temperature inversion lid (especially, when the inversion layer is at low levels in the atmosphere)
with a chimney stack releasing the effluent below the latter, is one contextual example of horizontal
parallel reflecting boundaries. A second example is buildings confining a roadway on either side, with
motor vehicles emitting pollution within the street canyon (or urban notch). In such cases, multiple
reflections should be accounted for, otherwise the model underpredicts the resulting concentration.
This paper presents a mathematical rewriting of the Gaussian plume model equation corrected for
multiple reflections when the pollution source is confined between parallel boundaries. The obtained
result is most appropriate when the parallel boundaries are rigid, and near-complete reflection is
achieved, e.g., street canyon environment (second quoted example). It is worth noting that the
relevant mathematical derivations and definitions are all included in the paper to facilitate reading
and to ensure comprehensiveness in the presentation. Additionally, the outcome of some preliminary
numerical testing is presented. The latter indicates that the new formulation is mathematically
stable and yields interesting results. Further numerical investigation and experimental evaluation
are merited.

Keywords: Gaussian plume model; multiple reflections at boundaries; street canyon air quality;
pollution dispersion

1. Introduction and Background

Atmospheric dispersion (or transport) models are mathematical equations that are
used for the prediction of movement, i.e., advection, and spread, i.e., dispersion, of pol-
lutants in ambient air. Such models are used to study the transport of various pollutants,
e.g., trace gases, and airborne particles (aerosols). One major application of atmospheric
dispersion models is the evaluation of the impact of emissions from industrial sources,
e.g., chimneys, how such emissions are diluted in the atmosphere, as well as how they
spread, to assess the risk of exposure in the case of hazardous releases. Another application
of such models is to assess pollution within street canyons, arising from the emissions of
motor vehicles.

There are several different types of atmospheric dispersion models. Holmes and
Morawska [1] reviewed those models that are specifically valid for airborne particles. More
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recently, Khan and Hassan [2], and Johnson [3] gave a detailed review of developments
in air quality modeling, in general. In their reviews, they discussed the various types of
modeling approaches, including steady-state Gaussian plume models, which are core to
the current study. Snoun et al. [4] focused their review on Gaussian atmospheric dispersion
models and their applications. Woodward et al. [5] investigated specifically the applicability
of Gaussian models to near-field dispersion. Gaussian models are the ones that utilize, in
their calculations, the plume model equation discussed in this work.

Gaussian models are commonly used to simulate atmospheric pollutant dispersion
near sources because they provide an efficient compromise between reasonable accuracy
and manageable computational time [6]. Such models estimate the concentration of a
pollutant at any point in three-dimensional space from knowledge of the emission rate
of the pollutant, meteorological conditions, and the distance from the source of emission.
These models are commonly used primarily because they are easy to implement and predict
concentrations over a wide range of distances from the source.

Two advantages of the Gaussian plume model for the dispersal of air pollutants are
its computational simplicity and the fact that phenomena such as reflection of the plume
at boundaries, and plume depletion by dry deposition and gravitational settling can be
incorporated with ease. These phenomena are particularly important in the case of the
dispersal of airborne particles (see, for example, [7]).

When a Gaussian plume is confined between two parallel boundaries, multiple reflec-
tions take place. The latter process gives rise to a modified concentration field as compared
to that without boundaries. The effluent associated with a Gaussian plume that is caught
up between a pair of parallel reflecting boundaries will undergo multiple reflections, which
will enhance the concentration due to restrictive dispersal. Gaussian models that do not
consider multiple reflections at boundaries, tend to underestimate the airborne concentra-
tion of the pollutant being emitted, especially beyond a certain downwind distance from
the source of pollution.

One typical example is when the pollution source lies between an inversion cap
or lid, i.e., the bottom of an atmospheric stable layer aloft, associated with an elevated
temperature inversion, and the ground. In this case, the two horizontal parallel boundaries
define the atmospheric mixing zone. It is worth noting that, one of the boundaries, i.e.,
the inversion cap or lid, is not always well defined (except for an abrupt temperature
inversion) and, hence, the effect of multiple reflections of the plume is not always evident.
In this case, reflections are nowhere near complete due to the diffusive nature of the upper
boundary, i.e., the inversion cap or lid. The situation can give rise to overprediction of
the calculated concentrations, so that the effect of reflections on the concentration field
should be implemented with caution. This is an example of horizontal parallel reflecting
boundaries. The subject was treated in some detail by Pasquill [8].

An example of vertical parallel reflecting boundaries is the facades of buildings con-
fining a roadway on either side, making up the geometry of a street canyon or urban notch.
In this case, reflections are more well-defined due to the rigid nature of the boundaries, i.e.,
building facades that confine the roadway. Given the restrictive environment, i.e., short
width of the street canyon (especially, in comparison to building height), multiple reflec-
tions take place in a relatively short period of time. This is in contrast with the previous
case where the two boundaries are the ground and the inversion cap or lid, which are
separated by a (mixing) length or height, of the order of hundreds of meters.

There are many published roadway-type, or more specifically, street canyon air quality
models that simulate dispersion of pollution through the application of the Gaussian
dispersion model equation. Some classical examples include the Canyon Plume Box (CPB)
model [9], the Operational Street Pollution model (OSPM) [10], and the Street Level Air
Quality (SLAQ) model by Micallef and Colls [11]. Vardoulakis et al. [12] provided a
detailed review of street canyon air quality models, some of which utilize the Gaussian
plume dispersion model equation.
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There are various methods that one can employ to correct for multiple reflections.
One way is to utilize the concept of image sources. In this work, the Gaussian plume
model equation corrected for multiple reflections at parallel boundaries, is rewritten by
utilizing knowledge and properties of the Jacobi theta functions, which are discussed in
the following section.

2. Two Preliminary Mathematical Results with Proofs

Jacobi theta functions are discussed in textbooks on modern analysis, functional
analysis, and special functions (see, for example, [13–15]). There are four Jacobi theta
functions. These are ϑ1, ϑ2, ϑ3, and ϑ4, functions of parameters z and q, which can be real or
complex numbers. They are defined by infinite series as given in the following equations:

ϑ1(z, q) = 2∑n=+∞
n=0 (−1)nq(n+

1
2 )

2
sin[(2n + 1)z], (1)

ϑ2(z, q) = 2∑n=+∞
n=0 q(n+

1
2 )

2
cos[(2n + 1)z], (2)

ϑ3(z, q) = 1 + 2∑n=+∞
n=1 qn2

cos[2nz], (3)

ϑ4(z, q) = 1 + 2∑n=+∞
n=1 (−1)nqn2

cos[2nz], (4)

where n is an integer and a dummy variable. It is worth noting that z governs the periodicity,
while q is related to the size of the amplitude of the resulting function.

Schiefermayr [16] and Singh et al. [17] discussed some very interesting properties
of such functions, which go beyond what is normally found in textbooks of mathemati-
cal analysis.

The Jacobi theta function of the third kind, i.e., ϑ3, is the one which will be encountered
most in the following discussion. Before embarking on the main derivation in this work,
two useful results (lemmas) are first derived. The following are the derivations of these two
preliminary results needed in the main discussion here (and in the subsequent section).

The first preliminary result states that the Jacobi theta function of the third kind can
be written as

ϑ3(z, q) = ∑n=+∞
n=−∞ qn2

exp[i2nz], (5)

where i =
√
−1.

The following is proof of this result.
One can write,

∑n=+∞
n=−∞ qn2

exp[i2nz] = 1 + ∑n=−1
n=−∞ qn2

exp[i2nz] + ∑n=+∞
n=1 qn2

exp[i2nz]. (6)

But, exp[i2nz] = cos[2nz] + isin[2nz], and since the sine and cosine functions are odd
and even functions, respectively, we have, cos(−λ) = cos(λ) and sin(−λ) = −sin(λ).
Therefore, for n > 0, one obtains

exp[i2nz] = cos[2nz] + isin[2nz], (7)

and for n < 0, the following result holds

exp[i2nz] = cos[2nz]− isin[2nz]. (8)

Substituting Equations (7) and (8), in Equation (6) gives

∑n=+∞
n=−∞ qn2

exp[i2nz] = 1 + ∑n=+∞
n=1 qn2{cos[2nz]− isin[2nz]}+ ∑n=+∞

n=1 qn2{cos[2nz] + isin[2nz]}. (9)
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By using the standard definition of the Jacobi theta function of the third kind, given in
Equation (3), simple algebra leads to the following equation

∑n=+∞
n=−∞ qn2

exp[i2nz] = 1 + 2∑n=+∞
n=1 qn2

cos[2nz] = ϑ3(z, q). (10)

Hence,

∑n=+∞
n=−∞ qn2

exp[i2nz] = ϑ3(z, q),

as required.
The second preliminary result is the following:

G
(

z + H
σz

,
L
σz

)
= exp

(
−(z + H)2

2σ2
z

)
ϑ3

(
iL(z + H)

σ2
z

, α

)
, (11)

where the G-function is defined as hereunder,

G
(

z + H
σz

,
L
σz

)
= ∑j=+∞

j=−∞ exp

[
−(z + H + 2jL)2

2σ2
z

]
, (12)

and

α = exp
(
−2L2

σ2
z

)
, (13)

where j is an integer and a dummy variable.
The following is proof of this result.
Consider the jth term of the series given by Equation (12), i.e.,

exp

[
−(z + H + 2jL)2

2σ2
z

]
= exp

−
(
(z + H)2 + 4j2L2 + 4jL(z + H)

)
2σ2

z

.

Expanding the right-hand side of the equation gives

exp

[
−(z + H + 2jL)2

2σ2
z

]
= exp

[
−(z + H)2

2σ2
z

]
exp
[
−2L2 j2

σ2
z

]
exp
[
−2jL(z + H)

σ2
z

]
,

which leads to

exp

[
−(z + H + 2jL)2

2σ2
z

]
= exp

[
−(z + H)2

2σ2
z

]{
exp
[
−2L2

σ2
z

]}j2

exp
[
−2jL(z + H)

σ2
z

]
.

Summing over j from −∞ to +∞ gives

G
(

z + H
σz

,
L
σz

)
= exp

[
−(z + H)2

2σ2
z

]
∑j=+∞

j=−∞ αj2exp
[
−2jL(z + H)

σ2
z

]
, (14)

where α = exp
[
−2L2

σ2
z

]
. From Equation (5),

ϑ3

(∼
z , q
)
= ∑j=+∞

j=−∞ qj2exp
[
i2j

∼
z
]
. (15)

Comparing the right-hand side of Equation (15) with ∑
j=+∞
j=−∞ αj2exp

[
−2jL(z+H)

σ2
z

]
, gives

q = α and
∼
z = iL(z+H)

σ2
z

. Substituting for q and
∼
z in Equation (15) gives

ϑ3

(
iL(z + H)

σ2
z

, α

)
= ∑j=+∞

j=−∞ αj2exp
[
−2jL(z + H)

σ2
z

]
. (16)
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Substituting in Equation (14) gives

G
(

z + H
σz

,
L
σz

)
= exp

(
−(z + H)2

2σ2
z

)
ϑ3

(
iL(z + H)

σ2
z

, α

)
, (17)

as required.
By similar arguments, one can prove that

G
(

z − H
σz

,
L
σz

)
= exp

(
−(z − H)2

2σ2
z

)
ϑ3

(
iL(z − H)

σ2
z

, α

)
. (18)

Hitherto, no physical meaning has been ascribed to the various parameters used in
the above derivations, but the symbols were chosen keeping in mind that in what follows,
the obtained mathematical results are applied to the Gaussian plume model equation for
atmospheric dispersion.

3. Mathematical Derivation of the Main Result, and Discussion of Its Limitations

The following is a derivation of an expression for the summation of concentrations
from multiple reflections of a Gaussian plume confined by a pair of horizontal parallel
(reflecting) boundaries at z = 0 (ground) and z = L (atmospheric temperature inversion
cap or lid). Consequently, L defines the atmospheric mixing height (or depth). The emission
source is assumed to be located at Cartesian coordinates, (0, 0, H), and, hence, at a height H
above ground, where H < L. The source is assumed to be continuous and time-independent
(state–state scenario). This framework is used when calculating the contribution from point
sources such as stacks/chimneys. It is worth noting that the derivation for the case of a
vertical pair of reflecting boundaries, as in the case of a street canyon, is mathematically
analogous to the following.

In defining the boundaries and source location, the Cartesian reference frame is used
so that the Gaussian plume model, with no reflections and with advection in the y-direction,
is consistently given by

C(x, y, z) =
Q

2πvσxσz
exp
{
−x2

2σ2
x

}
exp

{
−
(
z − H)2

2σ2
z

}
, (19)

where C is the concentration (mass per unit volume) at the location having Cartesian
coordinates (x, y, z), Q is the emission rate (mass per unit time), v is the advection speed
(length per unit time), which is the average over the considered height, and σx and σz are
the horizontal and vertical dispersion parameters (length), respectively. The latter two
parameters define the width of the (Gaussian) concentration distribution as a function of
distance in the x- and z-directions, respectively, and orthogonal to advective flow (the latter,
in the y-direction). The model is only valid for certain conditions, which are discussed in
detail by Lyons and Scott [18].

Note that, if the origin of the reference frame coincides with the source, then the
expression on the right-hand of Equation (19) would simplify to the following:

C(x, y, z) =
Q

2πvσxσz
exp
{
−x2

2σ2
x

}
exp
{
−z2

2σ2
z

}
. (20)

This is equivalent to having the source located at the ground level. To account for
(single) reflection at the ground, the method of images is generally used. In this case,
ground level reflection is modeled by a virtual image source at a distance −H below the
ground surface. Equation (19) is then modified to

C(x, y, z) =
Q

2πvσxσz
exp
{
−x2

2σ2
x

} [
exp

{
−
(
z − H)2

2σ2
z

}
+ exp

{
−
(
z + H)2

2σ2
z

}]
. (21)
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Note that an extra term is introduced in Equation (19) to give Equation (21). This
term accounts for the virtual image source. To account for reflections at the inversion cap,
i.e., to account for multiple reflections, Equation (21) is modified to the following (see, for
example, [19]):

C(x, y, z) =
Q

2πvσxσz
exp
{
−x2

2σ2
x

}[
∑j=+∞

j=−∞ exp

{
−1

2
(z − H + 2jL)2

σ2
z

}
+ ∑j=+∞

j=−∞ exp

{
−1

2
(z + H + 2jL)2

σ2
z

}]
, (22)

where j is an integer and a dummy variable.
The model equation now involves two infinite series that account for multiple reflec-

tions at the two reflecting boundaries confining the Gaussian plume within the bottom-most
layer of the atmosphere, defined by the ground and the atmospheric temperature inversion
cap or lid. For computational purposes, a definite summation expression is preferred, as it
makes it easy to translate into computer code.

Using Equation (12), Equation (22) can be rewritten using the G-function,

C(x, y, z) =
Q

2πvσxσz
exp
{
−x2

2σ2
x

}[
G
(

z − H
σz

,
L
σz

)
+ G

(
z + H

σz
,

L
σz

)]
. (23)

This can be rewritten in terms of the Jacobi theta function of the third kind, using
Equations (17) and (18) to give

C(x, y, z) =
Q

2πvσxσz
exp
{
−x2

2σ2
x

}[
exp

(
−(z − H)2

2σ2
z

)
ϑ3

(
iL(z − H)

σz
, α

)
+ exp

(
−(z + H)2

2σ2
z

)
ϑ3

(
iL(z + H)

σz
, α

)]
, (24)

where α has been defined previously.
In the following, a definite expression will be derived for the G-function. If the q

parameter in the Jacobi theta function of the third kind, ϑ3

(∼
z , q

)
, can be expressed as

q = exp[iπτ], (25)

where τ is a (constant) complex number whose imaginary part is positive, then by Land-
berg’s transformation [13] gives

ϑ′
3

(∼
z , τ
)
= (−iτ)−

1
2 exp

 ∼
z

2

πiτ

ϑ′
3

(∼
z
τ

,− 1
τ

)
, (26)

The prime (′) merely indicates that τ is not replacing the q parameter but that Equation (27)
defines q. Hence,

ϑ′
3

(∼
z , τ
)
= ϑ3

(∼
z , q
)

. (27)

In anticipation of what follows, and considering Equation (13), let

q = α = exp
[
−2L2

σ2
z

]
. (28)

Equating the right-hand sides of Equations (25) and (28) gives

τ =
−2L2

σ2
z πi

. (29)

Once again, in anticipation of what follows, let

∼
z =

iL(z + H)

σ2
z

. (30)
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Substituting Equations (29) and (30), in Equation (26) gives

ϑ′
3

(
iL(z + H)

σ2
z

,
−2L2

σ2
z πi

)
=

√
π

2
σz

L
exp

(
(z + H)2

2σ2
z

)
ϑ′

3

(
π(z + H)

2L
,

σ2
z πi

2L2

)
. (31)

Let,

β = exp
(

iπ
σ2

z πi
2L2

)
. (32)

Using Equations (25), (27)–(30) to transform from ϑ′
3 to ϑ3 on the left-hand side of

Equation (31), and Equations (25), (27) and (32) to transform ϑ′
3 to ϑ3 on the right-hand side

of Equation (31),

ϑ3

(
iL(z + H)

σ2
z

, α

)
=

√
π

2
σz

L
exp

(
(z + H)2

2σ2
z

)
ϑ3

(
π(z + H)

2L
, β

)
,

which leads to the following:

exp

(
−(z + H)2

2σ2
z

)
ϑ3

(
iL(z + H)

σ2
z

, α

)
=

√
π

2
σz

L
ϑ3

(
π(z + H)

2L
, β

)
. (33)

Replacing the left-hand side of Equation (33) by that of Equation (17), one obtains

G
(

z + H
σz

,
L
σz

)
=

√
π

2
σz

L
ϑ3

(
π(z + H)

2L
, β

)
. (34)

Similarly, one obtains the following:

G
(

z − H
σz

,
L
σz

)
=

√
π

2
σz

L
ϑ3

(
π(z − H)

2L
, β

)
. (35)

The next step in the derivation is to expand the following two functions: ϑ3

(
π(z+H)

2L , β
)

and ϑ3

(
π(z−H)

2L , β
)

.
Consider Neville’s theta function, ϑd, corresponding to the Jacobi theta function of the

third kind [20], namely,

ϑd(z + H, β) =
ϑ3

(
π(z+H)

2L , β
)

ϑ3(0, β)
. (36)

Expressing ϑd(z + H, β) as an infinite product [20] gives

ϑd(z + H, β) =

(
mm1

16β

) 1
12

∏n=+∞
n=1

(
1 + 2β2n−1cos

(
π(z + H)

L

)
+ β4n−2

)
, (37)

where m and m1 are complementary real numbers such that m + m1 = 1 and 0 ≤ m ≤ 1.
Putting (z + H) = 0 in Equations (36) and (37) gives

ϑd(0, β) =
ϑ3(0, β)

ϑ3(0, β)
= 1, (38)

and

ϑd(0, β) =

(
mm1

16β

) 1
12

∏n=+∞
n=1

(
1 + 2β2n−1 + β4n−2

)
, (39)
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respectively. Equations (38) and (39) imply that

1 =

(
mm1

16β

) 1
12

∏n=+∞
n=1

(
1 + 2β2n−1 + β4n−2

)
.

Hence, one can write(
mm1

16β

) 1
12

=
1

∏n=+∞
n=1 (1 + 2β2n−1 + β4n−2)

. (40)

Substituting Equation (40) in Equation (37) gives

ϑd(z + H, β) =
∏n=+∞

n=1

(
1 + 2β2n−1cos

(
π(z+H)

L

)
+ β4n−2

)
∏n=+∞

n=1 (1 + 2β2n−1 + β4n−2)
. (41)

From Equations (36) and (41) one obtains

ϑ3

(
π(z + H)

2L
, β

)
= ϑ3(0, β)

∏n=+∞
n=1

(
1 + 2β2n−1cos

(
π(z+H)

L

)
+ β4n−2

)
∏n=+∞

n=1 (1 + 2β2n−1 + β4n−2)
. (42)

From the definition of the Jacobi theta function of the third kind, i.e., Equation (3),

ϑ3

(∼
z , β
)
= 1 + 2∑n=+∞

n=1 βn2
cos
[
2n

∼
z
]
,

and for
∼
z = 0, this equation reduces to

ϑ3(0, β) = 1 + 2∑n=+∞
n=1 βn2

. (43)

Equations (42) and (43) yield

ϑ3

(
π(z + H)

2L
, β

)
=
[
1 + 2∑n=+∞

n=1 βn2
]∏n=+∞

n=1

(
1 + 2β2n−1cos

(
π(z+H)

L

)
+ β4n−2

)
∏n=+∞

n=1 (1 + 2β2n−1 + β4n−2)
. (44)

Approximating to n = 1,

ϑ3

(
π(z + H)

2L
, β

)
= [1 + 2β]

(
1 + 2βcos

(
π(z+H)

L

)
+ β2

)
(1 + β)2 . (45)

Similarly,

ϑ3

(
π(z − H)

2L
, β

)
= [1 + 2β]

(
1 + 2βcos

(
π(z−H)

L

)
+ β2

)
(1 + β)2 . (46)

Adding Equations (45) and (46) gives

ϑ3

(
π(z − H)

2L
, β

)
+ ϑ3

(
π(z + H)

2L
, β

)
= [1 + 2β]

(
2 + 2βcos

(
π(z−H)

L

)
+ 2βcos

(
π(z+H)

L

)
+ 2β2

)
(1 + β)2 . (47)

Now, cos(A − B) + cos(A + B) = 2cos(A)cos(B). Hence,

cos
(

π(z − H)

L

)
+ cos

(
π(z + H)

L

)
= 2cos

(πz
L

)
cos
(

πH
L

)
. (48)

Substituting in Equation (47) gives
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ϑ3

(
π(z − H)

2L
, β

)
+ ϑ3

(
π(z + H)

2L
, β

)
= 2

[1 + 2β]

(1 + β)2

(
1 + 2βcos

(πz
L

)
cos
(

πH
L

)
+ β2

)
. (49)

Adding Equations (34) and (35) gives

G
(

z − H
σz

,
L
σz

)
+ G

(
z + H

σz
,

L
σz

)
=

√
π

2
σz

L

{
ϑ3

(
π(z − H)

2L
, β

)
+ ϑ3

(
π(z + H)

2L
, β

)}
. (50)

Substituting the left-hand part of Equation (49) in Equation (50) gives

G
(

z − H
σz

,
L
σz

)
+ G

(
z + H

σz
,

L
σz

)
=

√
2π

σz

L
[1 + 2β]

(1 + β)2

(
1 + 2βcos

(πz
L

)
cos
(

πH
L

)
+ β2

)
, (51)

where from Equation (32), β = exp
(
−σ2

z π2

2L2

)
. Substituting Equation (51) in Equation (23) gives

C(x, y, z) =
Q

2πvσxσz
exp
{
−x2

2σ2
x

}√
2π

σz

L
[1 + 2β]

(1 + β)2

(
1 + 2βcos

(πz
L

)
cos
(

πH
L

)
+ β2

)
. (52)

Equation (52) is the Gaussian plume model equation for atmospheric dispersion
corrected for multiple reflections at parallel boundaries, which avoids the use of infinite
series, and, hence, facilitates computation and coding, in general. It is worth noting that, by
avoiding the infinite series, the issue of divergence (or lack of convergence) is eliminated.

4. Numerical Testing and Comparison of the Gaussian Plume Model Equations

Inevitably, any form (with or without reflection, etc.), of the Gaussian plume model
equation will involve the relevant dispersion parameters. Pursuing the case discussed
in the previous two sections, let the Gaussian plume be confined by a pair of horizontal
parallel (reflecting) boundaries at z = 0 (ground) and z = L (atmospheric temperature
inversion cap or lid). Consequently, L defines the atmospheric mixing height (or depth).

If advective flow is in the y-direction, then the dispersion parameters of relevance
would be σx and σz, each having units of length. These two parameters define the width
of the (Gaussian) concentration distribution in the x- and z-directions. The dispersion
parameters are a function of downwind distance (in the y-direction) from the source of
pollution. Consequently, each of the dispersion parameters is orthogonal to advective flow
(in the y-direction).

Gaussian dispersion parameters are very important and necessary in the calculation
of the concentration field associated with the pollution plume. They are dependent on
atmospheric conditions at the dispersion site. These basic ideas are clearly discussed in
standard reference books, such as that by Zannetti [21]. There are various formulae and
semi-empirical expressions that can be used for the computation of the dispersion parame-
ters. In this regard, pioneering work was accomplished by Weber [22] and Pasquill [23],
amongst others. A full discussion on the topic concerning the calculation of the dispersion
parameters is beyond the scope of the current study, but the reader is directed to the work
by Miller [24], which examines Gaussian plume dispersion parameters for rough terrain,
which is somewhat more complicated than the open (or non-rough) case. Two other im-
portant and recent studies that compare various schemes used for the computation of the
Gaussian dispersion parameters (also referred to as sigmas) are those of Sharan et al. [25]
and Essa et al. [26]. The former considers low wind conditions, while the latter includes
also moderate wind regimes.

The adopted methodology, in the current study, is the one from McElroys’ correlations
and is detailed in [27], and more recently by Essa et al. [26]. This suffices for the intents and
purposes of the numerical testing being carried out here. Specifically, this class of (power
law) formulations for the dispersion parameters is discussed in substantial detail by Fields
and Miller [28]. In the following paragraph, the mathematical equations used in the current
numerical testing are explicitly discussed for clarity.
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In the numerical testing, Gaussian dispersion parameters, σx and σz (also referred to
as sigma-x and sigma-z, respectively), are given by the mathematical equations:

σx = cym, (53)

and
σz = dyn, (54)

where c, m, d and n take values that are dependent on atmospheric (Pasquill-type) stability,
i.e., A (extremely unstable conditions) to F (moderately stable conditions), as given in
Table 1. In Figure 1, the actual Gaussian dispersion parameters, σx and σz (also referred to
as sigma-x and sigma-z, respectively), are plotted as a function of downwind distance from
the source of pollution, for the various atmospheric (Pasquill-type) stability classes.

Table 1. Values for c, m, d and n used in the power law formulations of the Gaussian dispersion pa-
rameters, σx and σz (also referred to as sigma-x and sigma-z, respectively), for the various atmospheric
(Pasquill-type) stability classes.

Atmospheric
Stability Class
(Pasquill-Type)

Gaussian Dispersion Parameters

σx (Meters) σz (Meters)

c m d n

A-B 1.46 0.71 0.01 1.54
C 1.52 0.69 0.04 1.17
D 1.36 0.67 0.09 0.95

E-F 0.79 0.70 0.40 0.67
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Figure 1. Gaussian dispersion parameters, σx and σz (also referred to as sigma-x and sigma-z,
respectively), as a function of downwind distance from the source of pollution, for the various
atmospheric (Pasquill-type) stability classes.

One observes that the spread or dispersion of the pollutant is more substantial in the
z-direction as compared to the x-direction. This is in keeping with the relevant physical
processes. In the z-direction, thermal buoyancy plays an important role, especially given
that the plume’s temperature tends to be higher than the ambient (surrounding) temper-
ature. Diffusion occurs in both directions. Downwind from the source of pollution, the
dispersion parameters are expected to increase given that the spread or dispersion of the
pollutant is a continuous process.
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Apart from the Gaussian dispersion parameters, the other important and necessary
parameter for the determination of the concentration field associated with the Gaussian
plume is the atmospheric mixing height, L.

There are various techniques and methodologies for the determination of the said pa-
rameter. One common relevant experimental method involves the use of a ceilometer. This
is a ground-based remote sensing technique. Eresmaa et al. [29] described in some detail a
novel method for estimating the atmospheric mixing height based on ceilometer measure-
ments. They also tested their technique against commonly used methods for determining
the atmospheric mixing height. In fact, they carried out a comparison of atmospheric
mixing height estimated using ceilometer data and radio soundings. Eresmaa et al. [30]
developed a three-step method for estimating the atmospheric mixing height from vertical
profile backscattering coefficient data obtained using ceilometers. Martano [31] described
an algorithm for the calculation of the atmospheric mixing height in coastal areas. The
algorithm is simple and uses wind, temperature, momentum flux, and heat flux time series
as input data. Wright et al. [32] discussed in detail the use of satellite observations for the
estimation of the atmospheric mixing height in the Western United States. Feng et al. [33], in
developing their methodology, also used satellite data. Specifically, they used atmospheric
profiles from the MODerate Resolution Imaging Spectroradiometer (MODIS) instrument
onboard the NASA-Aqua satellite, to achieve high spatial resolution.

Most existing parameterizations for the atmospheric mixing height have been devel-
oped for homogeneous terrain conditions. It is worth noting that the urban boundary layer
exhibits many differences in comparison with the rural homogeneous boundary layer due
to the larger surface roughness and increased surface heating, and because of the horizontal
inhomogeneity of certain meteorological fields. Baklanov et al. [34] made recommendations
on the applicability and improvement of various pre-processors, schemes, and models for
atmospheric mixing height that are specific to urban areas.

Over the years, efforts were made to achieve standardization of the methodology for
the determination of the atmospheric mixing height. The work by Fearon et al. [35] was an
effort in this direction, and it also summarizes the main four methods used for estimating
the atmospheric mixing height.

For the intents and purposes of the current numerical testing, a fixed, arbitrary but
meaningful value of 300 m was adopted for the atmospheric mixing height.

With regard to atmospheric conditions and source emission characteristics that can
be adopted for numerical testing, there are an infinite number of possible data sets or
combinations. In the current study, only one set was considered, as proof of concept.
Further numerical testing and experimental evaluation are beyond the scope of the current
study and will constitute the main subject matter of subsequent research projects and
articles. Nevertheless, the numerical testing and comparison accomplished here suffice to
show that further work is indeed merited. In the following paragraphs, the adopted set of
input data are detailed, and the associated output is discussed.

For the numerical testing, the adopted conditions were chosen so as to emulate
typical atmospheric daytime conditions encountered in the Mediterranean region. Strong
sunshine and a wind speed of 5 ms−1 were assumed. These conditions are associated with
atmospheric (Pasquill-type) stability class C. As stated earlier, the atmospheric mixing
height was assumed to be equal to 300 m. The height of the point source of emission, e.g.,
chimney, (also known as stack height) was assumed to be 18 m, and the emission rate was
taken to be 100 gs−1. The airborne concentration was calculated at a height of 18 m, i.e.,
at the same level of release of the effluent, and along the center-line of the plume, at 10 m
intervals starting from a downwind distance of 200 m from the source of pollution. The
near-field was avoided, knowing that Gaussian plume atmospheric dispersion models are
not the ideal choice for regions that are close to the source of pollution.

The Gaussian plume model equation for atmospheric dispersion, albeit corrected for
multiple reflections at a pair of parallel horizontal boundaries that capture between them
the release of the effluent, is given by Equation (52) (reflection model). Calculations made



Sci 2024, 6, 48 12 of 15

using the latter equation were compared with those obtained using the corresponding
(standard) Gaussian plume model equation given by Equation (19) (no-reflection model).
The latter does not account for any kind of reflection. The results of the comparison are
graphically represented in Figure 2.
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Figure 2. Atmospheric concentration, as a function of downwind distance from the source of pollution,
as calculated by the Gaussian plume model equation for atmospheric dispersion, albeit corrected for
multiple reflections at a pair of parallel horizontal boundaries that capture between them the release
of the effluent (black line; reflection model) and using the (standard) Gaussian plume model equation
with no reflections (red line; no-reflection model).

One can observe that there are discrepancies between the two calculation methods, i.e.,
with and without reflection, as expected. Closer to the pollution source, the no-reflection
model overestimates the reflection model. This can be attributed to the way dispersion in
the vertical direction is mathematically expressed. Referring to Equation (19), the relevant
term in the no-reflection model is given by

exp

{
−
(
z − H)2

2σ2
z

}
, (55)

whereas in the reflection model, the latter is rewritten (or “replaced”) by

√
2π

σz

L
[1 + 2β]

(1 + β)2

(
1 + 2βcos

(πz
L

)
cos
(

πH
L

)
+ β2

)
(56)

This rewriting is the outcome of taking into account multiple reflections at the hori-
zontal boundaries. In the process, the said rewriting gives rise to a lower concentration in
the near-field, along the centerline of the plume (at the stack height).

Downwind, approximately at a distance of 350 m from the source of pollution, along
the plume centerline (at the stack height), the two models match. Beyond the latter point,
and further downwind from the source of pollution, the no-reflection model underestimates
the reflection model. These observations are in keeping with the effect of reflections at
the horizontal boundaries, i.e., the ground and the atmospheric temperature inversion
cap or lid. Multiple reflections of the plume give rise to higher concentrations, but the
effectiveness of this stance becomes more evident downwind of the source of pollution,
following several reflections. In the near-field, the mass of the effluent within the plume
is closer to the centerline and away from the horizontal boundaries, so that reflection
is somewhat ineffective. This explains why beyond a certain point downwind from the
source of pollution, the reflection model overestimates the no-reflection model. The said
discrepancy increases farther away from the source of pollution, as shown in Figure 3.
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Figure 3. Difference in atmospheric concentration between that calculated by the Gaussian plume
model equation for atmospheric dispersion, albeit corrected for multiple reflections at a pair of
parallel horizontal boundaries that capture between them the release of the effluent and that using
the (standard) Gaussian plume model equation with no reflections. The said difference is expressed
as a percentage of the latter and is plotted as a function of downwind distance from the source
of pollution.

5. Conclusions

It has been shown that the Gaussian plume model equation used in atmospheric
dispersion can be mathematically represented by Equation (52) for an environment, which
is confined by a pair of parallel horizontal reflecting boundaries. In this manner, the model
accounts for changes in the distribution of pollution occurring due to multiple reflections
at the boundaries. The model is directly applicable for the case where the ground and the
atmospheric temperature inversion cap or lid play the role of the horizontal boundaries. An
analogous expression is valid when the boundaries are a pair of parallel vertical reflecting
planes confining the Gaussian plume. A practical example of the latter is the street canyon
environment with the sources of pollution being motor vehicles. In the latter case, the
boundaries, i.e., facades of buildings confining the roadway, are rigid and reflections are
near complete. In the former case, the upper boundary, i.e., inversion cap or lid, is diffusive
and reflections are not complete. Consequently, the said model equation is more suited for
the case of the street canyon environment.

Preliminary numerical testing was undertaken to catch a glimpse of the character and
behavior of the new mathematical formulation of the Gaussian plume model allowing for
multiple reflections at two horizontal parallel boundaries. The calculations made with the
latter/new formulation were compared with those obtained using the (standard) Gaussian
plume model equation (with no reflections). The outcome of the preliminary numerical
testing and comparison indicates that further investigation is warranted.

Beyond a certain downwind distance from the source of pollution, the effect of multiple
reflections of the Gaussian plume, on the concentration at the centerline of the plume (at the
stack height) was evident. Experimental verification of this and other observed phenomena
is necessary and is planned for the near future as part of the current ongoing project.

The new formulation, or rewriting, of the Gaussian plume model equation corrected
for multiple reflections at parallel plane boundaries confining the source of pollution
(and, hence, the associated plume) provides air quality specialists with an opportunity
for easy implementation of the associated phenomenon (referring to multiple reflections).
While further (numerical and experimental) investigation is warranted and necessary,
preliminary testing has shown that the new formulation is numerically stable and gives
realistic outcomes.
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