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Abstract: This study explores the evolution and impact of research on the challenges and opportuni-
ties in the implementation of artificial intelligence (AI) in manufacturing between 2019 and August
2024. By addressing the growing integration of AI technologies in the manufacturing sector, the
research seeks to provide a comprehensive view of how AI applications are transforming production
processes, improving efficiency, and opening new business opportunities. A bibliometric analysis
was conducted, examining global scientific production, influential authors, key sources, and thematic
trends. Data were collected from Scopus, and a detailed review of key publications was carried out to
identify knowledge gaps and unresolved research questions. The results reveal a steady increase in
research related to AI in manufacturing, with a strong focus on automation, predictive maintenance,
and supply chain optimization. The study also highlights the dominance of certain institutions
and key authors driving this field of research. Despite the progress, significant challenges remain,
particularly regarding the scalability of AI solutions and ethical considerations. The findings suggest
that while AI holds considerable potential for the manufacturing industry, more interdisciplinary
research is needed to address existing gaps and maximize its benefits.

Keywords: artificial intelligence; smart manufacturing; Industry 4.0; process optimization; predictive
maintenance; industrial automation; operational efficiency; AI-based business models

1. Introduction

The implementation of artificial intelligence (AI) in manufacturing has taken on a
central role within Industry 4.0, where advanced automation, data analysis, and system
interconnectivity have profoundly transformed industrial processes [1–3]. This field of
study has attracted the attention of researchers and professionals due to the opportunities
it offers for improving efficiency [4], process optimization [5], product customization [6],
and reducing operational costs [7]. However, it also presents a series of challenges, such
as technological complexity [8], the lack of specialized skills [9], and organizational barri-
ers [10], which hinder its widespread adoption. The scientific literature reflects this balance
between opportunities and obstacles, providing a solid foundation for understanding the
evolution of AI in manufacturing.

AI in manufacturing is associated with a wide range of applications, including predic-
tive maintenance [11,12], supply chain optimization [13], and the design of personalized
products [6]. According to Diez-Olivan et al. [14], the concept of “smartization” in man-
ufacturing industries, a fundamental component of Industry 4.0, enables more efficient
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knowledge extraction through data fusion and intelligent monitoring strategies. How-
ever, one of the main challenges faced by the adoption of AI is the lack of technological
infrastructure and limited real-time data processing capabilities, highlighting the need
for more detailed research on the effective integration of these technologies into existing
manufacturing systems.

At the academic level, authors such as Carletti et al. [15] and Antosz et al. [16] have
pointed out the lack of interpretability of machine learning methods as a significant obstacle
to their implementation. The ability to interpret and understand the results generated by
AI models is crucial for decision-makers to trust the technology and adopt it in complex
industrial environments. Additionally, recent studies like that of Williams et al. [17]
highlight the need for significant organizational adaptation, which involves not only
technological changes but also cultural transformations and skill development within the
workforce.

Despite these advances, there is a clear gap in the literature related to the ability of
companies to implement commercially viable AI models. Cassoli et al. [18] point out that
although AI offers opportunities to prevent equipment failures and improve operational
efficiency, few manufacturers have managed to integrate these technologies into products
or services that generate sustainable economic returns. This gap highlights the need to
explore how companies can overcome challenges related to costs, infrastructure, and skills
to effectively integrate AI into their operations.

In this context, a bibliometric analysis is justified as the appropriate method to address
these questions [19], as it allows for the examination of the evolution of AI research
applied to manufacturing, the identification of key trends, authors, and sources, and the
highlighting of emerging topics and areas of opportunity. Bibliometric analysis not only
provides an overview of the existing literature but also helps map collaborations between
institutions and countries, which is crucial for understanding how this field of knowledge
is developing. According to Donthu et al. [20], bibliometric studies are an essential tool
for identifying patterns in scientific production and assessing the impact of research on a
global level. This study focuses on answering the following research questions:

RQ1.What are the underlying factors that explain the evolution in scientific production
and the impact of research on the implementation of AI in manufacturing between
2019 and August 2024?

RQ2.What factors explain the variation in impact and productivity of the main scientific
sources in AI research applied to manufacturing?

RQ3.What determinants explain the collaboration structure and academic impact of the
most influential authors in AI research applied to manufacturing?

RQ4.What are the determinants that influence the challenges and opportunities identified
in the most cited documents on AI application in manufacturing?

RQ5. How are the leading global institutions distributed in AI research applied to manufac-
turing, and what challenges and opportunities arise from their collaboration networks
and scientific impact?

RQ6.What are the most used methods and study approaches in AI research applied to
manufacturing, and what challenges and opportunities arise from their application?

RQ7. How is global scientific production on AI in manufacturing distributed, and what are
the implications?

RQ8. How are the topics developed within the conceptual structure of AI applied to manu-
facturing, and what challenges and opportunities do they present for its integration
and development in the industrial sector?

These questions align with the central objective of the study, which is to analyze trends,
identify key contributions, and assess the challenges and opportunities in the adoption
of AI in manufacturing between 2019 and August 2024 in Scopus. The contribution of
this study lies in providing a structured view of how research on AI in manufacturing has
evolved, highlighting not only technological advancements but also the practical challenges
that must be overcome for successful implementation. This analysis will allow for the
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identification of opportunities for future research and industrial applications and will offer
a detailed map of the main collaborations and influential sources in the field.

The content of the document will be structured as follows: First, a comprehensive
literature review will be offered, where the main studies on AI in manufacturing will be
analyzed, highlighting their advances and limitations. Then, the bibliometric methodology
employed will be detailed, explaining the data collection and analysis methods, as well as
the tools used. Next, the results of the analysis will be presented, including the evolution
of scientific production, the most influential sources, prominent authors, and the most
cited documents. Finally, the implications of the findings will be discussed in terms of
opportunities and challenges for the adoption of AI in manufacturing, concluding with
recommendations for future research.

2. Literature Review

The implementation of AI in manufacturing, framed within the Fourth Industrial
Revolution or Industry 4.0, has been a topic of growing interest in the recent academic
literature. This interest arises because AI presents both significant challenges and oppor-
tunities for manufacturing industries, making it a key area for this bibliometric study. To
better understand this emerging field, it is essential to examine the major studies that have
addressed this topic from different perspectives.

First, Diez-Olivan et al. [14] introduce the concept of the “smartization” of manufactur-
ing industries as a fundamental component of Industry 4.0. According to the authors, this
process, driven by the maturity of Information and Communication Technologies (ICTs),
enables the extraction of relevant knowledge through intelligent monitoring strategies and
data fusion. However, they face significant challenges, such as the effective prediction
of anomalous behaviors in industrial machinery and the anticipation of critical events.
These challenges highlight the importance of developing data-driven prognosis techniques,
suggesting a fertile field for future research in smart manufacturing.

In line with this thinking, Carletti et al. [15] delve into one of the most critical chal-
lenges: the lack of interpretability of machine learning methods in manufacturing. This
limitation can hinder the adoption of AI solutions, as the ability to clearly interpret results
is essential for decision-making in industrial settings. However, the authors identify a
significant opportunity in anomaly detection, a fundamental process for quality monitoring.
Their proposal to use the Isolation Forest algorithm, which does not require labeled data,
opens new possibilities for the initial adoption of machine learning in the industry, thus
facilitating the integration of AI into manufacturing processes.

In a complementary approach, Antosz et al. [16] explore the application of AI in lean
maintenance within the manufacturing sector. They highlight the main challenge as the
insufficiency of means to adequately assess the degree of implementation of maintenance
strategies, which can impact both operational efficiency and business policy formulation.
Despite this, they identify significant opportunities in the use of intelligent systems that
enhance decision-making and increase operational efficiency. This approach not only
optimizes maintenance management but also improves overall equipment effectiveness
(OEE), providing a competitive advantage in the sector.

Continuing the exploration of the opportunities offered by AI, Williams et al. [17]
emphasize how the implementation of this technology is intrinsically linked to the opti-
mization of business processes. Through cognitive algorithms, AI enables greater efficiency
and accuracy in production. However, these advances are not without challenges, among
which integration with the Internet of Things (IoT) and the need for robust data structures
are crucial aspects. Additionally, they point out the need for significant organizational
adaptation to overcome technological and investment barriers that could limit the impact
of these innovations.

In this context, Cassoli et al. [18] provide a perspective on predictive maintenance,
highlighting how recent advances in AI are expanding capabilities in manufacturing.
Despite the opportunities this represents, such as preventing unexpected downtime, the
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authors note that few manufacturers have succeeded in developing AI-based products or
services that are commercially viable. This challenge underscores the lack of understanding
in integrating AI solutions into new business models, a significant barrier to the adoption
of these technologies.

Shifting the discussion towards process optimization, Liu et al. [21] address the im-
plementation of machine learning techniques in the manufacturing of perovskite solar
cells. Their focus is on a sequential learning framework that improves process efficiency
with a limited experimental budget. This study reflects the opportunities AI offers for
process optimization in manufacturing while also highlighting challenges, such as the
need to integrate prior knowledge and human observations into decision-making. This
underscores the complexity of implementing AI in advanced manufacturing environments.

On the other hand, Dinmohammadi [22] identifies that, although AI is a key driving
force for sustainable development in Industry 4.0, there are significant challenges in scaling
its implementation beyond the proof-of-concept phase. The main obstacles include the
lack of adequate infrastructure, the shortage of specialized talent, poor data quality, and
complications related to policies and regulations. His SWOT analysis offers strategic
recommendations to overcome these challenges, allowing industries to move toward more
effective use of AI.

In line with these studies, Soni et al. [23] emphasize that the integration of physical and
cyber technologies, driven by AI, presents opportunities to improve efficiency, quality, and
transparency in manufacturing. However, they highlight that to fully take advantage of
these opportunities, it is essential to advance sensor technology and ensure its accessibility
at low cost. This advancement in sensors is crucial for automation in Industry 4.0, although
it also brings technical and economic challenges that need to be overcome.

Finally, Podder et al. [24] highlight the growing importance of MEMS-based sensors
in manufacturing, facilitated by advances in semiconductor technology. Despite being
powerful and low-cost, these sensors exhibit errors due to the complexity of their fabrication.
Here, AI emerges as a crucial tool to improve the quality and reliability of sensors, but it also
poses challenges related to quality control and adaptation in the industrial environment.

Closing this review, TurandasjiPatil et al. [25] and Gabsi [26] offer a broad perspective
on the challenges and opportunities of AI in Industry 4.0. While TurandasjiPatil et al.
emphasize the difficulty of applying AI solutions from one sector to another due to the
specific customization of each industry, Gabsi explores how digitalization, automation,
and connectivity have led to the creation of “smart factories.” Both agree that although
the challenges are significant, the opportunities to enhance productivity, efficiency, and
decision-making in manufacturing are immense.

In conclusion, the literature review provides a solid framework for the development
of the present bibliometric study. The reviewed studies offer insight into the complexity
and diversity of AI implementation in this sector, from process optimization to overcoming
technological and organizational barriers. This theoretical foundation will enable the
analysis of emerging trends and patterns in AI research in manufacturing, providing an
understanding of the key areas of opportunity and challenge.

3. Materials and Methods
3.1. Study Design

The present study adopts a bibliometric design with a quantitative approach, whose
general objective is to analyze trends, identify key contributions, and assess the challenges
and opportunities in the adoption of AI in manufacturing between 2019 and August 2024
in the Scopus database (Figure 1). Bibliometric analysis is a key tool for identifying the
growth of the scientific literature, the most influential authors, and the main collaboration
networks in a specific field, as highlighted by Donthu et al. [20]. This design allows for
a structured analysis of scientific production and collaboration relationships, providing
a comprehensive view of the development of research on AI applied to manufacturing.
Following the recommendations of Todeschini y Baccini [27], quantitative tools are used to
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measure scientific performance and visualize the evolution of collaboration networks in
this emerging field.
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3.2. Data Collection

To conduct this analysis, the data were collected from the Scopus database, recognized
for its curation and high quality, as highlighted by Baas et al. [28] and Burnham [29]. The
initial search was conducted in the “Title” field, using a series of key terms that were
strategically selected to encompass the central theme of the study: the implementation
of AI in manufacturing. These terms included “artificial intelligence”, “AI”, “machine
learning”, “deep learning”, “manufacturing”, “industry 4.0”, “smart manufacturing”, and
“industrial automation”. The choice of these terms was based on their ability to identify
relevant studies on the adoption of emerging technologies within industrial settings. As a
result of this initial search, 2546 documents were obtained.

To refine the results and capture the specific challenges and opportunities in AI im-
plementation, additional key terms related to these aspects were added. These included:
“implementation challenges”, “barriers”, “obstacles”, “investment costs”, “capital expendi-
ture”, “cost analysis”, “skill development”, “workforce skills”, “reskilling”, “upskilling”,
“competitive landscape”, “market competition”, “emerging competitors”, “business oppor-
tunities”, “revenue generation”, “monetization”, “efficiency improvement”, “operational
efficiency”, “process optimization”, “business models”, “innovative business models”,
“servitization”, “data-driven services”, “data-driven business”, and “data monetization”.
This second phase reduced the number of documents to 562, covering the period from 1979
to August 2024.

Subsequently, the search was limited to the period from 2019 to August 2024, as prior
years’ scientific production in this field was significantly lower (fewer than two studies
published per year). The final reduction yielded a total of 537 documents after applying
filters that excluded 9 documents such as editorials, errata, notes, short surveys, and
retractions (Figure 2).

The inclusion of these key terms and the date refinement ensures that the bibliometric
analysis captures the most relevant trends and pertinent studies on AI implementation
in manufacturing. This meticulous process was designed to guarantee the quality and
specificity of the selected documents, minimizing the risk of including tangential studies.
The choice of Scopus as the primary data source is supported by its relevance in bibliomet-
ric studies, as argued by Kulkanjanapiban and Silwattananusarn [30], who highlight its
usefulness in evaluating academic productivity.
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3.3. Analyzed Variables and Methods of Analysis by Objective

For the analysis of trends in scientific production and the impact of publications
(Objective 1), variables such as annual scientific production, the average number of citations
per year, the average number of citations per article, and the most worked-on themes were
examined. These metrics were processed using RStudio version 2024.04.2+764, following
the recommendations of Aria and Cuccurullo [31], who suggest the use of tools like
bibliometrix for the visualization and quantitative analysis of scientific data. The resulting
graphs, generated with Microsoft Excel 365 version 2408 [32,33], allowed for the observation
of how scientific production in AI in manufacturing has evolved and its impact in terms of
citations over the studied period.

Regarding the analysis of the most influential sources (Objective 2), variables such
as the h, g, and m indexes of the main sources, as well as the number of citations and
the production of documents per source, were analyzed. Following the principles of
Bradford’s Law, RStudio version 2024.04.2+764 was used to identify the most productive
and cited sources, an approach recommended by Bradford [34], who explains that this type
of analysis is key to identifying core journals in a field of study.

To identify the most influential authors (Objective 3), the h, g, and m indexes of the
authors were analyzed, as well as their collaboration networks. VOSviewer version 1.6.20
and RStudio version 2024.04.2+764, tools recommended by van Eck and Waltman [35] and
Aria and Cuccurullo [31], were used to generate citation maps that visualized the relation-
ships among the most prominent authors. The minimum threshold was set at 3 documents
and 99 citations per author, which made it possible to identify the researchers with the
greatest impact in the field of AI applied to manufacturing, following the recommendations
of McAllister et al. [36] on creating citation maps.

Regarding the analysis of the challenges and opportunities identified in the most
cited documents (Objective 4), the number of citations per document and the key top-
ics addressed were examined. RStudio version 2024.04.2+764 was used to identify the
20 most-cited documents, following the methodology proposed by Donthu et al. [20] to
identify the most recurring challenges, such as AI integration, process optimization, and
the improvement of labor skills.

Regarding the global distribution of institutions and collaboration networks (Objective
5), the number of citations per institution and the collaboration networks between them
were analyzed. VOSviewer version 1.6.20 was used to map institutional connections, in line
with the approach proposed by Mongeon and Paul-Hus [37], who highlight the importance
of analyzing institutional collaboration in bibliometric studies. This analysis allowed for
the identification of the main institutions involved in AI research in manufacturing and
their collaboration relationships at a global level.

For the analysis of key methods and approaches in AI research applied to manu-
facturing (Objective 6), the main methods used, such as machine learning and big data
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analysis, as well as the challenges in their application, were examined. By using key-
word co-occurrence analysis in VOSviewer version 1.6.20, prevalent methodological ap-
proaches were identified, following the suggestions of Derviş [38] and Aria and Cuccu-
rullo [31], who recommend the use of bibliometrix to identify methodological patterns in the
scientific literature.

In the analysis of the global distribution of scientific production (Objective 7), the
production by country and the impact of publications in terms of average citations per
article were evaluated. The global production analysis was conducted using RStudio
version 2024.04.2+764, as recommended by Mongeon and Paul-Hus [37], allowing for the
visualization of each country’s contribution to AI research applied to manufacturing.

Finally, to analyze the conceptual structure of AI in manufacturing (Objective 8), the
bibliometric technique of ‘co-word’ was employed with the purpose of analyzing the
authors’ keywords as the unit of analysis, applying the statistical technique of ‘thematic
mapping’ through RStudio version 2024.04.2+764. This approach enabled the identification
of motor, basic, emerging, and niche themes, following the recommendations of Aria and
Cuccurullo [31], who highlight the usefulness of these methods in mapping the evolution
of topics in a research field.

3.4. Visualization and Interpretation

Visualization tools, such as RStudio version 2024.04.2+764, VOSviewer version 1.6.20,
and Microsoft Excel 365 version 2408, enabled the creation of graphs and maps that helped
to clearly represent the relationships between authors, sources, institutions, and topics.
These visualizations facilitated the interpretation of trends in scientific production, the
impact of institutional collaborations, and the evolution of key themes in AI applied to
manufacturing. According to McAllister et al. [36] and Aria and Cuccurullo [31], network
visualization and thematic analysis are essential for gaining a deeper understanding of
how a scientific discipline develops.

3.5. Use of AI-Assisted Technologies

We have employed various technological tools that incorporate artificial intelligence
(AI) to enhance our research. Microsoft Word helped with grammar, style suggestions,
and text prediction, improving the clarity of the manuscript. Microsoft Excel facilitated
data analysis, offering visualization suggestions and optimizing the management of large
volumes of information. DeepL and ChatGPT were used for high-quality translations,
comparing their results to select the best option before expert review. Google Search was
key in retrieving relevant and up-to-date information. While these technologies helped
improve the writing, they did not replace the interpretation of data or scientific conclusions
in any way.

4. Results and Discussion
4.1. Evolution and Trends of AI Research in Manufacturing (2019–August 2024)

The objective (O1) of this section is to analyze the underlying factors that have influ-
enced the evolution of scientific production and the impact of research on the implementa-
tion of AI in the manufacturing sector between 2019 and August 2024, to understand the de-
velopment of the field during this period. For this analysis, RStudio version 2024.04.2+764
was used. Data on the number of documents published per year, average citations per year,
and average citations per article were obtained from the analysis level termed “Overview”,
using the metrics “Annual Scientific Production” and “Average Citations per Year”. These
data are presented in Figure 3, generated with Microsoft Excel 365.
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Figure 3. Evolution and trends in research.

Regarding document production, there has been a progressive and significant increase
from 2019 to August 2024. In 2019, only 14 documents were published, while in 2023 and
2024, the number of publications reached 148 and 154, respectively. This consistent growth
indicates a rising interest from the academic community in applying artificial intelligence
to the manufacturing sector, a phenomenon that reflects technological maturity and the
adoption of these solutions in various industrial processes.

Despite the increase in document production, the average citations per year have
shown a decreasing trend since 2019. That year, the average citation was 15.22, gradually
decreasing to 1.77 by August 2024. This decline is common in rapidly expanding fields,
as the increase in the volume of publications can spread citations across more articles,
reducing the relative impact of each individual work. This phenomenon has been observed
in various academic contexts where rapid growth in document production leads to a
dilution of citation frequency per article as readers distribute their attention across a larger
number of studies [39–41]. Additionally, more recent publications have not yet had enough
time to accumulate significant citations. It is important to note that innovative topics
in the early years of the study, such as the focus on “machine learning” in 2019 and AI-
based decision-making in 2020, likely received a higher number of citations due to their
pioneering nature.

In parallel, the average citations per article have followed a similar trend, decreasing
from 91.29 in 2019 to 1.77 by August 2024. This pattern reflects not only the increase in
the number of published studies but also the inherent challenge of capturing researchers’
attention in an increasingly saturated field. During the early years, topics such as the focus
on “machine learning” had a significant impact, as they were innovative areas at the time.
However, as the field has matured, attention has diversified towards other more specific
applications, such as additive manufacturing in 2022 or AI-based innovation ecosystems in
2023, which may have dispersed citations.

The evolution of the most studied topics over the years is also revealing. In 2019, the
“machine learning approach” was the central theme [42–44], indicating that the scientific
community was exploring the potential of machine learning to optimize processes in manu-
facturing. In 2020, interest shifted towards AI-based decision-making [45,46], reflecting the
need to automate and improve efficiency in industrial processes through decision support
systems. In 2021, the focus on “machine learning” remained relevant [47,48], but with
a greater emphasis on concrete applications. However, by 2022, the most studied topic
was “arc additive manufacturing” [49,50], showing a shift towards applying AI in specific
manufacturing processes, such as additive manufacturing.
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In 2023, attention focused on “AI innovation ecosystems” [51,52], highlighting the
importance of collaborative ecosystems and innovation networks to advance the adoption
of AI in manufacturing. Finally, in 2024, although “machine learning” remains a central
theme [53,54], it now focuses on more practical and specialized applications to solve specific
problems in the manufacturing sector.

Based on these data, it can be concluded that the field of AI research in manufacturing
is in full expansion and diversification. Although the average citation per article has
decreased, which might suggest a dilution of the individual impact of the works, the
topics addressed remain relevant and respond to the emerging needs of the industry. The
challenge lies in maintaining the relevance of publications in a field with increasingly
growing scientific production. Despite this, opportunities for innovation in this field are
vast, especially in integrating AI into collaborative areas, such as innovation ecosystems
and the more advanced applications of machine learning in solving specific problems in
manufacturing.

4.2. Impact and Trends of the Leading Sources

The objective (O2) of this section is to analyze the factors influencing the variation
in impact and productivity of the leading scientific sources in the field of AI research
applied to manufacturing. To conduct this analysis, RStudio version 2024.04.2+764 was
used, selecting “Sources” as the level of analysis. The metrics employed were the “Sources’
Local Impact” and the “Bradford’s Law”. Analysis of the top 20 sources according to the
“Sources’ Local Impact” reveals several important observations (see Table 1).

First, journals such as “Applied Sciences (Switzerland)”, “Additive Manufacturing”,
and “Technological Forecasting and Social Change” stand out for having the highest h, g,
and m indexes compared to other sources. The h-index, which measures the number of
articles with at least h citations, is an indicator of the productivity and impact of a source’s
publications. “Applied Sciences (Switzerland)” has an h-index of 9, the highest in this
analysis, closely followed by “Additive Manufacturing” and “Technological Forecasting
and Social Change”, both with an h-index of 8. This indicates that these journals have been
consistently cited in studies on AI in manufacturing, reflecting their relevance in the field.

The g-index, which considers the distribution of citations received by a source’s articles,
reinforces the position of “Applied Sciences (Switzerland)” and “Journal of Intelligent
Manufacturing”, with g-indexes of 14 and 11, respectively. This suggests that these journals
not only have a considerable number of cited articles but also that some of their articles are
highly cited, which increases their g-index.

The g-index is a bibliometric metric created by Leo Egghe in 2006 that measures aca-
demic performance by considering both the number of publications and the accumulation
of citations. Unlike the number of publications, the g-index focuses on the distribution of
citations, giving more weight to highly cited articles. This means that the g-index is not
the same as the number of publications, as it reflects the impact of citations, not just the
quantity of articles. Such is the case of IFIP Advances in Information and Communication
Technology, which has a g-index of 3 and a total of four publications. Egghe demonstrated
that this index is more effective in capturing the influence of a researcher or source with
high-impact publications [55].

The m-index is a bibliometric metric that adjusts the h-index based on the number of
years since a researcher’s first publication, providing a more balanced measure of impact
over time. It is calculated by dividing the h-index by the number of years since the first
publication. The m-index is useful because it allows for comparisons between researchers
who have been active for different lengths of time. Egghe and Hirsch highlighted that,
unlike the h-index, the m-index prevents giving an unfair advantage to researchers with
longer careers by focusing on relative productivity per year [55,56].



Sci 2024, 6, 60 10 of 38

Table 1. Influential sources and their impact.

Source h Index g Index m Index TC NP PY Start Q SJR 2023

Applied Sciences (Switzerland) 9 14 1.800 289 14 2020 Q2 0.51

Additive Manufacturing 8 10 1.600 941 10 2020 Q1 2.84

Technological Forecasting and Social Change 8 9 1.600 1194 9 2020 Q1 3.12

Journal of Intelligent Manufacturing 7 11 2.333 237 11 2022 Q1 2.07

Sustainability (Switzerland) 7 11 1.400 525 11 2020 Q1 0.67

Economics, Management, and Financial Markets 6 6 1.200 211 6 2020 N/A N/A

IEEE Access 5 7 1.000 181 7 2020 Q1 0.96

International Journal of Advanced
Manufacturing Technology 5 8 0.833 146 8 2019 Q2 0.7

Journal of Manufacturing Systems 5 8 1.000 260 8 2020 Q1 3.17

Archives of Computational Methods in
Engineering 4 4 1.000 77 4 2021 Q1 1.8

Materials Today: Proceedings 4 4 0.800 110 4 2020 N/A 0.47

IFIP Advances in Information and
Communication Technology 3 3 0.600 12 4 2020 Q3 0.24

International Journal of Production Research 3 3 0.750 166 3 2021 Q1 2.67

JOM 3 3 0.600 345 3 2020 Q2 0.55

Journal of Cleaner Production 3 3 0.600 157 3 2020 Q1 2.06

Journal of Industrial Integration and
Management 3 3 1.000 204 3 2022 Q1 1.14

Journal of Manufacturing Processes 3 3 0.600 113 3 2020 Q1 1.39

Journal of Materials Processing Technology 3 3 1.000 69 3 2022 Q1 1.58

Procedia CIRP 3 5 0.500 82 5 2019 N/A 0.56

Robotics and Computer-Integrated
Manufacturing 3 3 1.000 139 3 2022 Q1 2.91

Note: N/A (not applicable); NP (number of publications); Q (quartile); SJR (Scimago journal rank).

The m-index is notable in “Journal of Intelligent Manufacturing”, with a value of
2.333, the highest among all analyzed sources. This value indicates a rapid and sus-
tained growth in the number of citations that this journal has received in a short period
of time since its first publication, which could indicate the growing importance of AI in
smart manufacturing.

On the other hand, “Technological Forecasting and Social Change” leads in terms of
total citations (TC) with 1,194 citations, demonstrating its significant influence in the field.
However, the journals “Additive Manufacturing”, with 941 citations, and “Sustainability
(Switzerland)”, with 525 citations, also show a significant impact. This suggests that
these journals are attracting a high volume of attention within the academic community
interested in the application of AI in manufacturing.

It is important to note that some journals with lower h and g indexes, such as “IFIP
Advances in Information and Communication Technology” and “Journal of Manufacturing
Processes”, although they have a lower impact in terms of citations and productivity, may
be covering specific niches or emerging areas within the field of AI in manufacturing,
justifying their inclusion in more specialized studies.

Finally, the distribution of the “PY_start” (the start year of the considered publications)
shows that most sources began publishing relevant work on AI in manufacturing starting
from 2020, with some exceptions such as “International Journal of Advanced Manufacturing
Technology” and “Procedia CIRP”, which started in 2019. This suggests that research related
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to the implementation of AI in manufacturing has gained considerable momentum in recent
years, coinciding with the increased interest in digital transformation and Industry 4.0.

Bradford’s Law, formulated by Samuel C. Bradford in 1934 [34], is a bibliometric
theory that describes how scientific articles on a specific subject tend to be concentrated in
a small number of specialized journals, while a larger number of articles are spread across
many less relevant journals. According to this law, if journals are organized into three
groups with an equal number of relevant articles, the first group will have a few journals,
the second an intermediate number, and the third significantly more. This law is valuable
for identifying the most important sources in a field of study.

In the context of this analysis, Bradford’s Law is confirmed by observing that 35
journals out of a total of 345 contain most of the articles in the field, as shown in Figure 4.
These journals, referred to as “Core Sources,” include publications such as Applied Sciences
(Switzerland), Journal of Intelligent Manufacturing, and Sustainability (Switzerland), which
stand out for their high productivity and relevance. These sources are crucial for dissemi-
nating relevant research and significantly contribute to advancing knowledge in this area.
On the other hand, although many other journals (n = 310) publish on the subject, their
contribution is much smaller, as suggested by Bradford’s curve, which reflects this uneven
distribution in the relevance of publications.
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4.3. Key Authors: Influence and Trends

The objective (O3) of this section is to analyze the determinants influencing the col-
laboration structure and academic impact of the most influential authors in AI research
applied to manufacturing. For this analysis, RStudio version 2024.04.2+764 was used, se-
lecting “Authors” as the level of analysis and applying the metric “Authors’ Local Impact”.
Additionally, VOSviewer version 1.6.20 was employed for citation analysis, using “authors”
as the unit of analysis. A minimum threshold of 3 documents per author and a minimum
of 99 citations per author were established. The results obtained are presented in Table 2.
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Table 2. Influential authors.

Author h-Index g-Index m-Index TC NP PY-Start

Lăzăroiu G [57–61] 5 5 1.000 391 5 2020
Agrawal R [62–66] 4 5 1.000 112 5 2021
Haleem A [7,67–69] 4 4 1.000 255 4 2021
Kumar A [63,64,67,70] 4 4 1.333 122 4 2022
Liu Z [21,71–74] 4 5 0.667 233 5 2019
Cao J [43,75–77] 3 4 0.500 99 4 2019
Darwish MMF [47,78,79] 3 3 0.750 298 3 2021
Dwivedi YK [80–82] 3 3 0.750 737 3 2021
Elsisi M [47,78,79] 3 3 0.750 298 3 2021
Huang S [83–87] 3 5 0.500 134 5 2019
Javaid M [7,68,69] 3 3 0.750 229 3 2021
Lee J [88–90] 3 3 0.600 409 3 2020
Lehtonen M [47,78,79] 3 3 0.750 298 3 2021
Li J [91–95] 3 5 0.750 197 5 2021
Li X [88,96–99] 3 5 0.600 207 5 2020
Liu C [100–103] 3 4 1.000 108 4 2022
Liu J [104–108] 3 5 0.600 280 5 2020
Liu Q [71,84,98,99] 3 4 0.500 169 4 2019
Mahmoud K [47,78,79] 3 3 0.750 298 3 2021
Qin J [6,49,109] 3 3 0.600 216 3 2020

The analysis of the 20 authors from a total of 1,948 reveals a clear picture of the most
influential researchers in the study of the variables under investigation. This analysis is
based on several indicators, such as the h-index, g-index, m-index, total citations (TC),
number of publications (NP), and the year of publication start (PY_start).

First, Lăzăroiu G stands out as the most influential author, with an h-index and g-
index of 5, indicating that he has published at least five articles, each with at least five
citations. His m-index of 1.000, which measures normalized impact over time, suggests
steady growth in his impact since he began publishing in 2020. With 391 citations across
just five publications, Lăzăroiu has maintained significant relevance in his field.

Authors such as Agrawal R and Haleem A also show considerable influence, both
with an h-index of 4 and an m-index of 1.000. This indicates that they have maintained
a high level of impact relative to the time since they started publishing in 2021. Agrawal
R, with five publications and 112 citations, and Haleem A, with four publications and
255 citations, have established themselves as key contributors to AI research in manufac-
turing. Kumar A, although he started publishing more recently in 2022, has an h-index of 4
and an m-index of 1.333, indicating an even greater impact in the short time since his first
publication. This author appears to be in a phase of rapid growth in terms of influence and
academic visibility.

On the other hand, authors like Liu Z and Cao J, who began publishing earlier, in
2019, show h-indexes of 4 and 3, respectively. However, their m-index of 0.667 and 0.500
suggests a more modest impact over time. Liu Z has accumulated 233 citations across five
publications, while Cao J has received 99 citations in four publications. Although they have
had a significant impact, their growth in terms of citations seems more moderate compared
to authors who started publishing more recently. Dwivedi YK and Darwish MMF are other
notable authors, both with an h-index of 3 and an m-index of 0.750, reflecting a solid and
consistent impact since they started publishing in 2021. Dwivedi YK has achieved a total of
737 citations with only three publications, indicating that his works have been highly cited
and possibly fundamental in the field.

Overall, the data suggest that authors with higher h-index and g-index tend to be those
who have published in recent years and have maintained a consistent impact over time.
However, there are also authors who, despite a more recent start, are quickly achieving a
high level of influence in AI research applied to manufacturing. These patterns indicate
that the field is attracting a diverse group of researchers who are making significant
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contributions to the advancement of knowledge, with some emerging rapidly as leaders
in academia.

The analysis of Figure 5 generated by VOSviewer reveals several clusters and con-
nections among the authors, as well as some disconnections that provide insights into
collaborations and thematic focus within the field under study. One of the most notable
clusters includes Kumar A, Dwivedi YK, and Agrawal R (green color), showing a strong
connection between these authors. This suggests that they have collaborated on joint
projects or work in very similar research areas, leading them to frequently cite each other.
This citation network could indicate that these researchers are exploring topics related to
AI implementation in manufacturing from complementary perspectives.
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Another significant cluster is formed by Lăzăroiu G, Huang S, Liu C, and Cao J (red
color), suggesting an active collaboration network or a shared focus in their research. These
authors are likely working on more specific or advanced aspects of AI in manufacturing,
placing them in a central position within this thematic network. Additionally, the cluster
including Lee J, Liu J, and Li J (blue color) shows an interrelationship within a possibly
more technical or applied area of AI in manufacturing. The presence of connections among
them suggests cooperation or alignment in the research topics they are exploring. Similarly,
Liu Z and Li X form another small cluster (yellow color), indicating possible collaboration
in specific AI in manufacturing research, or at least mutual recognition in their citations.

On the other hand, some authors such as Javaid M, Qin J, Mahmoud K, and Haleem
A appear more isolated or with few direct connections to other main clusters. This could
be because these authors are exploring more specialized or emerging areas within AI in
manufacturing that have not yet been widely integrated into the main research network.
Alternatively, these authors may be focused on specific contexts or applications not being
addressed by the authors in the more connected clusters. Likewise, Elsisi M, Liu Q, Darwish
MMF, and Lehtonen M show a lower degree of connection, which could indicate that their
research, while relevant, is aimed at specific subdomains of AI in manufacturing that have
not generated broad collaborations or extensive citations within the analyzed group.

In summary, Figure 5 displays a clear segmentation of authors into different clusters,
reflecting collaboration networks and shared research themes, while the disconnections
highlight the existence of niches or emerging areas in the field that are not yet fully inte-
grated into the main research network on the studied variables.

4.4. Most Cited Documents

The objective (O4) of this section is to identify and analyze the determinants that
influence the challenges and opportunities highlighted in the most cited documents on
the application of AI in manufacturing. For this analysis, RStudio version 2024.04.2+764
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was used, selecting “Documents” as the level of analysis and employing the metric “Most
Cited Documents Worldwide”. The results are presented in Table 3. The analysis of Table 3,
which includes the 20 most-cited documents out of a total of 537, in research on the studied
variables, focusing on challenges and opportunities, reveals data that shape the direction of
the field and underscore areas that will require future attention.

Table 3. Most cited documents.

Author Paper Total Citations TC per Year Normalized TC

Wang et al. [110] “Machine learning in additive manufacturing:
State-of-the-art and perspectives” 450 90.00 6.47

Diez-Olivan et al. [14]
“Data fusion and machine learning for industrial
prognosis: Trends and perspectives towards
Industry 4.0”

441 73.50 4.83

Bag et al. [82]

“Role of institutional pressures and resources in
the adoption of big data analytics powered
artificial intelligence, sustainable manufacturing
practices and circular economy capabilities”

426 106.50 8.49

Dubey et al. [111]

“Big data analytics and artificial intelligence
pathway to operational performance under the
effects of entrepreneurial orientation and
environmental dynamism: A study of
manufacturing organisations”

409 81.80 5.88

Çinar et al. [11]
“Machine Learning in Predictive Maintenance
towards Sustainable Smart Manufacturing in
Industry 4.0”

350 70.00 5.03

Cavalcante et al. [44]
“A supervised machine learning approach to
data-driven simulation of resilient supplier
selection in digital manufacturing”

325 54.17 3.56

Meng et al. [89] “Machine Learning in Additive Manufacturing:
A Review” 294 58.80 4.22

Chatterjee et al. [80]
“Understanding AI adoption in manufacturing
and production firms using an integrated
TAM-TOE model”

250 62.50 4.99

Liu et al. [104]
“Influence of artificial intelligence on
technological innovation: Evidence from the
panel data of China’s manufacturing sectors”

231 46.20 3.32

Mhlanga [112] “Industry 4.0 in Finance: The Impact of Artificial
Intelligence (AI) on Digital Financial Inclusion” 212 42.40 3.05

Zhan and Li [113]
“Machine learning based fatigue life prediction
with effects of additive manufacturing process
parameters for printed SS 316L”

172 43.00 3.43

Javaid et al. [7] “Artificial Intelligence Applications for Industry
4.0: A Literature-Based Study” 170 56.67 7.45

Qin et al. [6] “Research and application of machine learning
for additive manufacturing” 160 53.33 7.01

Johnson et al. [114] “Invited review: Machine learning for materials
developments in metals additive manufacturing” 154 30.80 2.21

Huang et al. [92]
“A Survey on AI-Driven Digital Twins in
Industry 4.0: Smart Manufacturing and
Advanced Robotics”

131 32.75 2.61
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Table 3. Cont.

Author Paper Total Citations TC per Year Normalized TC

Sahu et al. [115]
“Artificial intelligence (AI) in augmented reality
(AR)-assisted manufacturing applications:
A review”

130 32.50 2.59

Ahmad et al. [116] “Energetics Systems and artificial intelligence:
Applications of industry 4.0” 127 42.33 5.56

Wan et al. [96]
“Artificial-Intelligence-Driven Customized
Manufacturing Factory: Key Technologies,
Applications, and Challenges”

127 31.75 2.53

Elsisi et al. [78]
“Deep Learning-Based Industry 4.0 and Internet
of Things towards Effective Energy Management
for Smart Buildings”

126 31.50 2.51

Sing et al. [117]
“Perspectives of using machine learning in laser
powder bed fusion for metal additive
manufacturing”

125 31.25 2.49

One of the main challenges identified in these studies is the complexity of integrating
disruptive technologies such as machine learning and big data into traditional indus-
trial processes. For example, the paper by Wang et al. [110], with 450 citations and an
average of 90 citations per year, highlights the difficulties involved in adapting these tech-
nologies to conventional manufacturing environments, which not only require advanced
infrastructure but also adequate technical training for operators and managers. Similarly,
the study by Çinar et al. [11], with 350 citations and an average of 70 citations per year,
emphasizes the challenge of implementing machine learning in predictive maintenance
within smart manufacturing. These publications reflect how the integration of AI into
industrial processes faces significant barriers in terms of technological complexity and
organizational adaptation.

Sustainability and resilience are other significant challenges addressed in these doc-
uments. Cavalcante et al. [44], with 325 citations and an average of 54.17 citations per
year, and Liu et al. [104], with 231 citations and an average of 46.20 citations per year,
focus on how to apply AI to improve these aspects in manufacturing. However, both
studies underline the difficulties in balancing technological optimization with minimizing
environmental impact, all while maintaining competitiveness and operational efficiency.
These works indicate that, although AI has the potential to make manufacturing processes
more sustainable, implementing these changes in practice is a considerable challenge.

Another major challenge is the adoption of AI technologies in an institutional envi-
ronment that is often resistant to change. The work of Bag et al. [82], which has received
426 citations with an impressive average of 106.50 citations per year, highlights how institu-
tional barriers and the lack of adequate resources complicate the implementation of big data
and AI in sustainable manufacturing. Regulatory, economic, and cultural pressures emerge
as obstacles that hinder the rapid adoption of these technologies, reflecting a mismatch
between technological capabilities and current regulations.

Additionally, the lack of interoperability between different systems and technological
platforms presents a critical challenge. Javaid et al. [7], with 170 citations and an average of
56.67 citations per year, suggest the urgent need to develop common standards to facilitate
a smooth and efficient integration of emerging technologies into complex manufacturing
processes. Although data security and privacy are not always directly addressed, these
aspects underlie as critical concerns in the context of using big data and AI, as implied in
works like that of Dubey et al. [111], which has been cited 409 times with an average of
81.80 citations per year.

On the other hand, the most cited documents also highlight several significant oppor-
tunities. One of the most notable is the optimization of predictive maintenance through AI,
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as illustrated by the work of Çinar et al. [11]. AI’s ability to anticipate failures and optimize
equipment use, reflected in its 350 citations, not only improves operational efficiency but
also reduces costs and minimizes downtime, offering a clear return on investment in the im-
plementation of these technologies. Furthermore, AI presents key opportunities to advance
sustainability within manufacturing. The study by Bag et al. [82], with its high citation
rate, along with that of Liu et al. [104], highlights how AI can analyze large volumes of
data and optimize processes in real-time. This approach translates into waste reduction
and more efficient use of energy resources, aligning manufacturing operations with global
sustainability goals.

The development of new materials and manufacturing processes also benefits from
the use of AI, as evidenced by the study of Johnson et al. [114], which has accumulated
154 citations. This approach enables innovation in the creation of customized materials,
optimizing properties and processes that were previously difficult to achieve with con-
ventional technologies. Additionally, AI facilitates mass customization and flexibility in
manufacturing processes, as noted by Wang et al. [110] and Meng et al. [89], which have
received 294 citations with an average of 58.80 citations per year. This allows companies to
quickly respond to market demands and adjust their production lines without the need for
costly and complex changes.

Finally, improvement in decision-making is a highlighted opportunity, especially when
AI is integrated with technology adoption models, as shown by Chatterjee et al. [80], which
has been cited 250 times with an average of 62.50 citations per year. The ability of AI to
provide real-time analysis and accurate predictions empowers managers to make more
informed and agile decisions, significantly enhancing business competitiveness.

In conclusion, this analysis highlights both the challenges and opportunities that AI
presents in manufacturing according to the most cited documents. While technological
integration, sustainability, institutional adoption, interoperability, and data security emerge
as critical challenges, the opportunities to optimize processes, improve sustainability,
innovate in materials, customize production, and enhance decision-making offer a clear
path for the advancement of Industry 4.0 (Figure 6). These documents, with their high
citation rates, not only reflect the relevance of AI in modern manufacturing but also lay
the groundwork for future research that addresses these challenges and capitalizes on
emerging opportunities.
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4.5. Global Analysis of Leading Institutions in AI Research Applied to Manufacturing

The objective (O5) of this section is to analyze the global distribution of the main
institutions researching AI applied to manufacturing, identifying the challenges and oppor-
tunities that emerge from their interaction in technological and industrial development.
For this analysis, VOSviewer software, version 1.6.20, was used, applying the “citations”
analysis and using “organizations” as the unit of analysis. A minimum threshold of one
document per organization was established. A total of 1329 organizations were identified,
and for each, the total strength of citation links with other organizations was calculated.
Subsequently, the 20 organizations with the highest total link strength were selected, and
the results are presented in Figure 7 generated by VOSviewer.
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The analysis of the 20 most relevant institutions worldwide that are involved in
research on AI in manufacturing, according to Table 4, reveals important patterns in terms
of citations and collaboration link strength.

The analysis of the 20 most relevant institutions in AI research applied to manufac-
turing shows clear correlations with the trends observed in the literature. First, Nanyang
Technological University of Singapore, through its School of Mechanical and Aerospace
Engineering and the Singapore Centre for 3D Printing, leads with 450 citations each and a
link strength of 9. This confirms Singapore’s key role as a global innovation hub, particu-
larly in 3D printing, reflecting a significant concentration of research and collaborations in
AI. These findings align with what Diez-Olivan et al. [14] highlighted, emphasizing the use
of emerging technologies as a fundamental part of Industry 4.0. Singapore’s ability to lead
collaboration networks, as evidenced by its high link strength, underscores the importance
of central nodes in the global expansion of AI.

In the United States, the CCDC Army Research Laboratory, with 294 citations and a
link strength of 6, demonstrates American leadership in research applied to manufacturing.
Institutions such as Indiana University-Purdue University and Rutgers University show
a multidisciplinary approach aligned with the need to monitor and prevent anomalies
in industrial machinery, as emphasized by Carletti et al. [15]. The literature highlights
the importance of interpretability in machine learning, something that U.S. institutions
seem to be addressing through research focused on process optimization and predictive
maintenance [18].

South Korea also plays a prominent role in AI research applied to manufacturing, with
institutions such as Changwon National University and Gyeongsang National University
that have a strong collaborative presence, reflecting Antosz et al.’s [16] analysis of the
importance of intelligent systems for decision-making in manufacturing. Although South
Korea still has room to grow in citations, its ability to establish global connections suggests
a rapid evolution in this field.
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Table 4. Most relevant institutions.

Institution City/Country Citations Total Link Strength

School of Mechanical and Aerospace Engineering,
Nanyang Technological University Singapore 450 9

Singapore Centre for 3D Printing, School of Mechanical
and Aerospace Engineering, Nanyang

Technological University
Singapore 450 9

CCDC Army Research Laboratory Aberdeen, MD, United States 294 6

Department of Materials Science and Engineering,
Changwon National University Changwon, South Korea 294 6

Department of Mechanical and Energy Engineering,
Indiana University-Purdue University Indianapolis Indianapolis, IN, United States 294 6

Praxair Surface Technologies Indianapolis, IN, United States 294 6

Department of Industrial and Systems Engineering,
Rutgers University-New Brunswick Piscataway, NJ, United States 108 5

Department of Mechanical and Aerospace Engineering,
Case Western Reserve University Cleveland, OH, United States 108 5

Department of Mechanical and Aerospace Engineering,
Rutgers University-New Brunswick Piscataway, NJ, United States 108 5

New Jersey Advanced Manufacturing Institute, Rutgers
University-New Brunswick Piscataway, NJ, United States 108 5

The School of Manufacturing Systems and Networks,
Arizona State University Mesa, AZ, United States 108 5

The State Key Laboratory of Coastal and Offshore
Engineering, Dalian University of Technology Dalian, China 108 5

Department of Business and Economics, School of
Business and Information Systems, York College, CUNY Jamaica, NY, United States 11 0

Department of Mechanical Engineering, CVR College
of Engineering Hyderabad, Telangana, India 4 6

Mechanical Engineering, Texas A&M University
College Station College Station, TX, United States 4 6

School of Materials Science and Engineering,
Gyeongsang National University Jinju, South Korea 4 6

School of Mechanical Engineering, Zhejiang University Hangzhou, China 3 10

School of Nursing, The Hong Kong
Polytechnic University Hong Kong 3 10

Shenzhen Key Laboratory of Soft Mechanics & Smart
Manufacturing, Southern University of Science

and Technology
Shenzhen, China 3 10

Department of Mechanical and Production Engineering,
Guru Nanak Dev Engineering College Ludhiana, Punjab, India 1 0

China, through Zhejiang University and the Southern University of Science and Tech-
nology, stands out for having a high linkage strength (10) despite having only
3 citations. This reflects what was observed by Dinmohammadi [22] and Soni et al. [23],
who highlight that although the infrastructure and data quality in AI manufacturing can be
limiting, Chinese universities are well positioned to influence future development through
strategic international collaborations.

The case of non-academic institutions, such as Praxair Surface Technologies in the
United States, demonstrates the impact of tech companies on applied research. With
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294 citations, Praxair emphasizes the importance of collaboration between the private and
academic sectors, an aspect that Williams et al. [17] also stress in their review. Such alliances
are crucial for the adoption of AI in advanced manufacturing.

Several challenges arise from this analysis. The geographical concentration of research
in countries like Singapore, the United States, China, and South Korea reflects a lack
of participation from other regions, which may limit the diversity of approaches in the
application of AI in manufacturing. Moreover, the reliance on collaboration networks
between specific institutions can create bottlenecks in knowledge exchange, as indicated
by the difficulties in scaling AI solutions beyond the proof-of-concept phase [22]. This
concentration, both geographical and institutional, presents a challenge regarding equity in
knowledge production.

On the other hand, the resulting opportunities are equally significant. The expansion
of collaboration networks, particularly through institutions with high connectivity, such
as the universities of Hong Kong and Shenzhen, can foster more equitable growth in
global scientific production. This type of collaboration is also in line with the recommenda-
tions of Liu et al. [21], who suggest that integrating accumulated knowledge with human
observations in AI manufacturing can accelerate its adoption in industrial environments.

In conclusion, although AI manufacturing research is led by a few institutions in key
countries, strengthening global collaboration networks and including more international
actors offer significant opportunities for advancing the sector. Consolidating these alliances
will be key for more regions to benefit from advanced technologies in manufacturing, as
suggested by TurandasjiPatil et al. [25] and Gabsi [26]. Below, Figure 8 presents a summary
of the challenges and opportunities derived from the analysis.
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et al. [15], Liu et al. [104], Antosz et al. [16], Dinmohammadi [22], Soni et al. [23], TurandasjiPatil
et al. [25], and Gabsi [26].

4.6. Key Methods and Approaches in AI Research in Manufacturing

The objective (O6) of this section is to analyze the most prevalent methods and study
approaches in AI research in manufacturing, as well as to assess the challenges and oppor-
tunities that arise from their application. For this analysis, VOSviewer software, version
1.6.20, was used with the ‘co-occurrence’ analysis type, the unit of analysis ‘author key-
words’, and the counting method ‘Full counting’. The minimum occurrence threshold
for a keyword (1) was set. Out of a total of 1322 keywords, 1332 met the threshold. The
40 keywords most related to methods and study approaches were selected, as shown in
Figure 9 generated by VOSviewer.
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Below is a description of the 40 methods and study approaches identified in the
co-occurrence analysis:

(1) Augmented Statistical Fatigue Life Model: A model that combines statistical methods
with experimental data to predict the fatigue life of materials, improving the accuracy
of estimations [120].

(2) Bibliometric Review: A method that uses quantitative analysis of the scientific litera-
ture to identify patterns, trends, and relationships in a field of study based on citations
and references [63,121].

(3) Big Data Analysis: An approach that involves collecting, processing, and analyzing
large volumes of data to extract meaningful patterns and support data-driven decision-
making [13].

(4) Building Information Modeling (BIM): A process that involves the generation and
management of digital representations of the physical and functional characteris-
tics of a built space, used to enhance the planning and execution of construction
projects [122].

(5) Business Model: A structure that defines how an organization creates, delivers, and
captures value, focusing on business strategy and key operations [123].

(6) Conceptual Framework: A theoretical structure that guides research, defining key con-
cepts, variables, and their relationships, providing a framework for
analysis [124,125].

(7) Data-Driven Models: Models that use empirical data to build mathematical or com-
putational representations of phenomena, enabling informed predictions and deci-
sions [126].

(8) Data Mining Techniques: A set of methods used to discover patterns and relationships
in large datasets, applied in areas such as marketing, biomedicine, and computer
science [127].

(9) Decision-Making Models: Systematic approaches to evaluate and select options
among alternatives, optimizing outcomes based on predefined criteria [44].

(10) Deep Learning Models: A subcategory of machine learning models that use deep
neural networks to analyze large volumes of unstructured data, such as images or
text [128].

(11) Dynamic Model: A mathematical model that describes how a system evolves over
time, capturing the dynamics of the processes involved [96].

(12) Empirical Analysis: A research method that uses observable and measurable data to
evaluate theories, testing hypotheses through experimentation and observation [129].
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(13) Finite Element Analysis (FEA): A computational technique that divides an object
into small parts (finite elements) to analyze its behavior under various conditions,
commonly used in engineering [130].

(14) Fuzzy Logic Models: Models that handle uncertainty and imprecision by allowing
degrees of truth instead of binary values, applied in control systems and decision-
making [116].

(15) Hybrid Modeling: Combines different models or methods to leverage the strengths of
each, enhancing predictive accuracy and capacity in complex situations [131].

(16) Literature Review: A critical and systematic review of the existing literature on a topic,
identifying knowledge gaps and establishing context for future research [132,133].

(17) Machine Learning Models: Algorithms that enable computers to learn from data and
improve their performance on specific tasks without being explicitly programmed for
them [134,135].

(18) Mathematical Modeling: The creation of mathematical models to represent, ana-
lyze, and predict the behavior of real-world systems, applicable across various disci-
plines [75].

(19) Meta-Analysis: A statistical technique that combines the results of multiple studies to
derive a more robust and generalizable conclusion about a research topic [61].

(20) Mixed Methods Approach: A research approach that integrates qualitative and
quantitative methods to provide a more comprehensive understanding of a phe-
nomenon [136].

(21) Model-Based Systems: An approach that uses mathematical and computational
models to design, analyze, and manage complex systems, optimizing their perfor-
mance [137].

(22) Multi-Criteria Decision Analysis (MCDA): A method that evaluates options based
on multiple criteria, facilitating decision-making in complex contexts where various
factors must be balanced [138].

(23) Multivariate Analysis: A set of statistical techniques that analyze more than two
variables simultaneously, allowing for the understanding of complex relationships
between them [130].

(24) Neural Networks Model: A computational model inspired by the structure of the
human brain, primarily used in machine learning for tasks like pattern recognition
and classification [94].

(25) Optimization Models: Mathematical models that seek the best solution within a
set of options, maximizing or minimizing an objective function under certain con-
straints [139].

(26) Predictive Modeling: The use of statistical or machine learning models to make
predictions about future events based on historical data [140].

(27) Quantitative Analysis: Analysis based on numerical data, using statistical and mathe-
matical techniques to measure variables and analyze relationships between
them [2,141].

(28) Regression Analysis: A statistical technique that examines the relationship between a
dependent variable and one or more independent variables, used for making predic-
tions and understanding causal relationships [142,143].

(29) Reinforcement Learning Models: A subfield of machine learning where an agent learns
to make optimized decisions through trial and error, rewarded for its actions [108].

(30) Risk Analysis: The process of identifying, evaluating, and prioritizing risks, using
models to forecast and mitigate negative impacts on projects or systems [144].

(31) Scenario Analysis: A technique used to anticipate possible future scenarios and
their implications, facilitating strategic planning and decision-making in uncertain
situations [145].

(32) Simulation Modeling: The use of computational models to imitate the behavior of
real systems, allowing for experimentation and analysis of scenarios without real
risks [146].
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(33) Statistical Analysis: A set of techniques for collecting, reviewing, analyzing, and
interpreting data, helping to uncover significant patterns and trends in research [147].

(34) Structural Equation Modeling (SEM): A statistical technique that allows for the anal-
ysis of complex relationships between latent and observable variables, combining
factor analysis and regression models [59,148].

(35) Supervised Learning Models: A type of machine learning model where the algorithm
learns from labeled data, improving its ability to predict or classify new data [12].

(36) Systematic Review: An exhaustive and structured review of the existing literature on
a specific research question, applying a rigorous approach to minimize bias [149,150].

(37) Topic Modeling: A technique used to identify underlying themes in a set of documents,
typically using probabilistic models that group related words [151].

(38) Training Data Model Development: The process of creating and refining machine
learning models using training datasets, aiming to improve their accuracy and gener-
alization [152].

(39) Unsupervised Learning Models: Machine learning models that find patterns in unla-
beled data and are used for tasks such as clustering and dimensionality reduction [12].

(40) Wavelet Analysis: An analysis technique that decomposes complex signals into fre-
quency components, allowing for the study of phenomena in both the time and
frequency domains simultaneously [153].

These descriptions summarize each method and study approach, highlighting their
application and relevance in research and professional practice. From this analysis, both
significant challenges and opportunities can be inferred. On the one hand, innovation
in models and techniques represents a major opportunity for the manufacturing indus-
try. The use of advanced methods such as machine learning, predictive modeling, and
big data analysis allows for improved accuracy, efficiency, and predictive capability in
manufacturing processes.

These approaches enable the development of solutions better tailored to the specific
needs of the industry, which can lead to productivity improvements and more informed,
data-driven decision-making. This same aspect is addressed by Williams et al. [17], who
emphasize how cognitive algorithms improve efficiency in business processes, although
the authors recognize that integrating these technologies also brings significant challenges,
such as creating robust data structures.

Another highlighted opportunity is improved decision-making, facilitated by ap-
proaches like multi-criteria decision analysis (MCDA) and decision models. These methods
offer tools for optimizing decisions in complex environments where it is necessary to
balance multiple factors such as costs, efficiency, quality, and sustainability. Addition-
ally, the interdisciplinarity and flexibility provided by integrating hybrid approaches and
data-driven models open new possibilities for innovation.

Combining the best of different disciplines and methods allows for addressing complex
problems with greater robustness, generating more applicable and relevant knowledge
for professional practice. This decision-making improvement approach is similar to that
discussed by Carletti et al. [15], who highlight the need to enhance the interpretability
of machine learning models to facilitate their adoption in manufacturing, especially in
quality monitoring.

However, significant challenges are also faced. The complexity and high technical
requirements of many of these methods, such as dynamic modeling and finite element
analysis, represent a barrier to their widespread adoption, particularly in companies that
lack the necessary technical capabilities or computational resources. This challenge is
also highlighted by Antosz et al. [16], who mention that inadequate means to assess
the implementation of maintenance strategies may limit the potential of AI to optimize
operational efficiency.

Furthermore, the coherent integration and applicability of a variety of methodological
approaches can be problematic. Companies may face difficulties trying to implement
multiple methods in a coordinated manner, which could lead to inconsistencies in results
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and inefficient use of available resources. This challenge aligns with the observations
of Cassoli et al. [18], who note that while AI has the potential to transform predictive
maintenance, the commercial viability of AI-based solutions remains a hurdle.

Finally, another key challenge is the potential bias and inherent limitations of some
models, such as regression and statistical analysis. Although these methods are powerful,
they are subject to the limitations of the data used, which can affect the validity and
applicability of the conclusions derived. In this regard, authors such as Dinmohammadi [22]
and Soni et al. [23] identify data quality as one of the main obstacles to AI adoption
in manufacturing. In summary, the analysis suggests that while there are enormous
opportunities to advance manufacturing through AI and advanced methods, there are
also significant challenges that need to be addressed to maximize the positive impact of
these approaches on the industry. Figure 10 shows the summary of the challenges and
opportunities from this analysis.
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4.7. Analysis of Global Scientific Production in AI and Manufacturing

The objective (O7) of this section is to evaluate the global distribution of scientific
production on AI in manufacturing, assessing the quality, international collaboration dy-
namics, and participation of different regions to identify their challenges and opportunities.
For this analysis, RStudio version 2024.04.2+764 was used, selecting “Countries” as the
level of analysis and employing the metric of “Most Cited Countries”. The “World Map of
Country Collaboration” metric was also selected as the “Social Structure”.

4.7.1. Scientific Production by Country

The analysis of Table 5, which includes the 20 most cited countries, reveals that
scientific production in the field of AI applied to manufacturing is led by countries with
advanced economies and well-established research and development sectors. The United
States tops the list with 113 documents and a total of 1553 citations, reflecting its dominant
position in generating knowledge in this field. However, countries like France, with only
nine documents but an average of 120 citations per article, stand out for the high quality
and impact of their research. Singapore and Spain also stand out for their high average
citations per article (105 and 83.2, respectively), indicating that although they produce
fewer documents in terms of quantity, their research is highly influential.
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Table 5. Most cited countries.

Country TD Total Citations Average Article Citations

United States 113 1553 29.9
United Kingdom 42 1245 69.2

China 73 1070 18.1
Germany 52 760 29.2
Singapore 11 735 105

India 111 703 12.6
Spain 16 499 83.2
France 9 480 120

South Korea 22 453 28.3
Italy 22 329 21.9

Malaysia 14 105 17.5
Australia 22 102 11.3
Canada 17 89 14.8
Greece 12 76 8.4
Poland 11 71 11.8
Turkey 11 38 6.3

Saudi Arabia 11 33 16.5
Taiwan 12 13 6.5

Pakistan 9 8 8
Mexico 9 6 2

In contrast, countries such as Pakistan and Mexico show limited scientific production
in both quantity and impact, with a significantly low average number of citations per article
(eight and two, respectively). This suggests that there is a gap in these countries’ ability to
contribute to cutting-edge research in AI and manufacturing, possibly due to limitations in
resources, infrastructure, or access to international collaboration networks.

4.7.2. Continental Distribution of Scientific Production

The breakdown by continents shows that Europe and Asia are the main drivers of
AI research for manufacturing, with 65.22% and 62.22% of countries from each continent
contributing to scientific production (Figure 11). This strong leadership reflects the consoli-
dation of these regions as epicenters of technological innovation, especially in countries
such as Germany, China, and the United Kingdom. In contrast, America and Africa present
significantly lower percentages (22.86% and 20.37%, respectively), indicating a lower con-
centration of active countries in these continents in terms of AI research for manufacturing.
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Oceania, with only 13.33% of its countries participating in this research area, clearly
demonstrates a need to strengthen capabilities and investment in research and development
to avoid falling behind in such a dynamic and crucial field for the future of manufacturing.
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4.7.3. Global Participation in Research

Globally, out of 195 countries [154], only 79 have contributed publications on AI in
manufacturing, representing 40.51% (Figure 11). This data highlights that the majority of
countries (59.49%) are not involved in research in this critical area, which is concerning
given the growing importance of AI in global industrial competitiveness. This lack of
participation could be related to economic limitations, a lack of research infrastructure, or
barriers to accessing knowledge and technology.

4.7.4. International Collaboration

Figure 12, which shows the global collaboration map, reveals that leading research
powers not only excel in production but also act as central nodes in international collabo-
ration networks. For example, China has strong collaborations with the United Kingdom
(10 times) [6,155–157] and other significant connections with Singapore [158], Korea [5],
Pakistan [155], and Saudi Arabia [159]. Similarly, India maintains crucial collaborations
with the United Kingdom [160] and the United States [89], while the United Kingdom
itself is a central partner for multiple countries, including the United States [111] and
Australia [161].

Sci 2024, 6, x FOR PEER REVIEW 25 of 39 
 

 

 
Figure 11. Number of countries with documents by continent. 

Oceania, with only 13.33% of its countries participating in this research area, clearly 
demonstrates a need to strengthen capabilities and investment in research and 
development to avoid falling behind in such a dynamic and crucial field for the future of 
manufacturing. 

4.7.3. Global Participation in Research 
Globally, out of 195 countries [154], only 79 have contributed publications on AI in 

manufacturing, representing 40.51% (Figure 11). This data highlights that the majority of 
countries (59.49%) are not involved in research in this critical area, which is concerning 
given the growing importance of AI in global industrial competitiveness. This lack of 
participation could be related to economic limitations, a lack of research infrastructure, or 
barriers to accessing knowledge and technology. 

4.7.4. International Collaboration 
Figure 12, which shows the global collaboration map, reveals that leading research 

powers not only excel in production but also act as central nodes in international 
collaboration networks. For example, China has strong collaborations with the United 
Kingdom (10 times) [6,155–157] and other significant connections with Singapore [158], 
Korea [5], Pakistan [155], and Saudi Arabia [159]. Similarly, India maintains crucial 
collaborations with the United Kingdom [160] and the United States [89], while the United 
Kingdom itself is a central partner for multiple countries, including the United States [111] 
and Australia [161]. 

 
Figure 12. World collaboration map. 

These collaboration networks are vital for advancing research, as they facilitate the 
exchange of knowledge, resources, and technologies between countries, thereby fostering 
innovation and overcoming technical and scientific challenges. However, reliance on a 

Figure 12. World collaboration map.

These collaboration networks are vital for advancing research, as they facilitate the
exchange of knowledge, resources, and technologies between countries, thereby fostering
innovation and overcoming technical and scientific challenges. However, reliance on a
small number of countries for collaboration can limit the diversity of approaches and
perspectives, which is essential for addressing global challenges comprehensively.

4.7.5. Derivation of Challenges and Opportunities

The challenges and opportunities in global scientific production of AI in manufacturing
reveal several key considerations. A significant challenge is the inequality in scientific
production, reflected in the disparity between countries in terms of the quantity and quality
of publications. Countries with lower production and impact are at risk of falling behind in
adopting AI in manufacturing, which could affect their industrial competitiveness in the
long term. This challenge aligns with what authors like Diez-Olivan et al. [14] have pointed
out, emphasizing that despite the growing adoption of smart technologies, many countries
face technical and infrastructure difficulties in implementing advanced data monitoring
and analysis strategies. This lack of capability can disadvantage less developed economies,
slowing their integration into Industry 4.0.

Additionally, the regional concentration of research, primarily in Europe and Asia,
highlights a lack of global integration, with less involvement from the Americas, Africa,
and Oceania. This situation could limit the applicability of the developed solutions, as they
may not be adapted to the diverse contexts of other regions. Cassoli et al. [18] support this
idea by noting that many advancements in AI, such as predictive maintenance, are still not
commercially viable in many regions due to inadequate infrastructure and low adoption of
advanced technological solutions.
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Another significant challenge is the limited global participation. With only 40.51% of
countries involved in AI research in manufacturing, there is a clear need to encourage more
nations, especially developing ones, to ensure that research develops inclusively and its
benefits reach a wider variety of economies. This issue is also discussed by Dinmoham-
madi [22], who points out that the lack of specialized talent and inadequate policies are
significant barriers to the global expansion of AI in manufacturing. Moreover, reliance on
bilateral collaborations in a few countries could reduce diversity in research and perpetuate
inequalities in access to knowledge and resources. This poses a challenge for generating
more diverse and holistic solutions in the application of AI in manufacturing.

On the other hand, there are also significant opportunities. Enhancing the quality
of research is a key area, where countries with high citation averages per document,
such as France and Singapore, can lead with innovative research and serve as models for
other countries. Williams et al. [17] also highlight that leadership in AI research can be
crucial for improving production efficiency by leveraging cognitive algorithms to optimize
complex processes.

Expanding collaboration networks presents another major opportunity, as including
underrepresented countries would enrich research with new perspectives and solutions
adapted to different contexts. The review by Antosz et al. [16] suggests that intelligent
systems, such as those implemented in lean maintenance strategies, can be a gateway for
more countries to adopt AI, thus creating global collaboration opportunities.

Furthermore, there is the possibility of incorporating new actors into the global land-
scape by encouraging their participation through international cooperation programs,
research funding, and capacity development, which would significantly expand the global
reach and relevance of AI in manufacturing. Soni et al. [23] echo this idea, emphasizing that
AI has the potential to significantly improve transparency and efficiency in manufacturing,
but advances in sensor technology and other tools must be available at low cost to facilitate
adoption in developing countries.

Finally, Europe and Asia, as leading research regions, have a key opportunity to influ-
ence the future direction of AI in manufacturing by establishing standards and practices
that could be adopted globally. This is consistent with Gabsi’s observations [26], who
explores how digitalization and connectivity in smart factories are enabling advanced
economies to define trends and regulatory frameworks for Industry 4.0. In conclusion,
while scientific production in AI and manufacturing is advancing considerably, it is cru-
cial to address existing inequalities to ensure that the benefits of AI are distributed eq-
uitably and that the developed solutions are relevant to a broader range of industrial
contexts worldwide. Figure 13 shows the summary of the challenges and opportunities of
this analysis.
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Figure 13. Summary of the challenges and opportunities. Based on studies by Diez-Olivan et al. [14],
Cassoli et al. [18], Dinmohammadi [22], Williams et al. [17], Antosz et al. [16], Soni et al. [23], and
Gabsi [26].
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4.8. Thematic Analysis of AI in Manufacturing

The objective (O8) of this section is to analyze the themes in the conceptual structure of
AI applied to manufacturing. To conduct this analysis, RStudio version 2024.04.2+764 was
used. The bibliometric technique of ‘co-word’ was employed with the purpose of analyzing
authors’ keywords as the unit of analysis, applying the statistical technique of ‘thematic
mapping’. The parameters used in this process were: number of words (250), minimum
cluster frequency ‘per thousand documents’ (5), and the ‘walktrap’ clustering algorithm.

The analysis of the “Thematic Map” is presented below, organized according to the
four quadrants: motor themes, basic themes, emerging or declining themes, and niche
themes (see Figure 14 and Table 6).
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Firstly, the motor themes in the analysis of the conceptual structure of AI in manufac-
turing, such as ‘technology’, ‘digital supply chain’, ‘neural networks’, and ‘decision tree’,
are those that present high centrality and density, meaning they are well connected with
other themes and have achieved significant conceptual development. The ‘technology’
cluster, for example, is key in transforming manufacturing through AI, encompassing
fundamental innovations like process automation and improved operational efficiency.
The literature review supports this position, where authors such as Williams et al. [17] and
Soni et al. [23] highlight how the implementation of AI in manufacturing is intrinsically
linked to the optimization of business and operational processes, driven by key technologies
such as sensors and cyber–physical systems.

On the other hand, basic themes such as ‘machine learning’, ‘additive manufactur-
ing’, ‘artificial intelligence (AI)‘, and ‘digitization’ have high centrality but are still in the
development phase. ‘Machine learning’ is widely implemented in manufacturing, but
its low density indicates that there are still areas to explore, such as the customization
of its applications. In the literature, Carletti et al. [15] and Liu et al. [21] emphasize this
aspect, particularly in the use of ‘machine learning’ in advanced manufacturing, where
challenges such as result interpretability and the integration of human knowledge in
decision-making persist.

Regarding ‘additive manufacturing’, its crucial role in product customization is high-
lighted, but as Cassoli et al. [18] point out, there are obstacles in the commercial devel-
opment of these technologies. Additive manufacturing, although commonly associated
with 3D printing, has a significant impact on broader industrial manufacturing processes.
When integrated with AI, it enables the optimization of production parameters, such as
printing speed and material properties, improving product customization and efficiency
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in large-scale production. This connects additive manufacturing directly with traditional
manufacturing processes, transforming the way products are made within Industry 4.0.

Table 6. Centrality and density of clusters.

Cluster Callon Centrality Callon Density Rank Centrality Rank Density Cluster Frequency

machine learning 4.69 48.742 28 8 937
additive manufacturing 3.89 45.312 27 5 208
artificial intelligence (ai) 1.817 47.988 26 7 95

technology 0.75 66.667 24.5 22 9
digital supply chain 0.75 62.5 24.5 20.5 4

decision tree 0.5 87.5 23 26 8
neural networks 0.458 71.875 22 23 10

resilience 0.333 50 21 13.5 5
generative artificial

intelligence 0.25 50 20 13.5 2

digitization 0.222 33.333 19 2 3
artificial neural network 0.214 47.718 18 6 25

applications 0 50 9 13.5 5
3D printing 0 50 9 13.5 2

surrogate model 0 50 9 13.5 5
blockchain technology 0 62.5 9 20.5 4

structural equation
modeling 0 33.333 9 2 3

manufacturing sector 0 50 9 13.5 5
critical success factors 0 50 9 13.5 2
reinforcement learning 0 90 9 27 11
operational efficiency 0 77.083 9 25 9

data science 0 50 9 13.5 5
augmented reality 0 53.704 9 19 8

waam 0 43.75 9 4 6
corporate governance 0 100 9 28 6
innovation ecosystems 0 75 9 24 4

industrial artificial
intelligence 0 33.333 9 2 3

autoclave 0 50 9 13.5 2
modular artificial

intelligence 0 50 9 13.5 2

Regarding emerging or declining themes such as ‘data science’, ‘modular artificial
intelligence’, and ‘WAAM’ (wire arc additive manufacturing), they show low centrality
and density, indicating that they are either in their early stages or declining. ‘Data science’,
for example, has great potential to optimize processes in manufacturing but is not yet fully
integrated into the industrial ecosystem. This analysis is reflected in the studies by Diez-
Olivan et al. [14] and Dinmohammadi [22], who point out that the challenge is not only in
applying AI to processes but also in overcoming barriers such as a lack of infrastructure
and the quality of available data.

Finally, niche themes such as ‘blockchain technology’, ‘operational efficiency’, and
‘reinforcement learning’ have low centrality but high density, indicating that they are well
developed in their specialized areas, although with limited connection to other themes.
‘Blockchain technology’ is relevant for niches like traceability and supply chain security but
is not yet fully integrated with AI in manufacturing ecosystems. The literature reflects this
with examples such as those highlighted by Gabsi [26], who emphasizes that digitalization
and connectivity are driving the creation of smart factories, but these advances still face
technical and economic challenges.
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Challenges and Opportunities Derived

Regarding the challenges, the integration of emerging technologies remains a signifi-
cant hurdle. Themes such as data science, modular AI, and reinforcement learning have
high potential but face obstacles related to their widespread adoption, as mentioned by
Dinmohammadi [22] and Soni et al. [23] in their studies on infrastructure shortages and the
need to overcome technological barriers. Similarly, the consolidation of fundamental areas
such as digitization and artificial neural networks is crucial to maximize the impact of AI
in manufacturing, as noted by Carletti et al. [15] and Cassoli et al. [18], who agree that the
commercial development of these technologies is still in early stages.

On the other hand, there are clear opportunities in strengthening key technologies such
as ‘machine learning’ and ‘additive manufacturing’. According to Williams et al. [17] and
Liu et al. [21], these technologies can optimize customization and automation in production
if they are strengthened and integrated more effectively into processes. Additionally,
the development of digital supply chains and neural networks is also well positioned to
lead digital transformation in manufacturing, providing improvements in resilience and
operational efficiency, as suggested by Soni et al. [23] and Gabsi [26].

Finally, innovation in operational efficiency and reinforcement learning offers great
potential to enhance real-time processes, which could translate into cost reductions and in-
creased industrial competitiveness, aligning with the perspectives of Williams et al. [17] and
Cassoli et al. [18]. Figure 15 below presents a summary of these challenges
and opportunities.
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4.9. Limitations

One of the main limitations of this study is the reliance on the Scopus database as the
sole source of information. While Scopus is widely recognized for its scope and relevance
in bibliometric studies, the exclusion of other databases, such as Web of Science or IEEE
Xplore, may reduce the comprehensiveness of the analysis. This means that some important
studies might not have been included, which could skew the results towards authors or
institutions that predominantly publish in journals indexed in Scopus, affecting the overall
representativeness of the study.

Additionally, the decision not to consider articles published before 2019, due to their
scarcity, and to include articles published up until August 2024 may have affected the
comparability of the results. While this approach allowed for the capture of more recent
research, it does not follow a uniform time structure that ensures greater methodological
consistency. In future research, it would be advisable to establish complete or standardized
time periods to ensure a more homogeneous and comparable dataset. This consideration
will be important to minimize potential biases in identifying trends over time.
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From a methodological standpoint, the study utilized tools such as RStudio version
2024.04.2+764 and VOSviewer version 1.6.20 for citation analysis and collaboration net-
works. Although these tools are effective for identifying quantitative patterns, they have
limitations when it comes to analyzing the qualitative depth of relationships between docu-
ments and authors. Since citations do not always reflect the intrinsic quality or real impact
of research, there is a risk of partially interpreting the influence of certain authors or articles.
Furthermore, the selection of keywords used to filter the documents may have excluded
important research due to variability in terminology employed by different authors or
fields. This limitation in methodology might have restricted the breadth and scope of the
thematic analysis.

Another aspect to consider is that the study focused exclusively on the implementation
of AI in manufacturing within the context of Industry 4.0. This implies that the results
obtained may not be fully applicable to other industries or sectors that are also adopting
AI but under different technological or economic conditions. Additionally, since the
bibliometric analysis does not evaluate the empirical results of AI implementation, the
findings should be interpreted with caution when applying them to practical contexts or
policy formulation.

Finally, it is important to note that the most recent articles in the database have a
limited number of citations due to the short time since their publication. This particularly
affects documents from 2024, which have not had the same opportunity to be cited as those
published in 2019 or 2020. This citation dynamic could skew the results towards older
publications, offering a partial view of the impact of more recent research.

4.10. Future Research Directions

This bibliometric study has revealed various opportunities and challenges that pave
the way for future research in this field. First, several unresolved questions emerged during
the analysis. One of the main issues concerns how small- and medium-sized enterprises
(SMEs), which lack infrastructure and specialized talent, can effectively adopt and scale
these technologies [17,22]. Additionally, the interpretability of machine learning models
remains an obstacle, as trust in the results generated by AI is limited, presenting a crucial
area for future theoretical and empirical research focused on its implementation [15].

On the other hand, future research could expand the time range of the study by
incorporating earlier works to provide a more comprehensive historical view of AI adoption
in manufacturing [14]. The sample could also be broadened using other databases such
as Web of Science or IEEE Xplore, which would allow for more robust and exhaustive
results. Moreover, it would be interesting to extend this analysis to other industries
beyond manufacturing, assessing the implementation of AI in sectors such as healthcare,
agriculture, or energy, to detect similarities and differences in the challenges faced by these
industries [25,26].

From a methodological perspective, this study primarily employed bibliometric tools
like RStudio version 2024.04.2+764 and VOSviewer version 1.6.20, which are effective in
identifying citation and collaboration patterns. However, future studies could comple-
ment this approach with qualitative methods that allow for a deeper understanding of
organizational and technological barriers. Expert interviews, case studies, and discourse
analysis could provide a more detailed view of the internal challenges companies face
when attempting to adopt AI in their operations [16,23].

Another relevant aspect would be to conduct longitudinal studies that track the
evolution of AI implementation in manufacturing over time. This would allow observation
of how policies, technological advancements, and organizational capabilities influence
the adoption of these technologies in the manufacturing sector [18]. Additionally, future
studies could include new variables, such as the impact of public policies or the return on
investment of AI-based solutions in different types of companies, exploring their long-term
economic viability [24].
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On the other hand, future research could also focus on the practical application of
AI technologies in real industrial environments. Experimental studies evaluating the
impact of AI on operational efficiency, predictive maintenance, or cost reduction in factories
could provide valuable insights for the sector. Such applied research would offer practical
validation of the theoretical results presented in this study, facilitating the development of
effective frameworks for AI adoption in manufacturing [21].

Finally, it would be of great interest to conduct comparative studies between differ-
ent geographic and cultural regions. The implementation of AI in manufacturing varies
significantly between developed and developing economies due to differences in infras-
tructure, regulatory policies, and technological capabilities. Studying the challenges and
opportunities in different geographic contexts would allow for a deeper understanding
of how these factors influence AI adoption and what strategies might be more effective in
each region [14,25].

5. Conclusions

This study has revealed significant growth in scientific production related to the
implementation of AI in manufacturing, particularly in areas such as machine learning,
additive manufacturing, and predictive maintenance. The results indicate a substantial
increase in the number of publications since 2019, with annual production peaking in 2023
at 148 documents. However, despite this growth, a decreasing trend in average citations
per article has been observed, dropping from 15.22 in 2019 to 1.77 by August 2024. This
phenomenon is common in rapidly expanding fields, where increased production can
dilute the impact of individual works.

In terms of the most influential sources, journals such as Applied Sciences (Switzerland)
and Additive Manufacturing have played a key role in disseminating relevant research,
achieving high impact scores (h-index of 9 and 8, respectively). These journals have not
only shown high productivity but have also been fundamental in addressing the challenges
and opportunities of AI in manufacturing. Additionally, emerging areas such as AI-based
innovation ecosystems and additive manufacturing present significant opportunities for
innovation and the customization of industrial processes.

At the level of authors and institutions, researchers such as Wang, Çinar, Bag, and
Cavalcante stand out. Through their highly cited works, they have significantly con-
tributed to developing innovative approaches to AI implementation in manufacturing.
These authors, along with their respective institutions, such as Nanyang Technological
University and the CCDC Army Research Laboratory, have led in terms of citations and
international collaboration. Their research addresses not only technical aspects such as
predictive maintenance and process customization but also highlights the importance of
establishing collaborative networks to overcome challenges like system interoperability and
institutional barriers.

Finally, the data indicate that the main opportunities for advancing AI in manufac-
turing lie in integrating emerging technologies, optimizing predictive maintenance, and
improving decision-making through data-driven models. These findings underscore the
importance of continuing to explore the application of AI in specific industry niches while
working to overcome the technological and organizational barriers that limit its widespread
adoption. This study provides a solid foundation for future research, offering recommen-
dations to the academic and industrial communities on how to maximize the benefits of AI
in manufacturing and address the challenges that still persist.
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