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Abstract: The work is dedicated to the investigation of the possibility of producing and studying
the properties of the thin-walled elements of Diamond-type lattice structures, manufactured from
the aluminum alloy AlSi10Mg using the selective laser melting method. The accuracy of fabricating
the thin-walled elements was assessed depending on the specified model thickness, power, and
scanning strategy. It was demonstrated that the minimum wall thickness with minimal porosity was
achieved at a laser power of 260 W and a laser scanning speed of 1500 mm/s. Based on the selected
SLM parameters, Diamond-type lattice structures with a wall thickness of 200 µm were produced.
Tomographic methods confirmed minimal deviation in the thickness and shape of the lattice structure
from the model. Mechanical compression tests were conducted to determine the deformation
characteristics, as well as the Young’s modulus, yield strength, and ultimate tensile strength. It was
shown that the chosen parameters allow for the production of functional lattice structures.

Keywords: additive technologies; selective laser melting; aluminum alloys; lattice structures; cellular
structures; thin walls

1. Introduction

Additive technologies (ATs), which have been rapidly developing in recent years,
provide the opportunity to manufacture complex-shaped parts directly from computer
models, bypassing labor-intensive operations for creating special molds, tooling, and
equipment setups. Their wide demand is driven by their flexibility and ability to produce
finished products from digital models quickly. This has radically changed the technology
of product development in machine engineering [1]. Methodologies for filling the volume
of a part with a system of rods and shells instead of solid material have been developed,
which can significantly reduce weight while maintaining mechanical characteristics at
acceptable levels. Lattice structures, also known as cellular structures, have applications in
various industrial sectors due to their unique characteristics such as low elastic modulus,
high stiffness-to-weight ratio, low thermal expansion coefficient, and large specific surface
area. Lattice structures manufactured using traditional production technologies always
involve complex process control, additional assembly stages, or other uncontrollable factors.
Additive manufacturing technologies, based on layer-by-layer fabrication using computer-
aided design models, enable the production of complex components like lattice structures,
leading to effective processing time reduction and minimal material waste. Thus, additive
manufacturing removes structural design limitations and ensures the precise fabrication
of lattice structures with good quality. Active research is being conducted on developing
additive manufacturing technologies for metallic lattice structures [2,3].

Today, scientific studies on the fabrication of metallic lattice constructions using
selective laser melting (SLM) are underway to obtain products with good mechanical
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properties and low weight, which are in demand in the aerospace, energy, and chemical
industries. The SLM process involves the layer-by-layer fabrication of a part from powder
by locally melting the powder with a focused laser beam that scans each layer according to
its electronic model [1,4]. This layer-by-layer formation method for powder materials has
already been adopted by the industry for most traditionally used metals and alloys [4–7].

The fundamental principles of designing metallic lattice structures for manufacturing
via AT methods have been developed. However, their production and implementation
are limited due to the lack of refined manufacturing technologies. Applying SLM to the
fabrication of metallic lattice structures faces fundamental challenges because the size of
volumetric (pores and microcracks) and surface (relief) defects, as well as dimensional
deviations, is comparable to the thickness of the elements of lattice structures.

The SLM process is significantly influenced by a large number of process parameters,
such as laser power, laser spot diameter, scanning speed and strategy, and powder layer
thickness, as well as the parameters of the feedstock material. Therefore, one of the key
problems of SLM technology is the optimization of process parameters to achieve stable
process modes and reduce the number of mentioned defects [6]. Often, this involves a
compromise between material quality and process productivity [7]. Additive technologies
in general, and SLM in particular, allow for significant complexity in the geometric shape of
parts, opening up broad opportunities for topological optimization. Various periodic lattice
structures made from metal alloys have been produced using SLM, demonstrating good
mechanical properties [8,9]. These structures can consist of either rods or shells. Numerous
types of morphologies for such structures have been proposed to optimize their various
properties [10].

To build periodic rod structures, an analogy with crystal lattices is often used (e.g.,
simple cubic, Diamond, and fluorite structures), where rods are drawn along the shortest
distances between nodes. Another method is based on densely filling spaces with polyhe-
dra, such as truncated octahedra (the so-called Kelvin foam) or rhombicosidodecahedra,
where rods traverse the edges of these polyhedra. Among structures built from shells,
various triply periodic minimal surfaces, particularly gyroids, are in demand. Besides
morphology, the ratio of rod diameter or shell thickness to the structure’s period can be
defined, allowing for changes in weight, porosity, specific surface area, and other character-
istics. The ratio of the structure size to the unit cell is an important parameter for achieving
convergence and minimizing boundary effects. The ratio proposed by the authors is seven
times greater than the rod diameter in all three directions. The mentioned structures are
often considered not as standalone products but as elements filling the volume of a part
instead of solid material, whose advantages include weight reduction, reduced material
consumption, and lower thermal conductivity [11–13]. Such materials do not necessar-
ily have a periodic structure; the structure can be stochastic or gradient. For prosthetic
applications, stochastic rod structures resembling bone tissue have been produced from
pure titanium using SLM. Digital models for these structures were generated using the
pseudo-randomization of the periodic structure. Gradient micro-lattices were created by
spatially modulating the thickness of rods [14,15].

A significant number of models for lattice structures and methodologies for their
construction have been developed to date [16,17]. Nevertheless, theoretical research in this
area continues. In order to determine the optimal design of lattice structures, it is essential
to establish a clear relationship between the structural parameters and the characteristics
of the beam nodes in the lattice design. Moreover, the adaptation of models to specific
manufacturing technologies is of particular interest. Many studies have focused on the
fabrication of metallic lattice structures using various additive manufacturing methods and
the experimental investigation of their structure and properties. Below are examples where
metallic structures were obtained through selective laser melting (SLM) technology.
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Al-Ketan et al. [8] conducted static compression tests on beam and shell lattice struc-
tures with various morphologies made from martensitic aging steel. According to all
measured mechanical characteristics, namely stiffness, strength, and fracture toughness,
significant advantages were observed for shell structures based on triply periodic minimal
surfaces. In another study [18], periodic beam structures were fabricated from the alu-
minum alloy AlSi10Mg, and their specimens were subjected to compression tests, revealing
various failure mechanisms and measuring the compressive strength limit as a function
of structure morphology and lattice period. Maskeri et al. [19] produced shell structures
in the shape of gyroids from the same alloy and tested them under static compression.
Additionally, Zha et al. [20] investigated the mechanical properties of shell structures made
from triply periodic minimal surfaces using austenitic steel AISI 316 L. Beyond mechanical
properties, the thermal conductivity of cellular metallic materials produced by SLM is also
being studied [21].

Much attention is paid to the study of Diamond-type cellular structures, which are
triply periodic minimal surface (TPMS) structures, due to their demand in applications
requiring compression and energy absorption. Khanna et al. showed that AlSi10Mg
Diamond structures outperformed gyroid, Schwartz, and Lidinoid structures in strength
and the modulus of compression and energy absorption [22]. It is also noted that the
type of lattice deformation depends on the relative density of the structure. Yan et al.
showed that there is a direct dependence between the compressive modulus and strength
of structures and their volume fraction and unit size in Diamond lattice structures made
of AlSi10Mg. However, the strut size of the Diamond lattice must be strictly controlled
as it is normally greater than designed, affecting relative density [23]. Soul et al. reported
that the mechanical properties of Diamond structures depend greatly on the orientation
of Diamond cells [24]. Yu et al. studied the deformation mechanism of the AlSi10Mg
Diamond structure, which was found to be bend-dominated [25]. In turn, Nie et al. tested
four different types of Diamond lattice structures, namely uniform skeletal (USK), uniform
sheet (USH), grade skeletal (GSK), and grade sheet, and found that graded structures
exhibited layer-by-layer failure, while sheet structures showed brittle fracture [26]. Song
et al. established that sheet structures had more stable deformation patterns than the
skeletal ones, which contributed to energy absorption capacity [27]. The performance of
Diamond lattice structures depends not only on accuracy and relative density but also on
the oxygen content in building chambers. Baroutaji et al. showed an increase in ductility
by ~5.7% and 2% in toughness, plateau stress, and specific energy absorption [28].

The presence of manufacturing defects and deviations from the model was qualita-
tively assessed using electron microscopy images [29,30], quantitatively measured through
the density of the samples [21], and analyzed via three-dimensional X-ray tomographic
imaging [14,20]. Choy et al. investigated the mechanical properties of uniform and gradient
lattices made from the titanium alloy Ti6Al4V based on their orientation [31].

Thus, the main research directions are the following:

- The development of design principles for metallic lattice structures adapted to specific
additive manufacturing technologies, which optimize the desired properties.

- The fabrication of metallic lattice structures using additive manufacturing methods
and the study of their structure and properties.

It should be noted that the influence of the microstructure defects of thin elements
in metallic lattice structures manufactured by the SLM method, as well as dimensional
deviations from the model, on the properties of the resulting constructions requires further
investigation. This is essential for optimizing SLM parameters when fabricating metallic
lattice structures with the required product characteristics.

In the present work, studies were conducted on the accuracy of the shape produc-
tion of thin-walled elements and shell lattice structures made from the aluminum alloy
AlSi10Mg using the SLM method, alongside the influence of processing parameters on
their microstructure and properties.
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2. Materials and Methods
2.1. Raw Materials and Additive Manufacturing

The material chosen for sample fabrication was a fine-dispersed powder of the alu-
minum alloy AlSi10Mg (UC “Rusal”, Moscow, Russia) with a declared particle size distri-
bution of 20–63 microns (Figure 1). Aluminum alloys are actively used for manufacturing
structural components in aerospace engineering, and the reduction in part weight obtained
through the use of cellular structures is particularly relevant.
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Figure 1. Granulometry of AlSi10Mg powder.

To confirm the particle size and elemental composition, the powder was also analyzed
using a Tescan Vega 3 LMH scanning electron microscope (Tescan, Brno, Czech Republic)
equipped with an energy-dispersive analysis (EDX) X-Act module (Oxford Instruments,
Abington, UK). The circularity factor of the powder was found to be 0.682, which is
sufficient for the stable application of a uniform and homogeneous layer. The spherical
shape of the particles allows for more compact and tight packing within a given volume,
ensuring the flowability of the powder composition in material feed systems with minimal
resistance. The elemental composition of the powder meets the declared specifications
(Table 1).

Table 1. AlSi10Mg powder composition.

Material
Element, % Mass.

Al Si Mg Fe Ni Cu Mn

AlSi10Mg bal. 9.88 ± 0.2 0.33 ± 0.1 0.1 0.2 - 0.1

The samples were manufactured using a Farsoon FS121M industrial selective laser
melting (SLM) system (Farsoon Technologies, Changsha, China). The machine was equipped
with a 500 W Nd:YAG laser with a wavelength of 1064 nm and a laser beam diameter of
50 µm. During the printing process, the parameters of laser power P, scanning speed V,
and the wall thickness of a digital model were varied. To ensure a single-scanning strategy
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for the single-scan walls, a solid block was modeled, in which the hatch distance parameter
was increased to 2 mm.

2.2. Microstructure Characterization, Linear Measurements, and Mechanical Tests

Testing the accuracy of the produced thin-walled elements, microstructure analysis,
and defect assessment were conducted using an OLYMPUS BX 51M optical microscope
(Olympus, Tokyo, Japan), as well as scanning electron microscopy (SEM). To evaluate
the mechanical properties of the thin-walled elements, designs based on Diamond-type
shells were selected. The outer linear dimensions of the samples were measured using
a coordinate method with a GLOBAL 050,505 coordinate measuring machine (Hexagon,
Stockholm, Sweden). The mass of the samples was determined using GR-300 laboratory
electronic scales (A&D, Tokyo, Japan).

Additionally, the obtained Diamond structures were further investigated using com-
puted tomography with a Nordson DAGE system (Nordson, Westlake, OH, USA), capable
of recognizing objects with a minimum size of 100 microns, to control the wall thickness of
the lattice structures.

The compression tests of the cellular structures were conducted on an Instron 5989 uni-
versal electromechanical testing machine (Instron, Norwood, MA, USA) following ASTM
E8-08 standards [32]. During the compression tests, the relationship between compressive
force F and displacement was established in the compression diagram of the sample. A
load was applied to achieve a strain rate of 0.02 mm/s. The direction of the applied load
coincided with the direction of the samples’ growth.

2.3. Modeling Cell Structures

The modeling of lattice structures based on Diamond-type shells was performed
using the widely used CAD system Materialize Magics, which is designed for preparing
models for additive manufacturing. This system features a specialized structures module
for creating standard lattice structures with various cell sizes.

3. Results and Discussion

The study of the microstructure and properties of the thin-walled elements of lattice
structures made from an AlSi10Mg alloy was conducted on samples manufactured using
the selective laser melting (SLM) method while varying process parameters such as laser
power, scanning speed, and powder layer thickness. The first stage of optimizing SLM
process parameters was carried out by producing single beads. In previous research [33],
the parameter window for manufacturing thin-walled samples was investigated: laser
power P = 170–340 W and scanning speed V = 300–1500 mm/s with a powder layer
thickness of 30 µm. Within this parameter window, walls with a specified thickness of
320 µm were produced and analyzed.

As optimality criteria, the accuracy of the geometric parameters (thickness and height)
of the developed model, surface roughness, and porosity of the samples were selected. It
was established that the most preferable scanning speed for achieving a high-quality wall,
considering productivity, is 1500 mm/s.

In the present study, the dependence of the quality of manufactured thin-walled
elements on wall thickness was investigated, as well as the influence of SLM parameters on
the quality of the produced samples. Additionally, the possibility of achieving a high-quality
minimum wall thickness through single-pass laser scanning was explored. Furthermore,
Figure 2 illustrates the configuration of the printing platform for the AlSi10Mg objects used
in the investigation. A total of six such platforms were printed.
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3.1. The Influence of Wall Thickness on the Quality of Manufactured Thin-Walled Elements

A series of walls (region I, Figure 2b) was produced according to the nominal model
with a variable wall thickness ranging from 150 to 450 µm in increments of 50 µm. These
specimens were built with contouring common for the SLM technique. The results of
the thickness measurements for the samples are presented in Table 2. The thickness of
the samples was evaluated in a cross-section by conducting 10 measurements. From the
obtained values, the sample mean was calculated, along with the confidence interval for
the deviation of the thickness from the mean at a confidence level of p = 0.95.

Table 2. Change in thickness of thin-walled samples made of AlSi10Mg alloy.

№ Laser Power, W Scanning Speed, mm/s Nominal Thickness, µm Actual Thickness, µm

1 340 1500 150 225.9 ± 13.65
2 340 1500 200 222.8 ± 7.17
3 340 1500 250 279.9 ± 10.57
4 340 1500 300 317.3 ± 6.18
5 340 1500 350 323.9 ± 8.98
6 340 1500 400 434.1 ± 7.34
7 340 1500 450 492.2 ± 15.01

A discrepancy is observed between the specified model thickness and the actual
thickness of the samples. Sample No. 2 exhibits the smallest thickness, while Sample No.
1 shows the largest deviation from the model. Additionally, the thickness of the samples
increases with the nominal thickness of the model (Figure 3). The appearance of the walls
is presented in Figure 4.
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Figure 4. A cross-section of a wall with a nominal thickness of 150 µm (a), a cross-section of a wall
with a nominal thickness of 200 µm (b), and a cross-section of a wall with a nominal thickness of
350 µm (c).

3.2. The Influence of Laser Power on Wall Thickness

Table 3 presents the measurement results of the wall thickness of thin-walled samples
with varying laser power. The samples (region II, Figure 2b) were printed according to
the nominal model of a single wall with a thickness of 270 µm in the printer’s slicer. The
samples were built up with variable power ranging from 200 W to 470 W while maintaining
a constant scanning speed of 1500 mm/s. The contouring was disabled.
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Table 3. The influence of the SLM process parameters on the accuracy of the AlSi10Mg thin-walled
elements with nominal thickness 270 µm.

№ Thickness, µm Laser Power, W Scanning Speed, mm/s

1 161 ± 9.31 200 1500
2 173.2 ± 5.89 230 1500
3 224.4 ± 4.71 260 1500
4 224.2 ± 9.17 290 1500
5 262.8 ± 7.37 320 1500
6 225.9 ± 15.97 350 1500
7 244.3 ± 9.21 380 1500
8 253.8 ± 6.67 410 1500
9 212.2 ± 7.30 440 1500

Figure 5 illustrates a monotonic increase in the thickness of samples from 161 ± 9.31 µm
to 262.8 ± 7.37 µm as the laser power increases. This can be attributed to the increasing
energy input of the laser radiation, which results in a larger thermal impact zone and an
increase in the width of the melt pool.
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Figure 5. Dependence of wall thickness on laser power.

The minimum wall thickness was achieved at a laser power of P = 200 W; however,
this mode did not ensure stable wall formation (Figure 6a). In contrast, increasing the
power by 30 W enabled the formation of a stable thin wall with a thickness of 173.2 µm.
Meanwhile, wall № 5, produced under the conditions of P = 320 W and V = 1500 mm/s,
exhibited a thickness of 262.8 µm, which is the closest to the specified value.

Figure 6 presents cross-sections of the walls, clearly indicating that the thinnest wall
is obtained at a laser power of 200 W and a scanning speed of 1500 mm/s (Figure 6a).
However, this configuration shows a noticeable lack of fusion evidenced by the periodic
interruption of the wall. The most favorable process parameters can be considered as
follows: P = 230 W and V = 1500 mm/s.
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3.3. The Investigation of the Minimum Possible Wall Thickness in a Single-Scan Strategy

The approaches considered for obtaining thin walls always used a 3D model with
a specified thickness as the initial parameter, and the reproduction of which is a task
for equipment. In this case, the focus is more on the printing accuracy rather than the
machine’s capability to achieve the minimum wall thickness. To address this, experiments
were conducted to grow thin walls using single-scanning without a predefined 3D model.
Solid parallelepipeds were modeled, and a scanning strategy was employed in which
the hatch distance was set to 4 mm, enabling scanning in a single direction (region III,
Figure 2b). The scanning angle was established along the length of the parallelepiped with
a rotation angle of 0 degrees, responsible for adjusting the scanning angle from layer to
layer. The scanning speed was set to 1500 mm/s, with the laser power varying from 200 W
to 470 W in increments of 30 W. The measurement results of the grown walls are presented
in Table 4.

Table 4. The dependence of the parameters of the SLM process on the thickness of the thin-walled
samples obtained with a single-scan strategy.

№ Thickness, µm Porosity, %vol. Power, W Scanning Speed, mm/s

1 Discontinuous
wall 200 1500

2 144.05 ± 12.97 1.07 230 1500
3 164.55 ± 10.12 0.10 260 1500
4 178.5 ± 12.33 0.75 290 1500
5 198.5 ± 7.91 0.54 320 1500
6 200 ± 9.17 1.38 340 1500
7 183 ± 8.22 0.95 350 1500
8 198 ± 12.65 1.32 380 1500
9 190.5 ± 12.65 1.35 410 1500
10 226.5 ± 11.39 0.68 440 1500
11 224 ± 17.39 2.29 470 1500

With an increase in power, the average wall thickness also increases. This is consistent
with the theoretical conclusions made in previous studies that simulated the melt pool
geometry as a function of power. As the size of the melt bath increases, the size of a single
bead grows; hence, the thickness of a built wall increases as well [34,35]. In addition,
following the findings in [34], at higher values, laser scanning velocity affects the melt pool
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size less than laser power. At 200 W, it was not possible to grow a continuous wall, and
at 230 W, the wall remained unstable along its entire length. The smallest thickness with
stable formation was achieved in the power range of 260–350 W, with the wall thickness in
the 320–350 W range showing the least deviation from the average value (Figure 7).
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Figure 7. Change in wall thickness and porosity of single-scan walls depending on laser power.

The porosity factor was taken as an additional criterion for optimization to select the
process parameters for thin-walled elements. The quantitative value of porosity in the
samples was assessed using “Image J” software ver. 1.53t by determining the porosity
fraction from the image of the cross-section (Table 4). The areas of various spherical pores
were measured with an optical microscope and its software. With an increase in power,
porosity is increased. The first noticeable manifestations of porosity can be seen in samples
4 and 5 (P = 290 and 320 W, respectively, Figure 8c,d). In sample 6 (340 W, Figure 8e),
the pore size increases, and the number of pores rises. High porosity values remain until
sample 11 (470 W, Figure 8j), where the average pore size decreases, but the quantity of
pores significantly increases.

Thus, despite there being the lowest deviation of wall thickness from the average
size at powers of 320–350 W, noticeable pores can be observed on the polished surface.
Taking into account the combination of the geometric characteristics of the samples and
the absence of visible melting defects as an optimization criterion, a rational mode can be
considered with laser power P = 260 W and scanning speed V = 1500 mm/s.

The study of the microstructure of wall samples obtained through single-pass scanning
revealed the presence of only one melt pool in a layer without any offset of its center,
indicating the correct execution of the scanning strategy. The samples clearly show discrete
layers, the boundaries of the melt pool (Figure 9a,b), and uniaxial dendrites elongated in
the direction of heat dissipation (Figure 9a,b). The depth of the melt pool in the sample
(see Figure 9) varies slightly, ranging from 11.97 µm to 36.68 µm. At high power (470 W),
the development of dendrites, including second-order dendrites, in various orientations is
observed, which is a consequence of overheating and a slowdown in the cooling rate (see
Figure 10).
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Figure 10. The microstructure of the wall obtained at a laser scanning speed of 1500 mm/s and a
laser power of 470 W.

3.4. Study of Cellular Structures

Based on the parametric analysis of the process for producing thin walls from the
alloy AlSi10Mg, the process parameters for the SLM of cellular structures were selected as
follows: a scanning speed of 1500 mm/s, laser power of 260 W, layer thickness of 30 µm,
laser spot diameter of 50 µm, and hatch distance of 0.15 mm. The sample, whose volume
was replaced by cellular structures, was a cube measuring 20 × 20 × 20 mm, utilizing
a Diamond lattice type (Figure 11). The elementary cell size was 5 × 5 × 5 mm, which,
according to [36], is sufficient to characterize mechanical properties. No significant defects
were detected in the microstructure of the sample. The grain size varies from submicron to
3–4 µm (Figure 12).
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×5000 (b).

The study of the geometric accuracy of the manufactured structures was conducted
using computer tomography at several sections located at 1.35 mm, 2.43 mm, and 8.84 mm
from the surface and comparing them with the digital model (Figure 11). In these sections,
the contour of the lattice structure is maximally straightened, forming straight lines for
ease of measurement.

In each of the cross-sections, the thickness of the walls on the digital model and the
printed samples was measured. As a result, the sample mean and confidence interval were
found at a confidence level of 0.95. The deviation of the actual thickness from the nominal
thickness was also determined as the difference between the wall thickness of the specimen
and the wall thickness of the model. The results are presented in Table 5 and Figure 13.
The contour of the model does not represent a straight line (due to the size of the unit
polygon in the model), making measurements difficult. The nominal thickness of the model
is 0.2 mm, and the deviation of the actual thickness in the first two sections is 0.015 mm
and 0.011 mm, while in the third, it is close to zero.

Table 5. The results of measuring the Diamond cellular structure in sections.

Section Distance from Top,
mm

Wall Thickness
(Tomography), mm

Wall Thickness (3D
Model), mm

Deviation of Actual
Thickness from Nominal, mm

1 1.35 0.215 ± 0.01 0.203 ± 0.006 0.12
2 2.43 0.211 ± 0.01 0.211 ± 0.008 0
3 8.84 0.200 ± 0.01 0.206 ± 0.004 0.006

The analysis of the obtained results shows that the process parameters used for grow-
ing bulk solid samples are not always optimal for printing thin elements due to differences
in heat dissipation processes and the geometry of the melt pool. After parametrization,
it was possible to establish process parameters for manufacturing thin-walled elements.
Considering the results of microstructure studies (presence of defects: pores and cracks)
and manufacturing accuracy, process parameters were selected that provide a wall thick-
ness of 0.2 mm. In addition, the process parameters ensured a microstructure with uniaxial
dendrites oriented in the direction of heat dissipation, which indicates a high cooling rate
during crystallization, while tomographic studies showed the minimal deviation of the
grown structure from the designed model.
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3.5. Mechanical Behavior of Cellular Structures Based on Minimum Surface Area

The compression testing of the Diamond lattice structure made of the AlSi10Mg
alloy was carried out on an Instron 5989 machine with video recording for each sample.
In the initial phase, when the graph shows an increase in stress (Figure 14) to the peak
values, elastic deformation occurs (Figure 14b). Each cell participates in load distribution,
maintaining the overall stiffness and strength of the entire structure. Further compression
that exceeds the critical load a cell can withstand leads to irreversible shape changes in cells,
causing the structure to lose its ability to recover after the load. The load-bearing capacity
of this row of cells sharply decreases, and the applied load leads to plastic deformation
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and failure, reflected on the graph as a movement toward the minimum (Figure 15c). The
graph’s reversal indicates the start of the next row of cells working and also signals a return
to elastic deformation. A new cell enters the process, restoring the functionality of the
structure until the critical load is once again reached, initiating a new cycle of failure.
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It is noteworthy that in the shell-type Diamond cellular structure, each row of cells
shows approximately the same load-bearing capacity, while the Diamond strut structure has
the maximum resistance to compression only in the first row of cells, which significantly
decreases after the formation of a shear band [37]. This band extends along the entire
sample at a 45-degree angle to the load direction, reducing the overall load-bearing capacity
of the structure. In the shell structure, failure occurs sequentially, starting from the top
row of cells. Various types of failures of cellular structures under compression are known:
the sequential collapse of cells in planes perpendicular to the direction of fabrication and
loading, the brittle failure of cell walls, crack propagation through the lattice, and diagonal
shear. In this case, the sequential collapse of cells in planes perpendicular to the direction
of fabrication and loading is observed.

Thus, the graph becomes not only a reflection of the behavior of individual cells but
also an illustration of the complex interaction between elastic and plastic deformations in
the cellular structure.

The mechanical characteristics of Diamond-type cellular structures obtained from
AlSi10Mg alloys using SLM are shown in Table 6.

Table 6. The results of mechanical tests.

Sample Young’s Modulus [GPa] Yield Strength [MPa] Stress Limit [MPa]

Diamond 26.351 8.063 8.947
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The analysis of the mechanical characteristics of Diamond-type lattices indicates
that this type of lattice, with a wall thickness of 0.2 mm, allows for the prevention of
structural failure at low deformation due to localized damage and crack propagation. This
is particularly important when considering the practical application of cellular structures
for specific components.

For comparison, the compression testing of a Dimond cellular structure with an
increased wall thickness of 0.6 mm was performed (Figure 16). The strain curve suggests
another failure mode that corresponds to the diagonal shear and brittle fracture of cell
walls. The formation of a diagonal shear band at an angle of 45◦ to the direction of loading
is clearly observed (Figure 17). Thus, failure mode depends on wall thickness.
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4. Conclusions

The present study investigated thin-walled elements and shell-like Diamond lattice
structures, made from the aluminum alloy AlSi10Mg using SLM technology. The conducted
research demonstrated that the most optimal parameters for the SLM of the AlSi10Mg
alloy, which ensure the minimal deviation from the specified size at a level of 5 µm and
a minimal porosity of 0.1% vol., are a laser power of P = 260 W and a scanning speed of
V = 1500 mm/s. It was observed that an increase in laser power results in a greater average
wall thickness and porosity.

Furthermore, the application of a single-pass scanning strategy established a parameter
window of 260–350 W, which provides the minimal thickness of the fused thin-walled
elements while maintaining a porosity not exceeding 1% vol., the absence of cracks and
lack of fusion, the reproducibility of the results, and the smallest deviation of thickness
from the average value. A minimum thickness of 164.55 ± 10.12 µm, with a porosity of
0.1% vol., was also achieved at a laser power of P = 260 W and V = 1500 mm/s.

To validate the results under established modes, Diamond-type cellular structures
with a cell size of 5 × 5 × 5 mm and a wall thickness of 0.2 mm and 0.6 mm were fabricated.
The produced structures conformed in shape, size, and accuracy to the 3D model, and no
microstructure defects were detected. Mechanical tests revealed that in this configuration
of the cellular structure with a wall thickness of 0.2 mm, no brittle failure occurs across the
entire construction under compression, resulting in the loss of load-bearing capacity. It was
also observed that increasing wall thickness to 0.6 mm changes the failure mode and leads
to brittle diagonal destruction.
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