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Abstract: Skin Conductance Response (SCR) is a physiological index associated with arous-
ing emotions. Previous studies have not explored the relationship between SCR signals
and emotions in situations where multiple emotions dynamically fluctuate. Moreover,
methods suitable for analyzing such conditions have not yet been established. In this
study, we recorded the temporal changes in multiple emotions as subjectively reported by
participants using the Temporal Dominance of Emotions (TDE) method. We then matched
these subjective reports with the evolving SCR signals through regression analysis. This
approach reveals which emotions contribute to increased SCR signals in prolonged, emo-
tionally charged scenarios, such as watching videos or playing video games. To validate
our method, we recorded SCR signals while participants played a video game. Participants
then performed the TDE task to recall their emotions while viewing recorded footage. This
study involved 20 participants. Our analysis showed that emotions such as excitement, ten-
sion, and frustration significantly covaried with the physiological signals. These arousing
emotions are known to evoke SCR, supporting the validity of our method. This approach
introduces a novel experimental methodology for comparing subjective reports and high-
responsive physiology signals in settings where multiple emotions dynamically change.

Keywords: emotion; skin conductance response; temporal dominance of emotions

1. Introduction
Emotions are closely linked to physiological activities [1,2]. Many studies on emotions

use physiological signals, including blood flow [3–5], electrocardiogram [6], electromyogra-
phy [7–9], electroencephalography [10–13], and electrodermal activity [10–13]. Additionally,
unconscious changes in facial expressions [2,14–16] can also be considered part of physio-
logical responses.

Skin Conductance Response (SCR) is the AC component of skin conductance level
and a highly responsive signal. SCR begins to increase 1–3 s after stimulus presentation
and reaches its peak about 1–3 s afterward [17]. SCR reflects electrical activity in the skin,
which varies with changes in sweating linked to arousal, and is associated with arousing
emotions such as fear and excitement [18,19]. Despite its quick responsiveness, the majority
of studies use skin conductance levels, the DC component, to compare physiological states
before and after stimulus presentation [1].

The skin conductance level and response are typically used to investigate changes in
bodily states in response to stimuli that can evoke certain types of emotions [1,12,13,20–25].
For example, Makioka et al. [13] examined the intensity of subjective fear caused by horror
videos by analyzing the peaks of SCR signals. Drummond [20] reported that SCRs were
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associated with anger triggered by provocative comments from others. Collet et al. [21]
observed significant changes in SCR when participants viewed facial expressions of anger.
In the study by Blechert et al. [22], SCR signals were evoked by anxiety conditioned to
electric shock stimuli. In many of these studies, SCR signals were analyzed in response
to emotional stimuli designed to elicit specific emotions, such as fear, anxiety, and anger.
Thus far, however, few studies have used SCR signals to investigate responses to prolonged
stimuli, such as films, that may evoke multiple types of emotions over time. One notable
exception is in the context of learning, where electrodermal activities are typically measured
to investigate physiological changes during a prolonged learning process lasting several to
tens of minutes [26].

During activities that take a certain amount of time, such as watching movies, listening
to music, or playing games, various emotions can arise. In games, emotional content and
timing change interactively. To evaluate human emotional changes in response to stimuli
that dynamically involve multiple emotions, the Temporal Dominance of Emotions (TDE)
method [27–29] can be used. The TDE method allows participants to record multiple
types of emotions that change on a second-by-second basis while experiencing a stimulus.
For example, in the experiment by Galmarini et al. [28], participants recorded emotional
changes while tasting coffee under two different music conditions and a silent condition.
In the experiment by Merlo et al. [29], emotional changes during hamburger consumption
were investigated in relation to differences in packaging color. The TDE method is a unique
approach that allows experimental participants to report when and which type of emotions
occur over time. However, no established method exists to directly connect TDE evaluations
with physiological indices. By utilizing SCR, which exhibits quick responsiveness, the
temporally evolving emotions recorded by the TDE method can be supported from the
perspective of bodily activities.

As the first step of this study, we propose a method to match the results of the TDE
method with time-series SCR signals. For this purpose, we focus on the waveform profile
of SCRs. Bach et al. [30] proposed a modeling method using exponential functions and a
Gaussian filter for SCR signals elicited by unpleasant electric stimuli. Furthermore, they
suggested that changes in SCRs caused by emotional stimuli presented successively, with
intervals of a few seconds, can be modeled as a linear combination of the SCR responses
to each individual stimulus [30,31]. In experiences such as watching movies, listening to
music, or playing games, emotionally charged scenes may continually occur within short
periods. A succeeding scene may start before the SCR activity related to the preceding
one fully converges. In such situations, the linear model proposed by Bach et al. can be
utilized [30–32].

This study proposes a method for dynamically matching subjectively reported emo-
tional changes with SCR signals during the experience of emotionally charged content. In
the experiment, participants, wearing an SCR measurement device, played a video game
designed to evoke multiple types of emotions. They reported the moments when their
emotions changed using the TDE method. Our method aligns TDE tasks with SCR signals
over time, with different emotions exerting varying impacts on the SCR. This analysis
statistically identifies the types of emotions reflected in SCR activities, offering a novel tool
for studies on emotional responses.

2. Methods
2.1. Ethical Statement

The protocol of this study was approved by Institutional Review Board, Hino Campus,
Tokyo Metropolitan University (H23-11).
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2.2. Apparatus

SCR measurements were performed using a dermal activity sensor (AP-U030m II,
Nihon Suntech, Osaka, Japan, active frequency range: 0.032–15 Hz) and an amplifier
(MaP1720CA, Nihon Suntech, Osaka, Japan). The skin conductance unit was controlled
by a data acquisition device (NI USB-6211, National Instrument Corp., Austin, TX, USA)
and MATLAB (R2023a, Mathworks Inc., Natick, MA, USA, DataAcquisitionToolbox) at the
control frequency of 1000 Hz.

The game was displayed on a 21-inch monitor positioned 60 cm from the participant’s
head, with sound delivered through headphones. Participants controlled the game avatar
using a handheld Xbox Wireless Controller (Microsoft Corp., Redmond, WA, USA).

2.3. Stimuli: Emotionally Evocative Gamification in Minecraft

We utilized a battle and exploration stage developed in Minecraft (Microsoft Corp.,
Redmond, WA, USA) as the emotionally evocative, interactive gaming content. Figure 1
shows gameplay images. Players were tasked with locating treasures hidden within a
dungeon, during which computer-controlled enemies would randomly appear and attack
the player’s avatar.

Figure 1. Minecraft game screen: (a,b) scenes where the player is attacking an enemy; (c) starting
point of the game; (d) scene where the player collects gems from a box.

Players collected diamonds from treasure chests placed on each floor of a small three-
story house to reach the top floor. Each floor contained 4–6 boxes with diamonds or
dummy items, the contents of which were randomly determined. When checking the
contents of the item boxes, players may experience emotions such as joy, relief, dominance,
or disappointment.

Computer-controlled enemies attacked and interrupted the player’s avatar inside
the dungeon, potentially evoking emotions such as excitement, tension, and anger when
attacked by hostile characters; anger, disappointment, and frustration when knocked down;
and dominance, relief, and joy when defeating them. Enemies appeared randomly when
the player was within a certain area of the dungeon, and multiple zombies could attack
the player’s avatar simultaneously. Players could defeat a zombie by attacking it 5–6 times.
The avatar’s life points decreased when attacked by enemies. If the avatar lost all its life
points, it was sent back to the starting point, located outside the house.

Similar stages were used in our earlier study [33]. The game’s difficulty, including the
number of enemies and their strength, was adjusted to ensure the content was emotionally
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evocative. This arrangement was determined by consensus among the authors and two of
their colleagues.

2.4. Temporal Dominance of Emotions (TDE) Method

We employed the Temporal Dominance of Emotions (TDE) method [28,34] to record
the temporal evolution of emotions. This method captures emotional changes in real time
on a second scale during stimuli exposure and has been primarily used in food science,
particularly during food and beverage tasting [28,35,36]. Recently, the TDE method has
been applied to record emotional experiences during video game play [33,37].

As shown in Figure 2, in the TDE task, participants sequentially selected emotional
attributes from a list displayed on the computer monitor. They selected the attribute
corresponding to the most dominant emotion at any given moment and selected a new
attribute whenever the dominant emotion changed. Once an attribute was selected, it
remained active until a different one was selected. At each moment, only one attribute
could be selected, and some attributes might not be chosen at all by the participants.

Figure 2. Interface of the TDE method. The attributes were presented in both English and Japanese.
The participant continuously selects the emotion that is most dominantly felt at each moment from a
list of attributes. The attribute becomes green while being selected. The button positions are shuffled
for each trial.

Ten emotional attributes were used: dominant, confused, relieved, angry, frustrated,
disappointed, joyful, tense, excited, and relaxed. The descriptions of these attributes for the
participants are provided in Table 1. Dominance was defined as the feeling of superiority
and confidence.

The process for selecting these emotional attributes was as follows. Each of the
five individuals, consisting of the authors and three of their colleagues, played the game
and then listed the emotions they felt during gameplay. Through consensus among the
five members, the emotional attributes were narrowed down to 30. Each person then
selected all the emotions they frequently experienced during gameplay in a check-all-
that-apply manner. Finally, by majority vote among the five members, the emotional
attributes were reduced to 10. It is noted that these five individuals did not participate in
the main experiment.
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Table 1. Ten emotional attributes and their descriptions used in the TDE method. Participants were
informed of these attributes prior to the experiment.

Attribute Description

Dominant I feel superior and confident.
Confused I am confused and do not know what to do.
Relieved I feel relieved and at peace.
Angry I feel angry or annoyed.

Frustrated I am frustrated and I cannot do what I want.
Disappointed I feel sad or down.

Joyful I am enjoying myself and having fun.
Tense I feel a sense of danger or urgency.

Excited I feel excited, surprised, and ready to fight.
Relaxed I feel relaxed or experienced no significant emotions.

Prior to the TDE evaluation, participants familiarized themselves with the emotional
attributes and their corresponding positions on the screen. If no significant emotional
response was felt, participants were encouraged to select the relaxation button.

2.5. Participants

A total of 20 university students (mean age: 23.7; 10 females), who were unaware of
the experiment’s purpose, participated in the study. Informed consent was obtained from
all participants prior to their involvement.

2.6. Procedures

Participants attached electrodes to the left inner foot to measure SCR and rested for
ten min. This area was used as a substitute for the fingers since the participants held the
controller with both hands [38–40]. They practiced the game controls for three min. After
practice, participants rested for 1–2 min until their SCR reached a steady state.

The task for participants was to collect as many diamonds as possible from treasure
boxes within the house in 150 s. Note that they could not complete the entire game within
this time period. Participants were instructed not to move their left foot during the gaming
experiment to prevent SCR fluctuations due to poor electrode–skin contact.

Immediately after the game, participants assessed their emotional changes over time
using the TDE method while referring to a recording of their gameplay. They were in-
structed to recall and report the emotions they experienced during gameplay, rather than
their current emotions while watching the video.

2.7. Data Preprocessing of SCR

SCR signals were downsampled from 1000 Hz to 100 Hz, and a low-pass filter with a
cutoff frequency of 1 Hz was applied.

3. Dynamic Matching Between TDE and SCR Waveforms
In this study, we describe the method for estimating SCR waveforms based on the

temporal changes in emotions assessed using the TDE method. Regression analysis was
employed for this purpose as it provides a direct and statistical means to evaluate the
relationship between SCR and the emotions reported by participants during the TDE
task. Although regression analysis may lack the flexibility and nonlinear capabilities of
certain machine learning algorithms, it offers a straightforward approach to analyzing
these relationships. For each measurement task—specifically, each gameplay session—the
regression analysis was conducted using the n emotions as explanatory variables.
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As shown in Figure 3a, the results evaluated by the TDE method are stored as a binary
function for each evaluation term:

ej(t) =

1 if attribute j is selected at time t,

0 otherwise.
(1)

This function takes the value of 1 when emotional attribute j (j ∈ {1, . . . , n}) is selected at
time t; otherwise, ej(t) = 0.
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Figure 3. Process of approximating the SCR waveforms based on the results of the TDE method:
(a) shows a binary waveform representing the participant’s attribute evaluation; (b) is (a) multiplied
by the forgetting curve; (c) is a Gaussian filter convolved with (b), multiplied by an optimized
regression coefficient; (d) shows the sum of (c) and the original SCR waveform.

Typically, SCR peaks 1–3 s after the onset of a sensory stimulus and decays to half the
peak value within another 1–3 s [17]. To model this decaying property of SCR, we used
an exponential function based on the model proposed by Bach et al. [30]. Let tk represent
the time when an attribute is selected. The attribute remains selected until time tk + dk,
where dk is the duration for which the attribute remains selected. As shown in Figure 3b,
the function takes its maximum value at tk and begins to decay afterward:

sj(t) =

exp (−λ(t − tk)) if tk < t < tk + dk,

0 otherwise.
(2)

We then applied a Gaussian filter N(t) to sj(t) in order to obtain a smooth profile of
the SCR signals [30].

N(t) =
1√
2πσ

exp
(
− t2

2σ2

)
(3)

xj(t) = sj(t)⊗ N(t) (4)

where σ determines the level of the low-pass filter, and xj(t) represents a typical profile of
SCR signals, which show a rapid increase to the peak followed by a slow decrease.

As shown in Figures 3c,d, the time-series SCR signal was then estimated using a linear
combination of xj(t), where the coefficients aj determine the impact of attribute j on the
SCR signal.

y(t) = a0 +
n

∑
i=j

ajxj(t + ∆t) (5)

Here, a0 represents the intercept, and n is the number of emotional attributes. The time lag
∆t accounts for the delay between the recorded SCR signals and the TDE records. This time
lag includes the SCR latency, which typically starts changing 1–3 s after the onset of the
stimulus [17], as well as the latency of the participant’s action to press a button. This linear
summation of SCR signals caused by different emotional scenes is based on the work of
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Bach et al. [30,31], where they suggested that SCR signals evoked by temporally successive
stimuli can be approximated by the linear summation of SCR signals corresponding to each
stimulus, accounting for the temporal interval between them.

The free parameters of the above formulas are a0, aj, λ, σ, and ∆t. These parameters
were determined by minimizing the sum of squares of the SCR estimation errors using
the fmincon function in MATLAB (R2023a, MathWorks Inc., Natick, MA, USA). The search
range for ∆t was set between −2 and 5 s.

The above computation was performed for each trial of every participant. Within
each trial, participants did not select all emotional attributes. Out of the 20 participants,
the number of participants who selected each attribute at least once was as follows: 19 for
dominant, 10 for confused, 18 for relieved, 13 for angry, 13 for frustrated, 8 for disappointed,
17 for joyful, 20 for tense, 19 for excited, and 13 for relaxed.

Further, for each attribute, any samples with regression coefficients aj greater or
smaller than two times the standard deviation above or below the mean were excluded
from the analysis as outliers. As a result, the final sample sizes for the coefficients of each
attribute were: 18 for dominant, 9 for confused, 17 for relieved, 12 for angry, 12 for frustrated,
7 for disappointed, 15 for joyful, 19 for tense, 18 for excited, and 12 for relaxed.

We then tested whether the mean value of the coefficients for each attribute was signif-
icantly different from 0 using two-tailed t-tests. Since the tests were repeated n = 10 times,
the resulting p-values were adjusted using the Benjamini–Hochberg (BH) method [41].

The Benjamini–Hochberg method is used to adjust p-values for controlling the false
discovery rate in multiple testing. This method allows for detecting significant results
with a higher probability than the Bonferroni or Holm methods while still controlling for
false positives. Following this approach, p-values were ranked in ascending order, and the
corrected p-values were calculated as follows:

m
i
× p (6)

where i is the rank of the p-value in ascending order, and m is the total number of tests,
which in this case was m = n = 10. We set the significance level at α = 0.05, and any
corrected p-values smaller than α were considered significant.

4. Results
The mean correlation coefficient between the predicted SCR and the original SCR

waveform was 0.57, with a standard error of 0.029. Figure 4 shows three examples for each
of the TDE record and observed and estimated SCRs. Figure 4a–c show the case for which
the correlation coefficient between the observation and estimation was 0.58, which is close
to the mean performance. Figure 4d–f show those for which the coefficient was the smallest:
0.34. Figure 4g–i show those for which the coefficient was the hightest: 0.80. The mean and
standard deviation of the free parameters λ, σ, and ∆t were 0.25 ± 0.12 s−1, 1.0 ± 0.06 s,
and 2.17 ± 1.90 s, respectively.

Table 2 presents the mean values and standard deviations of regression coefficients,
the values after excluding outliers, the p-values, the adjusted p-values using the BH
method, and Cohen’s d. Regarding Cohen’s d, values greater than 0.8 and 0.5 indicate
strong and moderate effects, respectively [42]. Figure 5 presents the means and stan-
dard errors of the regression coefficients for all emotional attributes, excluding outliers.
The mean value and standard error of the regression coefficient for each attribute were
as follows: 0.022 ± 0.0076 (p = 0.032) for dominant, 0.013 ± 0.0070 (p = 0.10)
for confused, 0.018 ± 0.0067 (p = 0.054) for relieved, 0.047 ± 0.020 (p = 0.060) for
angry, 0.027 ± 0.0080 (p = 0.030) for frustrated, 0.012 ± 0.0072 (p = 0.14) for disap-
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pointed, 0.0059 ± 0.0025 (p = 0.069) for joyful, 0.048 ± 0.015 (p = 0.040) for tense,
0.022 ± 0.0079 (p = 0.029) for excited, and 0.017 ± 0.0071 (p = 0.054) for relaxed.
The attributes that significantly differed between the mean regression coefficient and 0
were dominant, frustrated, tense, and excited.
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Figure 4. Examples of TDE tasks and predicted SCR waveforms. The top row (a–c) shows data
from a participant whose regression result was close to the average in terms of the correlation
coefficient. The middle row (d–f) represents data from a participant with the lowest correlation
coefficient. The bottom row (g–i) shows data from a participant with the highest correlation coefficient.
The left column (a,d,g) displays the results of the TDE tasks. The middle column (b,e,h) presents the
transformed SCR signals for each attribute. The color of the lines in the left and middle columns
represents the type of emotional attribute. The right column (c,f,i) compares the observed and
regressed SCR waveforms.
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Figure 5. Mean regression coefficients and standard errors for each emotional attribute in the
regressed SCR waveforms. * indicates adjusted p < 0.05. Outliers were excluded.

Table 2. Result of regression coefficient for predicting SCR waveforms based on the TDE tasks. Table
shows mean and standard error before and after outlier treatment, number of samples after outlier
treatment, p-values, corrected p-values, and Cohen’s d values. * denotes the value rejected by BH
method with p < 0.05.

Attribute Mean (SE)

Mean Value
After Outlier

Processing
(SE)

Sample
Number

Excluding
Outliers

p-Value
Before

Adjustment

Adjusted
p-Value (BH

Method)
Cohen’s d

Dominant 0.030 (0.011) 0.022 (0.0076) 18 0.0096 0.032 * 0.70
Confused 0.027 (0.015) 0.013 (0.0070) 9 0.094 0.10 0.67
Relieved 0.038 (0.021) 0.018 (0.0067) 17 0.088 0.054 0.67
Angry 0.065 (0.025) 0.047 (0.020) 12 0.036 0.060 0.71

Frustrated 0.059 (0.033) 0.027 (0.0080) 12 0.0059 0.030 * 1.02
Disappointed 0.028 (0.017) 0.012 (0.0072) 7 0.14 0.14 0.68

Joyful 0.035 (0.020) 0.0059 (0.0025) 15 0.035 0.069 0.66
Tense 0.066 (0.022) 0.048 (0.015) 19 0.0040 0.040 * 0.75

Excited 0.031 (0.011) 0.022 (0.0079) 18 0.012 0.029 * 0.68
Relaxed 0.023 (0.0087) 0.017 (0.0071) 12 0.038 0.054 0.80

5. Discussion
This study proposed a method to align temporally evolving emotions with dynamic

changes in SCR signals. The SCR signals predicted by the onset of ten different emotions
showed a moderate correlation with the observed SCR signals, yielding a mean correlation
coefficient of r = 0.57. As a preliminary effort to synchronize dynamically reported
emotions with SCR signals, we view these results as promising.

It was challenging to predict SCR waveforms from the results of the TDE task when
the changes in emotions reported in the TDE task were less frequent than changes in
SCR activity. In such cases, the SCR was actively changing, even though no change in
emotion was reported, and thus the SCR change could not be predicted. The main factor
for this phenomenon may be that participants were either unaware of or underestimated
the changes in their emotions. Further, SCR responds to light and sound [43], as well as
emotional stimuli [11,17], and spontaneous activity occurs approximately three–five times
per minute even in a resting state [1,17]. It is difficult to distinguish such emotionless SCR
activity from emotionally aroused activity. Therefore, it would be challenging to perfectly
predict SCR based on participant-reported emotions alone.
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Additionally, in the typical protocol of TDE methods, only the type of dominant
emotion is reported, while the intensity of the emotions is not. Hence, the strength of
emotions was not considered in our analysis. However, in reality, the strength of emotions
depends on the content of game events. Previous research indicates that the intensity of
emotional stimuli is related to SCR magnitude and amplitude [13,17,44]. In this study, the
analysis was limited in predictive accuracy because constant regression coefficients were
computed. To enhance the accuracy of predicting SCR activity from subjective evaluations,
we aim to explore a TDE method that simultaneously records both the type and intensity
of emotions. A similar approach has been implemented via the temporal dominance of
sensations method, from which the TDE method is derived [45]. However, such a modified
TDE method, incorporating intensity assessments, may require advanced training for
participants, as discussed in [45].

We found that subjectively reported emotions of excited, frustrated, tense, and dominant
were significantly connected to dynamic changes in the SCR signals. Frustrated, tense, and
excited represent arousing emotions [46,47], as shown in Figure 6, and it is reasonable that
these emotions would be dynamically linked to SCR signals. Dominant expresses a sense
of control or dominance over a situation and is not typically recognized as an arousing
emotion [46,47]. In our experiments, dominant was often selected when participants were
in an advantageous position during battle or after defeating enemies. At these moments,
participants were in a state of arousal, and dominant may have been associated with
SCR signals.

Valence

� Excited

Arousal

Angry �

Tense �

� Relieved

� Joyful
Confused

(Upset)

� Relaxed

Disappointed

(Sad) 
�

�

Dominant
�

�Frustrated 

Figure 6. Circumplex model of affect used in the subjective evaluation. Adapted from [33,46,47]. Blue
dots indicate attributes with significant effects on SCR. Joyful, confused, and relieved were not included
in [46,47] but are placed near attributes with similar meanings. Dominant represents the pronounced
attribute of the third axis.

The regression coefficients for both angry and joyful showed notable trends, with
unadjusted significance probabilities of 0.036 and 0.035, respectively. In our experimental
setup, some participants reported the feeling of anger immediately after their avatars were
defeated by enemies. However, during such moments, various other emotions—such as
tense, excited, or frustrated—may arise in rapid succession. Since the response time of SCR is
relatively slow, it may not capture rapid emotional shifts effectively. As a result, contrary to
expectations, angry was not clearly associated with changes in SCR signals.

The non-arousal attribute relaxed also showed a positive trend. Spontaneous SCRs are
activated several times per minute, even in the resting state [1,17]. In this study, relaxed
was recommended for the TDE task, especially when no emotion was aroused. In other
words, the significant trend of the regression coefficient for relaxed was most likely due to
spontaneous SCR activities.
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The attributes that had no effect on SCR activation were confused, disappointed, and
relieved. These emotions are neutral or negatively arousing (e.g., sleepy) [46]; thus, it is
reasonable that they did not increase the SCR signals, which are a measure of arousal.

The further development of the method proposed in this study will contribute to
the broader application of TDE methods in the field of emotion science. To date, TDE
methods have been primarily utilized in food science; however, they are gradually being
adopted in other fields [35,37]. We anticipate that TDE methods will become a common
approach across various domains for collecting subjective data from assessors. These
applications may include emotion evaluation during gameplay and human-to-human
communication. Researchers in these fields often prefer to measure physiological data
alongside subjective assessments to provide robust evidence and support comprehensive
discussions. The method developed in this study is compatible with TDE methods and
facilitates the association between subjective reports and physiological data. However, it
should be noted that since skin conductance is predominantly associated with arousing
emotions [1], this method may be less suitable for evaluating emotions related to relaxation.

Some limitations of the study are raised.
To match the subjective evaluation with the SCR waveform, the time difference ∆t

between the two was used as a free parameter. Although we used the same ∆t value within
a single trial, the time until the SCR begins to increase and the rate of increase depends on
the type of stimulus [48]. To improve the prediction accuracy of the SCR signal, it may be
necessary to set parameters for each emotion.

Regarding the characteristics of the offline TDE method [37], in which participants
view recorded footage of events and assess their emotions, further investigation is required.
This relatively new approach broadens the application of the TDE method to tasks where
the online version is not feasible. However, it remains under debate how accurately the
offline TDE method captures emotions during these tasks. In our study, some participants
reported minimal emotional changes, despite significant fluctuations in their SCR signals.
This discrepancy suggests that certain individuals may struggle with accurately recognizing
or reporting their own emotions. Therefore, developing effective training methods to better
familiarize participants with the TDE methodology is essential.

This study represents an initial, exploratory investigation into the dynamic relationship
between subjectively reported emotions and SCR signals. The relatively small sample
size of 20 participants limits the generalizability of the findings and precludes drawing
definitive conclusions. Logistical constraints, such as the time-intensive nature of SCR
measurements and TDE evaluations, posed challenges to including a larger and more
diverse participant pool. Despite these limitations, this study provides a foundation for
future research. Subsequent studies should aim to replicate and extend these findings with
larger and more diverse participant cohorts, leveraging streamlined experimental protocols
to enhance scalability and robustness.

6. Conclusions
SCR, with its superior responsiveness, is often used as a measure of arousal-based

emotions. However, its use has been limited in instances where multiple types of emotions
dynamically change. We investigated a method for the dynamic matching of SCR signals
to subjective changes in these emotions over time. For this objective, we modeled the SCR
waveforms of the reported temporal changes of ten types of emotion. Through use of the
TDE method, emotional changes were associated with dynamic changes in the SCR signal,
with a moderate level of correlation. In particular, arousing emotions had a significant
effect on changes in SCR. These emotions included excitement, tension, and frustration.
Hence, our first attempt could reasonably relate the temporal evolution of multiple types
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of emotion and SCR. A more advanced TDE method and consideration of SCR spontaneity
may make it possible to map emotions to SCR signals with higher precision. The results
of this study will clarify the relationship between physiological signals and emotions and
promote the study of dynamic changes in emotion under scenarios in which multiple types
of emotion can change.

Author Contributions: Conceptualization, Y.K. and S.O.; methodology, Y.K. and S.O.; software, Y.K.;
validation, Y.K. and S.O.; formal analysis, Y.K.; investigation, Y.K. and S.O.; resources, Y.K.; data
curation, Y.K.; writing—original draft preparation, Y.K. and S.O.; writing—review and editing, Y.K.
and S.O.; visualization, Y.K.; supervision, S.O.; project administration, S.O.; funding acquisition, S.O.
All authors have read and agreed to the published version of the manuscript.

Funding: This study was funded by MEXT Kakenhi (24K22310).

Institutional Review Board Statement: This study was approved by the Institutional Review Board,
Hino Campus, Tokyo Metropolitan University (H23-11).

Informed Consent Statement: Written informed consent was obtained from all participants involved
in this study.

Data Availability Statement: The data can be accessed by contacting the corresponding author,
provided the request aligns with an accountable purpose.

Acknowledgments: We acknowledge the use of ChatGPT 4o for assisting with language editing in
the preparation of this manuscript. The tool was used to rectify grammatical errors and refine the
text, but all content remain the responsibility of the authors.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Kreibig, S.D. Autonomic Nervous System Activity in Emotion: A Review. Biol. Psychol. 2010, 84, 394–421. [CrossRef] [PubMed]
2. Dzedzickis, A.; Kaklauskas, A.; Bucinskas, V. Human Emotion Recognition: Review of Sensors and Methods. Sensors 2020,

20, 592. [CrossRef] [PubMed]
3. Engert, V.; Merla, A.; Grant, J.A.; Cardone, D.; Tusche, A.; Singer, T. Exploring the Use of Thermal Infrared Imaging in Human

Stress Research. PLoS ONE 2014, 9, e90782. [CrossRef] [PubMed]
4. Mohamed, Y.; Ballardini, G.; Parreira, M.T.; Lemaignan, S.; Leite, I. Automatic Frustration Detection Using Thermal Imaging.

In Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction, Sapporo, Japan, 7–10 March 2022;
pp. 451–459.

5. Sorostinean, M.; Ferland, F.; Tapus, A. Reliable Stress Measurement Using Face Temperature Variation With a Thermal Camera
in Human-robot Interaction. In Proceedings of the International Conference on Humanoid Robots, Seoul, Republic of Korea,
3–5 November 2015; pp. 14–19.

6. Agrafioti, F.; Hatzinakos, D.; Anderson, A.K. ECG Pattern Analysis for Emotion Detection. IEEE Trans. Affect. Comput. 2011,
3, 102–115. [CrossRef]

7. Ikeda, Y.; Horie, R.; Sugaya, M. Estimating Emotion With Biological Information for Robot Interaction. Procedia Comput. Sci. 2017,
112, 1589–1600. [CrossRef]

8. Mokatren, L.S.; Ansari, R.; Cetin, A.E.; Leow, A.D.; Ajilore, O.A.; Klumpp, H.; Vural, F.T.Y. EEG classification by Factoring in
Sensor Spatial Configuration. IEEE Access 2021, 9, 19053–19065. [CrossRef]

9. Qing, C.; Qiao, R.; Xu, X.; Cheng, Y. Interpretable Emotion Recognition Using EEG Signals. IEEE Access 2019, 7, 94160–94170.
[CrossRef]

10. Boucsein, W. Electrodermal Activity; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012.
11. Sjouwerman, R.; Lonsdorf, T.B. Latency of Skin Conductance Responses Across Stimulus Modalities. Psychophysiology 2019,

56, e13307. [CrossRef]
12. Tara, I.; Okamoto, S.; Akiyama, Y.; Ozeki, H. Timing of Vibratory Stimuli to the Upper Body for Enhancing Fear and Excitement

of Audio-visual Content. Int. J. Affect. Eng. 2023, 22, 105–113. [CrossRef]
13. Makioka, T.; Okamoto, S. Vibratory Stimuli to the Thoracoabdominal Region Elicit Stronger Fear Responses Than Those to the

Fingers. Int. J. Affect. Eng. 2024, 23, 121–124. [CrossRef]

http://doi.org/10.1016/j.biopsycho.2010.03.010
http://www.ncbi.nlm.nih.gov/pubmed/20371374
http://dx.doi.org/10.3390/s20030592
http://www.ncbi.nlm.nih.gov/pubmed/31973140
http://dx.doi.org/10.1371/journal.pone.0090782
http://www.ncbi.nlm.nih.gov/pubmed/24675709
http://dx.doi.org/10.1109/T-AFFC.2011.28
http://dx.doi.org/10.1016/j.procs.2017.08.198
http://dx.doi.org/10.1109/ACCESS.2021.3054670
http://dx.doi.org/10.1109/ACCESS.2019.2928691
http://dx.doi.org/10.1111/psyp.13307
http://dx.doi.org/10.5057/ijae.IJAE-D-22-00024
http://dx.doi.org/10.5057/ijae.IJAE-D-23-00008


Sci 2025, 7, 11 13 of 14

14. Czerwinski, M.; Hernandez, J.; McDuff, D. Building an AI That Feels: AI Systems With Emotional Intelligence Could Learn Faster
and Be More Helpful. IEEE Spectrum 2021, 58, 32–38. [CrossRef]

15. Alonso-Martin, F.; Malfaz, M.; Sequeira, J.; Gorostiza, J.F.; Salichs, M.A. A Multimodal Emotion Detection System During
Human–Robot Interaction. Sensors 2013, 13, 15549–15581. [CrossRef] [PubMed]

16. Lisetti, C.L.; Nasoz, F. Using Noninvasive Wearable Computers to Recognize Human Emotions from Physiological Signals.
EURASIP J. Adv. Signal Process. 2004, 2004, 929414. [CrossRef]

17. Dawson, M.E.; Schell, A.M.; Filion, D.L. Handbook of Psychophysiology; The Electrodermal System; Cacioppo, J.T., Tassinary, L.G.,
Berntson, G.G., Ed.; Cambridge University Press: Cambridge, UK, 2017; pp. 217–243. [CrossRef]

18. Christopoulos, G.I.; Uy, M.A.; Yap, W.J. The Body and the Brain: Measuring Skin Conductance Responses to Understand the
Emotional Experience. Organ. Res. Methods 2019, 22, 394–420. [CrossRef]

19. Critchley, H.D.; Elliott, R.; Mathias, C.J.; Dolan, R.J. Neural Activity Relating to Generation and Representation of Galvanic Skin
Conductance Responses: A Functional Magnetic Resonance Imaging Study. J. Neurosci. 2000, 20, 3033–3040. [CrossRef]

20. Drummond, P.D. Facial Flushing During Provocation in Women. Psychophysiology 1999, 36, 325–332. [CrossRef]
21. Collet, C.; Vernet-Maury, E.; Delhomme, G.; Dittmar, A. Autonomic Nervous System Response Patterns Specificity to Basic

Emotions. J. Auton. Nerv. Syst. 1997, 62, 45–57. [CrossRef]
22. Blechert, J.; Lajtman, M.; Michael, T.; Margraf, J.; Wilhelm, F.H. Identifying Anxiety States Using Broad Sampling and Advanced

Processing of Peripheral Physiological Information. Biomed. Sci. Instrum. 2006, 42, 136–141.
23. Lemmens, P.; Crompvoets, F.; Brokken, D.; van den Eerenbeemd, J.; de Vries, G.J. A Body-conforming Tactile Jacket to Enrich

Movie Viewing. In Proceedings of the World Haptics 2009-Third Joint EuroHaptics Conference and Symposium on Haptic
Interfaces for Virtual Environment and Teleoperator Systems, Salt Lake City, UT, USA, 18–20 March 2009; pp. 7–12. [CrossRef]

24. Branje, C.; Nespoil, G.; Russo, F.; Fels, D.I. The Effect of Vibrotactile Stimulation on the Emotional Response to Horror Films.
Comput. Entertain. 2013, 11, 1–13. [CrossRef]

25. Westerink, J.H.D.M.; van den Broek, E.L.; Schut, M.H.; van Herk, J.; Tuinenbreijer, K. Computing Emotion Awareness Through
Galvanic Skin Response and Facial Electromyography. In Probing Experience; Springer: Chan, The Netherlands, 2008; pp. 149–162.
[CrossRef]

26. Horvers, A.; Tombeng, N.; Bosse, T.; Lazonder, A.W.; Molenaar, I. Detecting Emotions through Electrodermal Activity in Learning
Contexts: A Systematic Review. Sensors 2021, 21, 7869. [CrossRef]

27. Jager, G.; Schlich, P.; Tijssen, I.; Yao, J.; Visalli, M.; de Graaf, C.; Stieger, M. Temporal Dominance of Emotions: Measuring
Dynamics of Food-Related Emotions During Consumption. Food Qual. Prefer. 2014, 37, 87–99. [CrossRef]

28. Galmarini, M.; Silva Paz, R.; Enciso Choquehuanca, D.; Zamora, M.C.; Meszd, B. Impact of Music on the Dynamic Perception of
Coffee and Evoked Emotions Evaluated by Temporal Dominance of Sensations (TDS) and Emotions (TDE). Food Res. Int. 2021,
150, 110795. [CrossRef] [PubMed]

29. Merlo, T.C.; Soletti, I.; Saldana, E.; Menegali, B.S.; Martins, M.M.; Teixeira, A.C.B.; dos Santos Harada-Padermo, S.; Dargelio, M.D.;
Contreras-Castillo, C.J. Measuring Dynamics of Emotions Evoked by the Packaging Colour of Hamburgers Using Temporal
Dominance of Emotions (TDE). Food Res. Int. 2019, 124, 147–155. [CrossRef] [PubMed]

30. Bach, D.R.; Flandin, G.; Friston, K.J.; Dolan, R.J. Modelling Event-related Skin Conductance Responses. Int. J. Psychophysiol. 2010,
75, 349–356. [CrossRef]

31. Bach, D.R.; Friston, K.J. Model-based Analysis of Skin Conductance Responses: Towards Causal Models in Psychophysiology.
Psychophysiology 2013, 50, 15–22. [CrossRef]

32. Soshi, T.; Nagamine, M.; Fukuda, E.; Takeuchi, A. Modeling Skin Conductance Response Time Series during Consecutive Rapid
Decision-Making under Concurrent Temporal Pressure and Information Ambiguity. Brain Sci. 2021, 11, 1122. [CrossRef]

33. Kosuge, Y.; Okamoto, S. Emohance: Real-time Emotional Amplification in Gaming via Physiological Vibratory Feedback.
In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Sarawak, Malaysia, 6–10 October 2024.

34. Silva, A.P.; Voss, H.; van Zyl, H.; Hogg, T.; de Graaf, C.; Pintado, M.; Jager, G. Temporal Dominance of Sensations, Emotions, and
Temporal Liking Measured in a Bar for Two Similar Wines Using a Multi-sip Approach. J. Sens. Stud. 2018, 33, e12459. [CrossRef]

35. Kantono, K.; Hamid, N.; Shepherd, D.; Lin, Y.H.T.; Skiredj, S.; Carr, B.T. Emotional and Electrophysiological Measures Correlate
to Flavour Perception in the Presence of Music. Physiol. Behav. 2019, 199, 154–164. [CrossRef]

36. Shimaoka, N.; Okamoto, S.; Akiyama, Y.; Yamada, Y. Linking Temporal Dominance of Sensations for Primary-Sensory and
Multi-Sensory Attributes Using Canonical Correlation Analysis. Foods 2022, 11, 781. [CrossRef]

37. Yu, H.; Okamoto, S.; Kosuge, Y. Offline Temporal Dominance of Emotions Method Using Recorded Videos. In Proceedings of the
IEEE Global Conference on Consumer Electronics, Las Vegas, NV, USA, 6–8 January 2024; pp. 899–901.

38. Hossain, M.; Kong, Y.; Posada-Quintero, H.F.; Chon, K. Comparison of Electrodermal Activity from Multiple Body Locations
Based on Standard EDA Indices & Quality and Robustness Against Motion Artifact. Sensors 2022, 22, 3177. [CrossRef]

39. Van Dooren, M.; de Vries, J.J.; Janssen, J.H. Emotional Sweating Across the Body: Comparing 16 Different Skin Conductance
Measurement Locations. Physiol. Behav. 2012, 106, 298–304. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/MSPEC.2021.9423818
http://dx.doi.org/10.3390/s131115549
http://www.ncbi.nlm.nih.gov/pubmed/24240598
http://dx.doi.org/10.1155/S1110865704406192
http://dx.doi.org/10.1017/9781107415782.010
http://dx.doi.org/10.1177/1094428116681073
http://dx.doi.org/10.1523/JNEUROSCI.20-08-03033.2000
http://dx.doi.org/10.1017/S0048577299980344
http://dx.doi.org/10.1016/S0165-1838(96)00108-7
http://dx.doi.org/10.1109/WHC.2009.4810832
http://dx.doi.org/10.1145/2543698.2543703
http://dx.doi.org/10.1007/978-1-4020-6593-4_14
http://dx.doi.org/10.3390/s21237869
http://dx.doi.org/10.1016/j.foodqual.2014.04.010
http://dx.doi.org/10.1016/j.foodres.2021.110795
http://www.ncbi.nlm.nih.gov/pubmed/34865810
http://dx.doi.org/10.1016/j.foodres.2018.08.007
http://www.ncbi.nlm.nih.gov/pubmed/31466633
http://dx.doi.org/10.1016/j.ijpsycho.2010.01.005
http://dx.doi.org/10.1111/j.1469-8986.2012.01483.x
http://dx.doi.org/10.3390/brainsci11091122
http://dx.doi.org/10.1111/joss.12459
http://dx.doi.org/10.1016/j.physbeh.2018.11.012
http://dx.doi.org/10.3390/foods11060781
http://dx.doi.org/10.3390/s22093177
http://dx.doi.org/10.1016/j.physbeh.2012.01.020
http://www.ncbi.nlm.nih.gov/pubmed/22330325


Sci 2025, 7, 11 14 of 14

40. Boucsein, W.; Fowles, D.; Grimnes, S.; Ben-Shakhar, G.; Rroth, W.T.; Dawson, M.E.; Filion, D.L. Society for Psychophysiological
Research Ad Hoc Committee on Electrodermal Measures. Publication Recommendations for Electrodermal Measurements.
Psychophysiology 2012, 49, 1017–1034. [CrossRef] [PubMed]

41. Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R.
Stat. Soc. Ser. 1995, 57, 289–300. [CrossRef]

42. Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: Abingdon, Oxfordshire, UK, 1988.
43. Bari, D.S.; Rammoo, M.N.S.; Aldosky, H.Y.Y.; Jaqsi, M.K.; Martinsen, G. The five basic human senses evoke electrodermal activity.

Sensors 2023, 23, 8181. [CrossRef]
44. Bonnet, L.; Comte, A.; Tatu, L.; Millot, J.L.; Moulin, T.; Medeiros de Bustos, E. The role of the amygdala in the perception of

positive emotions: An “intensity detector”. Front. Behav. Neurosci. 2015, 9, 00178. [CrossRef]
45. Schlich, P. Temporal Dominance of Sensations (TDS): A new deal for temporal sensory analysis. Curr. Opin. Food Sci. 2017,

15, 38–42. [CrossRef]
46. Russell, J.A. A Circumplex Model of Affect. J. Personal. Soc. Psychol. 1980, 39, 1161–1178. [CrossRef]
47. Russell, J.A. Core Affect and the Psychological Construction of Emotion. Psychol. Rev. 2003, 110, 145–172. [CrossRef]
48. Kosuge, Y.; Makioka, T.; Okamoto, S.; Tara, I. Differences in dynamics of skin conductance responses caused by videos evoking

fear, family bonding, and funniness. IEEE Access 2024, 153596–153604. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1111/j.1469-8986.2012.01384.x
http://www.ncbi.nlm.nih.gov/pubmed/22680988
http://dx.doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://dx.doi.org/10.3390/s23198181
http://dx.doi.org/10.3389/fnbeh.2015.00178
http://dx.doi.org/10.1016/j.cofs.2017.05.003
http://dx.doi.org/10.1037/h0077714
http://dx.doi.org/10.1037/0033-295X.110.1.145
http://dx.doi.org/10.1109/ACCESS.2024.3481241.

	Introduction
	Methods
	Ethical Statement
	Apparatus
	Stimuli: Emotionally Evocative Gamification in Minecraft
	Temporal Dominance of Emotions (TDE) Method
	Participants
	Procedures
	Data Preprocessing of SCR

	Dynamic Matching Between TDE and SCR Waveforms
	Results
	Discussion
	Conclusions
	References

