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Abstract: Rural roads, often characterized by winding paths and nearby settlements, feature frequent
curvature changes, junctions, and closely spaced private accesses that lead to significant speed
variations. These variations are typically represented by average speed or v85 profiles. This paper
examines complete speed distributions along rural two-lane roads using Floating Car Data (FCD).
The Wasserstein distance, a non-parametric similarity measure, is employed to compare speed
distributions recorded by a radar Control Unit (CU) and a selected FCD sample. Initially, FCD speeds
were validated against CU speeds. Subsequently, differences in speed distributions between the CU
location and specific sections identified by sharp curves, intersections, or accesses have been assessed.
The Wasserstein Distance is proposed as the most effective synthetic indicator of speed distribution
variability along roadways, attributed to its metric properties. This measure offers a more concise and
immediate assessment compared to an extensive array of statistical metrics, such as mean, median,
mode, variance, percentiles, v85, interquartile range, kurtosis, and symmetry, as well as qualitative
assessments derived from box plot trends.

Keywords: Floating Car Data (FCD); Wasserstein distance; speed distribution; rural roads; traffic
analysis

1. Introduction

Monitoring and analyzing vehicle speed distribution is crucial for understanding
traffic flow dynamics and ensuring road safety, particularly in rural road segments [1].
Traditional methodologies predominantly utilize fixed sensors deployed at predetermined
locations to record instantaneous vehicle speeds. This approach facilitates the generation of
empirical speed distributions and enables the computation of related statistical measures,
thereby offering a discrete snapshot of speed patterns at specific points along the roadway.
However, these fixed-point measurements inherently lack continuity, as they can only offer
intermittent data points based on the placement and density of sensors [2]. Fixed sensors,
while useful, present a limitation in that they often fail to correlate data from individual
vehicles across multiple sections. As a result, traffic behavior between points must be
inferred through aggregate data comparisons or interpolations, leaving significant gaps in
the understanding of speed distribution along the entire road segment [3]. For instance,
methods such as linear, polynomial, or spline interpolations are commonly employed to
estimate speed trends between sensor points, but these techniques do not capture the true
variability and heterogeneity of speed distributions over continuous distances [4].

The advent of Floating Car Data (FCD) technology has introduced a transformative
approach to traffic analysis by providing near-continuous temporal tracking of equipped
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vehicles. Li et al. [5] presented a computationally simple and robust cross-validation
method for reconciling traffic speed measurements from probe and stationary sensors,
effectively identifying discrepancies using both simulation models and real-world freeway
data. Although FCD samples represent a smaller fraction of the total vehicle population,
they offer a high level of detail in spatial and temporal segmentation, enhancing traffic
data accuracy [6]. To optimize this accuracy, Altintasi et al. [7] propose a method to assess
the traffic Penetration Rate (PR) of commercial FCD by comparing its speed estimation
to Ground Truth (GT) data, finding that a PR of 15% significantly improves FCD quality,
with a suggested PR of around 5% for commercial FCD. Despite the increasing volume of
research utilizing FCD for assessing mean speeds, percentiles, and other statistics along
road segments, there is a noticeable gap in the literature regarding the analysis of complete
speed distributions. For instance, Budimir et al. [8] explore the use of mobile vehicles
to collect real-time traffic flow data through FCD and Probe vehicles, highlighting their
efficiency, cost-effectiveness, and extensive coverage for achieving sustainable mobility,
supported by technologies like GIS, GNSS, and wireless communication. Ambros et al. [9]
investigate the use of FCD for proactively identifying risk locations on rural roads by
analyzing GPS-derived speeds and their relationship with accident frequency, highlighting
practical feasibility and implications for rural safety monitoring and evaluation. Fabrizi
and Ragona [10] present a model for short-term traffic speed forecasting using an FCD
system, which enhances coverage without expensive infrastructure and provides real-time
traffic speed information across a road network. Zhang et al. [11] developed a method for
identifying bottlenecks using FCD, employing speed difference as a primary indicator and
speed-at-capacity as a secondary indicator to evaluate bottlenecks by duration, affected
distance, delay, and cause.

This paper aims to address this gap by proposing a novel method for evaluating
variations in vehicle speed distribution along rural road segments with various geometric
and functional characteristics. We utilize a validated FCD sample cross-referenced with
data from a fixed control station to apply a non-parametric similarity measure—specifically,
the 1-Wasserstein distance—to compare speed histograms at closely spaced intervals along
the road. By highlighting areas of homogeneity and heterogeneity in speed distributions,
this approach allows for a detailed examination of how physical and geometric features of
the road, such as curvature, lane count, intersections, and access points, influence driving
behavior. The continuous nature of FCD data, combined with sophisticated similarity mea-
sures, enables a more comprehensive understanding of speed distribution heterogeneity.
This, in turn, can inform more effective traffic management strategies and road design
improvements aimed at enhancing safety and efficiency on rural roads.

2. Materials

The evaluation of operating speed is pivotal in assessing the effects of roadside and
geometric features on both collision occurrence and severity. Indeed, roadside features
increase collision frequency while reducing speed, whereas geometric features have the
opposite effect, and lower operating speeds lead to a reduction in collision frequency [12].
The 85th percentile speed, commonly referred to as the operating speed, is typically used to
characterize the distribution of vehicle speeds. This percentile provides an estimate of the
speed below which 85% of the traffic is traveling, offering a more robust representation of
typical driving behavior than mean speed. Historically, operating speed models have relied
on data from inductive loops and magnetic sensors, which capture vehicle speeds at specific
locations [13]. These sensors provide detailed temporal data but are limited in their spatial
coverage, as they only record speeds at their installation sites. Recent advancements have
introduced Floating Car Data (FCD), derived from vehicles equipped with GPS devices.
FCD offers comprehensive spatiotemporal insights by tracking vehicle movements across
entire road networks, thus enabling more accurate modeling of operational speeds.

Floating Car Data (FCD) refers to speed and location data collected from vehicles that
are part of the traffic stream and equipped with GPS tracking systems. These data are
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valuable because they provide continuous monitoring of vehicle speeds over extended
areas, capturing real-world driving behavior across different road segments. FCD is
advantageous due to its ability to collect data over both temporal and spatial domains,
giving a holistic view of traffic dynamics over a network rather than at discrete points [2].
However, one challenge associated with FCD is ensuring the representativeness of the data,
given that it is often collected from a limited subset of the total vehicle population [7].

In contrast, fixed sensors (such as radar units, inductive loops, and ANPR cameras)
are deployed at specific locations along the roadway to capture the instantaneous speeds of
passing vehicles. These sensors provide high-resolution temporal data for vehicle speeds
at particular points, offering insights into traffic flow characteristics at fixed locations.
However, the major limitation of fixed sensors is their spatial restriction; they cannot
provide continuous data along the road network and are unable to capture speed variations
beyond their immediate vicinity [4].

In this research, we have used data from the Automatic Statistical Traffic Detection
System managed by ANAS SpA, which operates within the Italian national road network.
This system uses a variety of sensors to collect traffic data, which is centralized in the
Platform for Monitoring and Analysis (PANAMA). The accuracy and reliability of this data
are ensured through rigorous validation procedures. The fixed-point data were collected
over three distinct months—August 2018, February 2019, and May 2019—within the Veneto
Region. The data included the following variables:

• Time Reference: Date and time of data acquisition;
• Lane: The specific lane on which the vehicle was traveling;
• Direction: The direction of travel;
• Speed: The speed of the vehicle recorded in km/h;
• Vehicle Class: A code identifying the vehicle type (e.g., cars and trucks).

The FCD was obtained from a commercial provider that aggregates GPS data from
over four million vehicles equipped with black boxes and from approximately 1.5 million
smartphone applications. The dataset contained nearly one billion data points for the same
time periods and region as the fixed sensor data. Key variables included the following:

• Identification Code: Unique identifier for each data point;
• Longitude and Latitude: Vehicle location coordinates in WGS 84 format;
• Direction: Direction of travel expressed as an azimuth angle;
• Speed: Vehicle speed at the time of signal emission;
• Date and Time: Timestamp of the GPS signal;
• Signal Quality: Quality of the GPS signal;
• Vehicle ID: Unique identifier for each vehicle;
• Vehicle Type: Classification of the vehicle.

Both data sources provided extensive datasets that allowed for a comprehensive
analysis of vehicle speed profiles across different road segments.

3. Methods

This study explores the assessment of statistical homogeneity and heterogeneity in
traffic data, emphasizing the importance of understanding these concepts for evaluating
the consistency of traffic flow patterns. The analysis employs both parametric and non-
parametric tests to compare data distributions, particularly focusing on how variations in
traffic flow can be interpreted through measures of similarity and dissimilarity. Histograms
and series of histograms are utilized to represent the distribution of large datasets, captur-
ing both spatial and temporal variations in traffic collected from fixed sensors and FCD.
Advanced similarity measures, such as the Wasserstein distance with the L1 norm, are
applied to quantify the differences between data distributions, offering a comprehensive
approach to understanding traffic dynamics. This approach helps to identify consistent
patterns or anomalies in traffic behavior, thereby providing insights into the macroscopic
and microscopic variations influenced by changing road conditions and user behaviors.
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The study highlights the necessity of employing robust statistical techniques to manage
and analyze large datasets, ensuring a detailed evaluation of traffic flow characteristics
across different segments and periods.

3.1. Homogeneity and Non-Homogeneity

In statistical analysis, the terms “homogeneity” and “heterogeneity” are crucial for un-
derstanding and interpreting data characteristics, where homogeneity denotes uniformity
and similarity across datasets, and heterogeneity signifies variability and diversity within or
between datasets. These concepts are essential for assessing consistent statistical properties
across different segments or among multiple datasets, particularly in relation to probability
distributions of random variables [14]. Heterogeneity and homogeneity can be defined
by various parameters such as mean, variance, skewness, and kurtosis, which are key
considerations when comparing multiple samples to understand differences or similarities
between groups, whether originating from the same or different populations [15].

Traditional statistical methods include both parametric and non-parametric tests for
evaluating and comparing samples. Parametric tests are suitable when assumptions about
data distributions, such as normality, are met, while non-parametric tests are used when
data do not conform to specific distributional criteria [16]. The concepts of spatial and
temporal homogeneity and heterogeneity are vital in time series analysis, where a time
series is homogeneous if its statistical properties, like mean and variance, remain constant
over time [17]. This homogeneity simplifies analysis and forecasting using models such as
ARIMA. Conversely, heterogeneous time series, with non-constant statistical properties,
require more advanced techniques like ARCH for analyzing volatility clustering [18].

In traffic analysis, homogeneity and heterogeneity can describe the spatial distribution
of vehicles along a road segment, as well as vehicle types and driving behaviors [19].
Homogeneous conditions imply uniformity and predictability, simplifying traffic modeling,
while heterogeneity reflects real-world traffic variability influenced by factors such as
traffic composition, driving behaviors, road design, and external conditions [20]. The
gradient between homogeneity and heterogeneity underscores the need for measures that
can quantify the extent of similarity or dissimilarity in various contexts [21].

Similarity and dissimilarity measures are prominent tools for comparing datasets,
providing a refined approach to assess the degree of resemblance or divergence between
them [22]. These measures are particularly important in machine learning and data mining,
where they help quantify relationships, identify patterns, and classify clusters within large
datasets, thereby addressing the complexities of modern data analysis challenges [21]. The
application of these measures in data science facilitates effective analysis and interpretation
of large datasets, essential for pattern recognition and clustering [22].

3.2. Histograms and Histograms Series

Data science is characterized by its focus on large and complex datasets and the use
of advanced computational techniques to create predictive models and algorithms that
can process and analyze these data efficiently [16]. Although statistical principles provide
the foundational theories and techniques for data science, the field extends beyond these
basics by integrating extensive dataset management, real-time data processing, and the
application of complex algorithms. These methodologies delve into pattern recognition,
machine learning, and big data technologies, expanding the scope of traditional statistical
analysis [17,18].

Large-scale datasets, often continuously expanding due to high-frequency data col-
lection from sensor networks, are now prevalent. These sensors capture data that are
dependent on both time and geographic positioning, making the assessment of temporal
and spatial correlations particularly valuable for practical applications [23]. In the context of
road infrastructures, the proliferation of various sensor types has dramatically increased the
volume of data available for analyzing driving behavior and traffic conditions in real-world
scenarios. Floating Car Data (FCD) exemplifies this trend by providing extensive data on
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vehicle speed and other parameters, which are linked to time and geographic coordinates.
These data can be aligned to a single temporal or positional variable, facilitating detailed
analysis at specific points along a road axis.

When measuring variables like vehicle speed over time or location, especially when the
interest lies in group behavior rather than individual specifics, it is beneficial to represent the
data through a series of distributions rather than aggregated metrics. This approach allows
for a more informative representation. The choice of representation can be parametric, such
as a Gaussian mixture model, or nonparametric, like a histogram or kernel-based density
estimator [24]. Histograms are widely used in this context due to their balance between
simplicity and accuracy. They serve as effective nonparametric density estimators for data
analysis and visualization, enabling the derivation of summary metrics like entropy, which
captures the underlying data density [25].

The study of data through histograms has led to a new paradigm in statistical analysis
known as symbolic data analysis [26]. Histograms offer a practical method for standardiz-
ing and condensing the statistical characteristics of data, especially when dealing with large
and complex datasets. While this method may lose some distributional nuances depending
on bin count, it is advantageous due to its assumption-free nature and computational
efficiency. Continuous research into binning strategies and innovative methodologies is
enhancing their utility in statistical and machine learning frameworks [17,27,28].

The concept of histograms, initially introduced by Pearson, involves dividing a con-
tinuous variable X into a set of contiguous Iϕ intervals (bins) with associated πϕ weights,
providing a straightforward model for representing empirical distributions [29]. A his-
togram P is thus represented by a set of Φ ordered pairs (Iϕ, πϕ), where πϕ is a non-negative
measure of a probability distribution on the domain of X such that [25]

Φ
∑

ϕ=1
πϕ = 1 with πϕ ≥ 0

Iϕ ∩ I
ϕ’ = ∅, ϕ ̸= ϕ’

Φ⋃
ϕ=1

Iϕ = [Xmin, Xmax,]

(1)

The time complexity of computing a univariate histogram with a fixed bin width
depends on the number of bins Φ in the histogram and the number of data points n being
processed, where Φ is usually much smaller than n. Thus, a fixed bin width histogram is
completely classified by two parameters, the bin width and the bin origin, and expressed
as a set of pairs P =

{
Iϕ,π(P)ϕ

}
. The computation of histograms, especially those with

fixed bin widths, is influenced by the number of bins and data points processed, making
them computationally efficient for large datasets [26]. While various methods exist to
determine the optimal value for Φ, such as Scott’s normal rule, Freedman-Diaconis rule,
and Mosteller-Tukey rule [30–32], these methods often assume specific distribution shapes
and may not universally apply. Varying the bin width can help balance noise reduction
and representation precision, making histograms a flexible tool for data analysis.

Density estimators like kernel methods and Gaussian mixture models offer smoother
representations of underlying distributions compared to histograms. However, in cases
where extreme smoothness is not necessary, histograms significantly reduce computational
complexity. This efficiency extends to a series of histograms used to represent sequences of
distributions, providing a valuable tool for analyzing ordered sequences in both temporal
and spatial dimensions [33,34]. In symbolic data analysis, histogram series represent a
sequence of observations where each realization is characterized by a histogram variable,
facilitating the analysis of complex data structures [34].

3.3. Similarity and Dissimilarity Measures in Large Datasets and Histogram Series

As previously discussed, comparing distributions (e.g., among distributions in a
series) is a significant area in pattern classification, data clustering, image processing,
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and computer vision, where finding histogram similarity is a recurrent technique [21,22].
Histogram similarity evaluations are also crucial in time series analysis. By dividing
time series into sequential sub-series, histograms can present the frequency of values for
these sub-series, enabling the study of probability distribution variations using similarity
analysis [35]. This approach has been used to study fine correlations in physical, chemical,
biochemical, or hydrological systems measurements [36–39] and to define clusters for time
series in various fields [40].

Similarity or dissimilarity comparisons of statistical properties among samples through
histogram analysis can be divided into bin-by-bin and cross-bin methods [41,42]. Bin-by-bin
methods compare corresponding bins between histograms without considering correlations
between neighboring bins. For instance, comparing histograms P =

{
Iϕ,π(P)ϕ

}
and

Q =
{

Iϕ,π(Q)ϕ

}
, these techniques measure the difference between corresponding bins

only. Despite being straightforward and computationally efficient for large datasets, bin-
by-bin methods are sensitive to bin size and slight translations of weights can significantly
affect similarity evaluation. Examples include histogram intersection, histogram correlation,
total variation distance, χ2 statistic, and Bhattacharyya distance [43].

In contrast, cross-bin methods compare both corresponding and non-corresponding
bins among histograms, considering correlations between neighboring bins to provide a
more comprehensive comparison [41]. These methods are less sensitive to bin size and can
represent similarities and dissimilarities more effectively.

Using these methods, a measure of similarity or dissimilarity can be defined, conceptu-
ally resembling a form of “distance”. The decision regarding histogram similarity generally
depends on the specific distance measure employed. Histograms are considered similar if
the “distance” between them is below a certain threshold. Alternatively, a similarity metric
increasing with resemblance can be used, where similarity exceeds a threshold [44].

These similarity measures can be defined as divergences or metrics, the latter also
known as distances in the mathematical sense. In general, a measure D is a mapping
(p, q) → R+ with the following properties:

• D(p,q) ≥ 0 for all p and q defined over R (non-negativity);
• D(p,q) = 0 if and only if p = q (identity of indiscernible).

A metric, or distance, is a divergence with

• D(p,q) = D(q,p) (symmetry);
• D(p,q) ≤ D(p,g) + D(g,q) for any distribution g over R (triangle inequality).

Depending on which properties are fulfilled, measures can be classified differently.
We refer to it as a distance when the measure satisfies all the aforementioned properties.
Pseudo-distances do not satisfy the identity of indiscernible, quasi-distances do not fulfill
symmetry, semi-distances do not fulfill triangle inequality, and divergences do not comply
with symmetry and triangle inequality [45].

In this paper, the 1-Wasserstein (1W) distance, also known as the Kantorovich–Wasserstein
(KW) metric or Earth Mover’s Distance (EMD), will be introduced and discussed for prac-
tical use in vehicle speed distribution analysis. The 1W distance is a similarity metric
following a cross-bin approach defined using the Optimal Transport Problem (OTP) in the
Kantorovich formulation.

The genesis and definitions of this similarity measure in the literature will be reviewed,
along with its important properties. Algorithms for comparing pairs of histograms with an
equal number of bins and the same origin, specifically from speed samples of vehicular
speeds at different points along a road axis, will be proposed. Criteria for identifying a
comprehensive similarity measure of speed distribution variability for quasi-continuous
analysis of a road segment will be discussed based on the specific properties of this measure.
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3.4. Wasserstein Metric
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Kantorovich’s formulation generalizes this by seeking a probability measure ν that
minimizes cost over all possible transport plans, as follows:

in f


∫

X×Y

c(x, y)dν(x, y)|ν ϵ Γ(p, q)

 (3)

Here, Γ(p, q) represents all probability measures with marginals p and q. The
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= 1, the 1-Wasserstein distance measures the total area
between two CDFs Fp and Fq, providing a comprehensive measure of distributional sim-
ilarity [50,51]. This is particularly useful for comparing empirical distributions, such as
vehicle speed distributions along a road, where data are often represented as step functions
or histograms [52]. The 1-Wasserstein distance effectively captures differences across these
distributions, including both horizontal and vertical discrepancies, as illustrated in Figure 2.
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Figure 2. Empirical cumulative distribution functions (ECDFs) Fp and Fq, intuition of 1-Wasserstein
distance, i.e., the total area between the two ECDFs (shaded) and the Kolmogorov–Smirnov (KS)
distance, i.e., the maximum distance between the two ECDFs (double-headed arrow).

For histogram comparisons, D1W can be efficiently computed by summing the differ-
ences between corresponding bins, as follows:

EMDϕ=1 = 0
EMDϕ+1 = π(P)ϕ + EMDϕ − π(Q)ϕwith ϕ = {1, . . . Φ}

D1W(P, Q) =
Φ
∑

ϕ=1
|EMDϕ|

(5)

The 1-Wasserstein distance is a robust metric for comparing distributions, making it
valuable in applications ranging from computer vision to traffic analysis. It allows for a
comprehensive similarity measure that is more informative than traditional metrics like
the Kolmogorov–Smirnov distance, which only captures maximum vertical differences
between distributions [53,54], as illustrated in Figure 2.

For discrete one-dimensional histograms, it can be rigorously demonstrated that the
D1W(P, Q) is bounded above by (Φ − 1). This scenario occurs when the experimental
distribution p is entirely concentrated in the first bin (ϕ = 1) of P, while the experimental
distribution q is entirely concentrated in the last bin (ϕ = Φ) of Q or vice versa. This

upper bound D1W(P, Q) facilitates its normalization, yielding
∼

D1W(P, Q) ranging from
0, indicating complete overlap of the histograms (total similarity), to 1, representing the
maximum dissimilarity between them.

4. Speed Probability Distribution on Two-Lane Road Segments

Although the assumption of homogeneous conditions simplifies classic traffic flow
theory and modeling, real-world traffic flow exhibits significant heterogeneity. Similarity
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measures effectively evaluate the gradient of similarity between homogeneous and het-
erogeneous conditions, ranging from maximal to minimal similarity. In traffic analysis,
studying how traffic flow characteristics vary along a road segment is crucial, particularly
in understanding vehicular speed trends on highways. This knowledge is vital for highway
design, performance and safety verification, and regulatory compliance monitoring.

Analyzing vehicle speed data along a highway segment provides insights into the
probability distribution of speeds at different sections. By examining a sequence of sections,
the speed behaviors form a sequence of random variables. Instantaneous speed samples
from vehicles allow the inference of probability distributions, beyond simple sample
statistics like centrality, dispersion, and percentiles, including v85 profiles.

This paper section illustrates how the 1-Wasserstein distance can represent variations
in speed distribution along a highway segment. Using a limited sample of speeds from
Floating Vehicles (FV) or Floating Car Data (FCD), validated by a larger sample from fixed
monitoring devices, we can concisely capture these variations.

4.1. Establishing Baseline Data for Analyzing Speed Distribution Similarity

This study focuses on a secondary rural road that runs from Mestre (Venice) to Pesek
(San Dorligo della Valle) in the province of Trieste. The section examined crosses the Veneto
Region and is classified as a secondary rural road according to Italian standards (DM2001).
It is characterized by variable geometric and functional features, such as curvature, access
points, intersections, and lane numbers. The analysis centers on two specific segments of
SS14: Segment 218, which extends from kilometer marker 12,000 to 22,000 in the descending
direction (DESC), and Segment 3191, which extends from kilometer marker 4000 to 14,000
in the ascending direction (ASC). Segment km 4000–8000 features a dual carriageway with
two lanes in each direction, with a total width of approximately 15 m. The presence of
at-grade intersections that handle significant traffic volumes necessitates the inclusion of
specialized lanes, such as left-turn lanes. Segment km 8000–13,470 has a single carriageway
with one lane per direction, each lane being 3.5 m wide, and 1 m-wide shoulders on both
sides. Segment km 12,000 to 22,000 also has a single carriageway with one lane per direction.
However, at kilometer 17 + 750, the presence of an at-grade intersection with acceleration
and deceleration lanes facilitates smoother turning maneuvers. Both segments—218 and
3191—are equipped with fixed monitoring stations that provide continuous data collection.
For Segment 218, the fixed station is located at kilometer marker 17,085, while for Segment
3191, it is positioned at kilometer marker 9047. Data were collected from these stations
during three distinct periods: August 2018, February 2019, and May 2019. The data
collection for each of the three periods spanned the entire month. During these months,
data were collected continuously without any intentional breaks in the collection process.
These time frames were chosen to capture a representative sample of traffic conditions over
different seasons.

The Floating Car Data (FCD) database, which contains detailed information on vehicle
positions and speeds, was meticulously processed using map-matching techniques. These
techniques align the recorded vehicle positions with the road segment’s progression, ensur-
ing spatial accuracy. Additionally, vehicles that did not pass the fixed monitoring stations,
or those lacking continuous trajectory and sufficient signal emission frequency (i.e., 1 Hz),
were filtered out to maintain data integrity. To determine the lack of a continuous trajectory
for a vehicle, specific criteria based on the consistency and completeness of the recorded
GPS data have been applied:

• Signal Frequency Check: Vehicles with data points recorded at frequencies lower than
1 Hz could indicate gaps in the trajectory and were flagged for further inspection;

• Temporal and Spatial Continuity: For each vehicle, the sequence of recorded positions
(latitude, longitude, and corresponding timestamps) has been examined to ensure that
the vehicles followed a logical and continuous progression along the road. Significant
gaps in time between successive data points, or abrupt, unrealistic jumps in spatial
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position (which could not be explained by the vehicle’s speed or the road’s geometry),
were used as indicators of a non-continuous trajectory;

• Cross-Reference with Road Geometry: If the trajectory data suggested that a vehicle
deviated significantly from the expected path without any corresponding road features
that could explain such a deviation (e.g., intersections, exits), this was considered a
lack of continuity.

By establishing this comprehensive baseline data, including detailed descriptions of
the road segments, fixed monitoring stations, and the processed FCD, the study provides a
solid foundation for analyzing speed distribution similarity along the highway segments.
This robust dataset enables a precise and accurate evaluation of traffic patterns and their
variability, facilitating a deeper understanding of speed distributions under varying road
and traffic conditions.

4.2. Speed Distributions Heterogeneity and Similarity Measure

The distance progression measurements for each Floating Vehicle (FV) and their
corresponding instantaneous speeds were extracted from the entire database. These mea-
surements, sampled at irregular intervals due to variable signal emission frequencies and
vehicle speeds, resulted in non-uniform data points along the road track. To achieve a
seamless speed representation across the monitored road segment, a cubic smoothing spline
was applied to each vehicle’s distance progression and speed vectors. During the method
selection phase, we considered alternatives like kernel smoothing and moving average.
However, these were discarded in favor of the cubic smoothing spline. Kernel smoothing
showed excessive variability with different bandwidths, and moving averages did not
reliably capture local variations. Additionally, cubic smoothing spline is a robust method
widely used for FCD in the literature [55], offering easily implementable solutions with
a good balance between data flexibility and curve smoothness control. This third-degree
polynomial function is implemented using Matlab R2020a’s ‘csaps’ function with a smooth-
ing parameter of 2 × 10-4. After conducting preliminary analyses and cross-validations, this
value provided a good compromise, capturing the data’s underlying trend while filtering
out high-frequency noise. We tested various smoothing parameters and evaluated the fit
quality and smoothness of the resulting curves.

Resampling of speeds was performed in virtual counting sections (VSs) along the high-
way segment, identified at uniform 10-m intervals from the initial point of the monitored
stretch. The choice of a 10-m interval for the VSs along the highway segment was chosen as
the optimal compromise, balancing detailed representation of road variations and efficient
data use. It was based on several factors, considering that we aimed for granularity that
allows effective analysis and accurate correlation of speed data with road characteristics.
Preliminary analyses showed that a 10-m interval captures significant changes in road
geometry, such as curvature, better than coarser intervals. Finer intervals would have led
to over-detailing without significant advantages.

During our preliminary analysis, we observed that virtual tail sections with fewer than
10 vehicles resulted in excessively high variability in the data due to the small sample size.
Thus, virtual tail sections collecting fewer than 10 speed values were excluded to minimize
the influence of outliers and anomalies, ensuring that the data from each virtual section
is representative of the behavior of a larger group. Figures 3 and 4 display the smoothing
splines for VSs with a minimum of 10 FVs in two segments of SS14: segment 218 (km 12,660
to km 20,310, DESC direction) and segment 3191 (km 4000 to km 13,470, ASC direction).
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segment 3191 (from km 4000 to km 13,470 with travel direction ASC); the different colored lines
indicate individual vehicles smoothing splines.

To validate the overall speed distribution across all virtual sections, the distribution
obtained from the resampling process was compared to that from all original FV speed
measurements. As illustrated by the histograms in Figure 5 and the descriptive statistics
in Table 1, the probability distributions from the resampled 10-m VSs were consistent
with the original FCD distributions. This confirmed that the smoothing splines effectively
maintained the continuity and smoothness of individual vehicle speed tracks without
distorting the original data.
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Figure 5. Histograms for speed distribution: (a) original FCD for segment 218; (b) virtual section
by smoothing splines for segment 218; (c) original FCD for segment 3191; and (d) virtual section by
smoothing splines for segment 3191.

Table 1. Descriptive statistics for speed from original FCD and from VSs by smoothing splines.

Segment 218 3191
Direction DESC ASC
Sample FCD VSs FCD VSs

Sample Size (n.d.) 58,941 138,878 187,968 468,665
Mean (km/h) 76.487 78.924 80.813 82.781

Variance (km/h)2 210.92 217.46 174.74 180.57
Std. Deviation (km/h) 14.523 14.747 13.219 13.438

Coef. of Variation (n.d.) 0.18988 0.18684 0.16357 0.16233
Std. Error (km/h) 0.05982 0.03957 0.03049 0.01963
Skewness (n.d.) 0.43131 0.62375 0.48972 0.61522

Excess Kurtosis (n.d.) 1.8243 1.6188 1.6291 1.4615
25% (Q1) (km/h) 68 69.917 72 73.968

50% (Median) (km/h) 75 76.994 80 81.352
75% (Q3) (km/h) 84 86.814 88 90.011

Min (km/h) 10 12.962 10 15.893
Max (km/h) 153 151.93 167 167.3

The SS14 highway segments 218 and 3191 are equipped with fixed monitoring devices
(Control Units, CUs). The device on segment 218 is located at kilometer marker 17,085,
while the device on segment 3191 is at kilometer marker 9047. Figure 6 illustrates the speed
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distributions of vehicles recorded by these devices, which operated continuously during
three distinct periods: August 2018, February 2019, and May 2019.
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Figure 6. Histograms for speed distribution from CUs: (a) segment 218 and (b) segment 3191.

Table 2 provides the descriptive statistics of the speeds detected in both travel direc-
tions. It is important to note that the Floating Car Data (FCD) for these segments pertains
to the same monitoring periods.

Table 2. Descriptive statistics for speed from CUs.

Segment 218 3191
Direction DESC ASC
Sample CU CU

Sample Size (n.d.) 390,740 865,733
Mean (km/h) 78.209 77.008

Variance (km/h)2 179.3 134.84
Std. Deviation (km/h) 13.39 11.612

Coef. of Variation (n.d.) 0.1712 0.1508
Std. Error (km/h) 0.0214 0.0125
Skewness (n.d.) 0.8509 0.1187

Excess Kurtosis (n.d.) 2.4549 3.8557
25% (Q1) (km/h) 69 70

50% (Median) (km/h) 77 76
75% (Q3) (km/h) 85 83

Min (km/h) 1 0
Max (km/h) 196 185

5. Result and Discussion

With an extensive dataset of speed values recorded by the Control Units (CUs), the
similarity between the probability distributions of these data and those from the Virtual
Sections (VSs) can be assessed. Simply observing histograms or comparing descriptive
statistics (Figures 5 and 6, Tables 1 and 2) does not provide a precise answer. Even with
numerous statistics on centrality, dispersion, shape, symmetry, and percentiles, determining
how closely the CU-sampled distributions match those sampled by mobile devices along
the highway remains challenging.

To address this concisely, the 1-Wasserstein distance D1W(P, Q) can be used to measure
the similarity between pairs of histograms (P, Q). For histograms with congruent binning

(ϕ bins), the normalized 1-Wasserstein distance
∼

D1W(P, Q) ranges from 0 (complete overlap
and total similarity) to 1 (maximum dissimilarity).
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Using the CU-recorded speed distribution q (histogram Q from Figure 6) as the refer-

ence, the similarity to any other distribution p can be measured by calculating
∼

D1W(P, Q).

Table 3 presents the
∼

D1W(P, Q) values for different segments and travel directions, with q
representing CU data and p representing mobile sensor data.

Table 3. Normalized 1-Wasserstein distance between CU-recorded speeds and resampled speed
datasets in virtual sections (P1 and P2).

Segment 218 3191
Direction DESC ASC

Histogram P = P1 P = P2 P = P1 P = P2
∼

D1W(P, Q) 0.005 0.008 0.011 0.008

Specifically, P1 denotes the probability distribution p1 from the entire resampled
dataset in the VSs (Figure 5b,d) and P2 represents p2, the resampled FCD data in the VSs
near the CU. Consistent binning with ϕ = 31 bins is used, covering speed classes in 5 km/h
intervals from 0 to 150 km/h plus an additional interval for speeds over 150 km/h.

The primary objective of this study is to analyze the evolution of speed distributions
along highway segments, which has not been addressed thus far. Vehicular speed distribu-
tions may fluctuate due to varying conditions. To examine this variation, speed values in
virtual sections along the two segments were considered, obtained by resampling speed
values for each vehicle every 10 m using smoothing splines.

Figures 7 and 8 present boxplots of speed data across these 10-m subsections. Each
box represents the interquartile range (IQR) of speeds, with the median speed indicated by
a line within the box. Whiskers extend to the furthest points within 1.5 times the IQR from
the quartiles, and data beyond these whiskers are marked as outliers.
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direction).

The blue band in the graphs represents the IQR, the continuous red line indicates the
median, the dashed gray band shows the whiskers’ trend, and the pinpointed red values
are outliers. The non-uniformity of the speed distribution among the different VSs can be
inferred by observing the variability in the box plots as follows:

• Box Length: Longer boxes indicate a wider range of speed values, so a variation in the
box length suggests a variation in the range of speeds between sections;

• Whisker Length: Longer whiskers show that there are more extreme speed values, so
a variation in the whisker length between sections indicates a variation in the extreme
speed values between them;

• Position of the Median Line: A median line not centered within the box implies skew-
ness in the data, indicating that the speed distribution is not symmetrical. Therefore,
a variation in the position of the median line relative to the box between sections
indicates a variation in the symmetry of the distribution among the sections;

• Presence of Outliers: A higher number of outliers suggests more variability and
potential anomalies in the speed distribution, so a variation in the outliers, in terms
of number and position, indicates a variation in the values identified as anomalies
among the different sections.

The boxplot series reveals significant variability across sections: median speeds fluc-
tuate, indicating influences from factors such as road geometry, local traffic density, and
differing regulations. Higher median speeds suggest road segments that permit or induce
faster driving, while lower medians indicate areas with speed reductions due to geometry,
interferences, lower speed limits, calming measures, or higher congestion. Thus, analyzing
speed distribution variations requires considering the actual driving experiences of vehicles
along the highway segment.

Thus, non-homogeneity in the speed distribution can be inferred by qualitatively ob-
serving the variability of the boxes and whiskers in the two boxplots. However, quantifying
the dissimilarity in speed behaviors remains challenging. Figures 9 and 10, which display
trends of selected statistical values (including the mean, median, standard deviation, mean
± standard deviation, skewness, and kurtosis), also confirm this non-homogeneity in be-
havior. In Figure 9, both the median (red line) and mean (blue line) exhibit noticeable drops
between 1.3 and 1.4 × 104 km, between 1.78 and 1.83 × 104 km, and over 2.0 × 104 km,
reflecting significant changes in central speed values. Additional fluctuations along the
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x-axis indicate variability in driving behavior. The standard deviation (pink line) shows
substantial variations in the same locations, highlighting increased speed dispersion in
these sections. The mean ± standard deviation (gray lines) further emphasizes changes in
speed distribution around the mean at these key points. Skewness (pink line) is generally
close to zero but deviates around the key points and in other virtual sections along the
axis, suggesting occasional asymmetry in speed distribution. Kurtosis (blue line) shows
significant changes, especially coinciding with skewness variations, indicating variations
in the peakedness of the speed distribution with more extreme values present in sections
with high values.
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Figure 9. Trends of selected statistical values for the experimental speed distributions in VSs along
the segment 218 DESC.
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Figure 10. Trends of selected statistical values for the experimental speed distributions in VSs along
the segment 3191 ASC.
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Similar considerations can be made by examining the trends in Figure 10. The median
(red line) and mean (blue line) display notable fluctuations along the segment, especially
around 0.53–0.74 × 104 km, signifying significant changes in central speed values. The
standard deviation (pink line) exhibits marked increases at these same points, highlighting
greater speed dispersion and variability in these sections. The mean ± standard deviation
(gray lines) underscores these changes, illustrating how speed values spread out from the
mean. Skewness (pink line) tends to stay close to zero but shows deviations, indicating
that the speed distribution sometimes shifts asymmetrically. Kurtosis (blue line) displays
notable peaks and troughs, especially where skewness changes, signifying variations in the
peakedness of the speed distribution.

Although various statistical indices are available to examine different aspects of
the experimental distributions, there is no effective synthesis method for determining
homogeneity from the perspective of the probabilistic distribution of speeds.

In this context, the normalized 1-Wasserstein distance
∼

D1W(P, Q) can be used to
measure the similarity of the speed distribution along the two road segments considered as
examples.

Figure 11 shows the trend of the series of histograms aggregated with ϕ = 31 bins
(speed classes in 5 km/h intervals from 0 to 150 km/h plus an additional interval for speeds
over 150 km/h) that represent the vehicular speed distribution trends in the different VSs
identified in the two segments, 218 DISC and 3191 ASC.
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Figure 11. Three-dimensional histogram series of speeds in VSs: (a) segment 218 DESC and (b)
segment 3191 ASC.

Having already confirmed the strong similarity between the CU-recorded speed
distribution q and the speed distribution p2 from resampled FCD data in the VSs near the
CU, the histogram P2 representing the distribution p2 can be assumed as a benchmark for
the similarity analysis of the highway segment. Consequently, the normalized 1-Wasserstein

distance
∼

D1W(Dx, P2) is determined, signifying the variation in speed histograms Dx (with
x changing as the VS progresses) compared to the histogram in the VS close to the CU
location along the entire length of the highway segment.

Figures 12 and 13 describe the segment features in terms of road geometry and the

surrounding context. The variable
∼

D1W(Dx, P2) was superimposed on the same graph with
the curvature diagram to assess the influence of winding elements. The curvature trend
was calculated using the radius Rx of the curvature of the highway axis at a given point
(x) by the formula Kx = 1/Rx. The graphs also show the positions along the curvilinear
abscissa of various elements such as intersections and access to private and public areas [56].
Additionally, each segment includes the localization of the CU as a reference term. The
symbols explained in the legend (blue cross symbol for Intersections, blue diamond symbol
for Lateral accesses, and green star for Control units) are positioned along the x-axis based
on their locations along the kilometric distances.
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Examining the graph in Figure 12, which pertains to segment 218 DISC, it is evident

that the red line
∼

D1W(Dx, P2) exhibits significant peaks at points where the curvature is
more pronounced, specifically around 1.33, and 2.02 × 104 km. These peaks indicate that
changes in road curvature have a considerable impact on the similarity of speed distribu-
tions. Sharp curves tend to cause variations in driving behavior, which in turn affects the
similarity between speed distributions in these areas compared to the reference section.

Throughout the segment, lateral access points and intersections are scattered. Al-
though lateral access points do not show a strong correlation with the peaks or troughs in
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the red line, intersections sometimes cause slight fluctuations. This suggests that intersec-
tions introduce minor disruptions to speed consistency, but their impact is not as significant
as road curvature. The flatter portions of the red line, between 1.4 and 1.7 × 104 km, cor-
respond to sections with fewer intersections and lateral accesses, coupled with relatively
stable road curvature. In these segments, the speed distribution aligns more closely with
the reference section, indicating that less complex road geometry and fewer interruptions
contribute to higher similarity in speed distributions.

Turning to the graph in Figure 13, related to segment 3191 ASC, the red line
∼

D1W(Dx, P2)
shows significant peaks at points of high road curvature and near lateral accesses and
intersections. Between 0.5 and 0.8 × 104 km, where the road is widened, the red line
exhibits notable fluctuations, suggesting that changes in road width significantly impact
the speed distribution. Similarly, regions with straight road segments and the absence of
lateral accesses and intersections present the greatest similarity with the reference section.
These areas likely allow for more uniform driving speeds, enhancing the similarity in speed
distributions.

Following the analysis of the graphs in Figures 12 and 13, the Table 4 provides a
numerical summary of the average normalized 1-Wasserstein distance for specific sub-
segments. Segment 218 (DESC direction) and segment 3191 (ASC direction) are evaluated
at three distinct test sub-segments each, and the average values highlight the variability in
speed distribution similarity. These numerical insights provide a quantitative perspective
on how various road features influence the similarity of speed distributions, complementing
the visual analysis from the graphs.

Table 4. Normalized 1-Wasserstein distance of the speed distribution histograms Dx from resampled
FCD data (as VS x varies) with respect to the histogram P2 at the location near the CU.

Segment 218 3191
Direction DESC ASC

Histogram
Km Points

D = D1
13.20|13.60

D = D2
17.67|17.74

D = D3
18.27|18.32

D = D1
5.20|6.10

D = D2
6.10|6.500

D = D3
6.50|7.60

∼
D1W(Dx, P2) 0.14 0.05 0.024 0.10 0.09 0.11

Overall,
∼

D1W(Dx, P2) tends to peak at points where there are significant changes in
road curvature, road widening, lateral accesses, and intersections. This pattern indicates
that these factors are crucial in influencing the homogeneity of speed probability distribu-
tions along the road segment. The analysis highlights the critical role of road geometry in
shaping speed distribution probability. Sharp curves and high curvature areas consistently
disrupt speed patterns, suggesting that road design must account for these features to
maintain consistent driving behavior.

Intersections, while causing slight fluctuations, have a less significant impact com-
pared to road curvature. Lateral access points also introduce some variability in speed
distributions, though their effect is minimal. The widening of the road, as seen in segment
3191 ASC, significantly impacts speed distributions, suggesting that road widening projects
need to consider the potential for increased variability in driving behavior, which can affect
overall traffic flow and safety. Regions with straight road segments and fewer interrup-
tions (intersections and accesses) exhibit the highest homogeneity in speed distributions.
This implies that simpler road designs may contribute to more uniform driving speeds,
potentially enhancing traffic efficiency and safety [57].

Future Developments of the Research

As we have seen in Section 3.4, D1W(p, q) can be easily visualized as the area between
two CDFs, Fp and Fq. Considering
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In the special case where 𝓅 = 1, the 1-Wasserstein distance measures the total area 
between two CDFs F୮  and F୯ , providing a comprehensive measure of distributional 
similarity [50,51]. This is particularly useful for comparing empirical distributions, such 
as vehicle speed distributions along a road, where data are often represented as step func-
tions or histograms [52]. The 1-Wasserstein distance effectively captures differences across 
these distributions, including both horizontal and vertical discrepancies, as illustrated in 
Figure 2. 

= 2 with the Euclidean norm in Equation (4),
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the 2-Wasserstein (2W) distance D2W(p, q) can be defined, also known as the Fréchet
distance [49]:

D2W(p, q) =
(∫ 1

0

∣∣∣Fp
−1(s)− Fq

−1(s)
∣∣∣2ds

) 1
2

(6)

Arroyo and Maté [34] and Balzanella and Irpino [23] provide the explicit form for
D2W(P, Q) for histograms P and Q. Irpino and Romano [58] show a particularly useful
property of the D2W demonstrating the equivalence with a three-term decomposition using
the differences between statistics of the two distributions: location, spread, and shape. In
fact, the squared value (D2W)2, a natural extension of the Euclidean distance from point
data to distribution data [59], can be decomposed as the sum of the square difference of
the means (i.e., location), the square difference of the standard deviations (i.e., spread)
and a residual term, which can be assumed to represent a shape distance between two
distributions.

(D2W)2 =
∫ 1

0

∣∣∣Fp
−1(s)− Fq

−1(s)
∣∣∣2ds =

(
µp − µq

)2
+
(
σp − σq

)2
+ 2σpσq

(
1 − Corrpq

)
(7)

where µp and µq are the mean of p and q and σp and σq are the standard deviation of p and
q. Corrpq is the Pearson correlation of the points in the Quantile-Quantile plot of Fp and Fq.

Corrpq =

∫ 1
0

(
Fp

−1(s)− µp

)(
Fq

−1(s)− µq

)
ds

σpσq
(8)

Thus, these three terms can be used to assess similarity/dissimilarity between p and q
in a useful and distinctive manner regarding location, spread, and shape differences.

Moreover, when Fp and Fq are not explicitly given, as for experimental distributions
represented as step functions (commonly seen in similarity/dissimilarity analysis of vehi-
cle speed distributions along a road axis), the measurement of similarity according to the
Wasserstein distance can be carried out. This avoids the need to represent experimental
distribution functions as histograms, which involves challenges such as choosing an appro-
priate origin and the number of bins. However, for
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= 2, the three-term decomposition
allows us to directly represent the square of the Wasserstein distance using the empirical
versions of the corresponding quantities in Equation (7).

These aspects related to the 2-Wasserstein distance and its representation through
decomposition are suggested as points for further investigation. They can be explored in
future research activities and application tests, aiming to achieve an effective representation
of the homogeneity or heterogeneity of speed distribution along rural highway segments.

6. Conclusions

This study delves into the analysis of the heterogeneity in speed distributions along
secondary rural road segments using Floating Car Data (FCD) and data from fixed control
stations. The goal is to provide a useful tool to better understand how physical and
geometric characteristics of roads influence speed behavior, which is crucial for road safety
and traffic management. The presence of at-grade intersections that handle significant
traffic volumes necessitates the inclusion of specialized lanes, such as left-turn lanes. These
features likely contribute to more consistent speeds due to the structured flow of traffic and
the availability of dedicated lanes for turning movements. A reduced lane width and the
absence of specialized lanes can lead to greater variability in speed distribution as vehicles
may need to adjust their speeds more frequently due to the presence of direct access points
and narrower lanes.

This study highlights the benefits of using advanced similarity measures to capture
the variability and heterogeneity in traffic speed distributions. These measures facilitate a
more comprehensive analysis of traffic patterns, which is essential for informed highway
design, performance and safety verification, and regulatory compliance.
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To achieve this, continuous speed and location data were collected from GPS-equipped
vehicles (FCD) and validated against radar control units. The normalized 1-Wasserstein
distance, a non-parametric similarity measure, was employed to compare speed distribu-
tions in virtual sections placed at 10-m intervals along the road. In each virtual section,
vehicle speeds were obtained by resampling the smoothing splines that reconstruct the
speed-position profiles of each equipped vehicle. The findings demonstrate that the nor-
malized 1-Wasserstein distance effectively captures speed distribution variability. This
allows for a detailed examination of how road features, such as curvature, intersections,
and access points, influence speed behavior. By utilizing the normalized 1-Wasserstein
distance, the analysis provides a concise and effective metric for evaluating speed distribu-
tion similarities across various road segments. This approach offers a more comprehensive
analysis than traditional summary statistics or representations.

Overall, the findings underscore the potential of these techniques to enhance traffic
management strategies and improve road safety by providing a deeper insight into the
dynamics of vehicular speeds across different road environments. The practical implications
of this research are significant, as the application of the normalized 1-Wasserstein distance
can directly inform road safety measures, traffic regulation policies, and the design of more
effective traffic management systems.

Furthermore, the study proposes the future exploration of the application of the
Wasserstein distance with the Euclidean L2 norm. This approach decomposes the measure
into three key dimensions: mean (location), variance (spread), and correlation (shape) of
the experimental distributions. Continued research utilizing this decomposition could
provide a more detailed assessment of dissimilarity, moving beyond simple histogram
characterization to provide a more refined understanding of the differences in speed
distributions.
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