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Abstract: The COVID-19 pandemic has greatly affected the mobility of individuals everywhere. This
has been especially true in China, where many restrictions, including lockdowns, have been widely
applied. This paper discusses the impact of the pandemic on walkability, an important factor in
promoting urban neighborhoods, in the main urban area of Xi’an, China, one of China’s four great
ancient capitals. Based on the street view data obtained before and after the pandemic, the paper
quantitatively compares changes in specific components of selected streetscapes through a deep
learning (DL) street view analysis. The aim is to identify the impact of the pandemic on walkability
and determine the elements that influence increased walkability in Xi’an’s historical area, using
a walkability evaluation model based on a regression analysis involving three factors (streetscape
components, walkability check scores, and street connectivity of space syntax for every image).
Although Xi’an’s urban structure did not change significantly, the pandemic has clearly impacted
street vitality, especially in terms of reducing pedestrian flow and commercial value. Based on study
results, the street environment has great room for improvement, especially in the city’s historical
blocks, by reconsidering safety measures to pedestrians and the important role of atmospheric aspects
on the streets.

Keywords: walkability; COVID-19; deep learning; street view; Xi’an

1. Introduction

Since its emergence in 2020, the COVID-19 pandemic has had a huge impact on the
health and well-being of people worldwide; regrettably, many countries have experienced a
two-wave (or even a three-wave) pattern in reported cases. Globally, there have been more
than 508 million COVID-19 cases, with the total number of deaths exceeding 6.2 million [1].
Furthermore, it seems clear that the pandemic will have a long-term impact on our indi-
vidual behaviors, lifestyles, mobility, and travel patterns such as commuting [2–6], all of
which will profoundly affect urban transport systems [5].

While strict containment measures have reduced the spread of the virus in China,
the activity and mobility of the people have been severely limited, resulting in a sharp
reduction in walking.

In today’s low-carbon development of cities, strengthening walking can contribute
to alleviating environmental pressures, relieving urban traffic congestion, maintaining
the ecological environment and improving air quality, as well as increasing urban safety
by reducing traffic accidents [6–10]. At the same time, walking has been recognized as
beneficial for disease prevention and having a positive influence on human health [11,12].
Notably, neighborhood walkability seems to even provide a kind of protection against the
spread of COVID-19; Oishi (2021) found that walkable neighborhoods had fewer COVID-19
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cases, ostensibly because it allows people to perform their daily chores in close proximity
to their homes [13].

Due to the dramatic changes it has induced in pedestrian flow, vehicular traffic,
and the operating hours of commercial enterprises, shops and stores, the pandemic has
unquestionably affected the urban walking environment. Thus, exploring the relationship
between the pandemic and an area’s walkability would seem a worthy effort.

A walkability index reflects the ability of individuals to perform errands on foot from
a given location to a destination. It is an important indicator for evaluating sustainable
urban mobility. Extensive prior research has developed various walkability assessment
indicators that can be measured quantitatively. The quantitative evaluation of walkability
is mainly based on GIS measurements ranging from macro-scale to neighborhood scale.
Indicators related to urban form characteristics (e.g., intersection density, street connectivity,
proximity to transit stops and urban amenities, and diversity of land use) are often used
for walkability assessment [14,15]. In a recent paper, Wang et al. (2022) discussed the
relationship between city-level walkability and COVID-19 infection in Massachusetts, USA,
and used commercially available walkability and transportation indices (regarding biking
and public transportation) to suggest that the communities in which we live can have a
profound effect on our health [5].

On a micro-scale, the measurement of street-level walkability has attracted increasing
attention; however, such measurement typically requires an extensive time for observations
and heavy onsite manual work [16–18]. Virtual audits using street view images provide a
new perspective for evaluating the micro-scale environment. In recent years, the effective-
ness and feasibility of a virtual method based on street view images has been confirmed in
a number of studies [19–21].

Virtual audits offer an alternative to field observation based on remote audits, as they
are more cost-efficient due to the elimination of travel time and provide greater safety for
roadside auditors. In a period such as the pandemic, application of this approach would
seem especially suitable due to the severally restricted mobility imposed by lockdowns and
the attendant social-distancing rules. Streetscape structure can also be well probed using
the functions of various virtual tools, such as building height-to-road ratio, road width,
and the proportion of various streetscape structures.

Quantifying the different street scene characteristics of walking routes within selected
urban areas is particularly challenging for any study. To address this issue, Yin and Wang
(2016) introduced a deep learning (DL) approach based on street view images (DeepLab
models) in order to detect the various segments (elements) that make up a streetscape [22].
Nguyen (2020) utilized the largest collection of Google Street View images used for public
health research to characterize neighborhood environments and found built environment
characteristics can help establish the community-level COVID-19 risk [23]. In addition to
such studies that are focused on the influence of landscape elements on health outcomes,
Nagata et al. (2019) examined the relationship between the complex elements of street
views and walkability [24].

As regards the subjective evaluation of walkability (the target variable) in the model,
which specifically refers to the complex elements of street landscape in a subjective walka-
bility evaluation, previous audit tools such as WASABE [25], PEDS [26], NEWS [27], and
MAPSmini [28] have incorporated the various aspects of micro-scale streetscape and the
perceptions of people. Hanibuchi (2019) created a walkability checklist with a special focus
on Asian contexts (e.g., fence/stall as an additional assessment indicator) [29]. For our
study, we selected a limited number of items used often in the development of previous
audit tools, covering various aspects of micro-scale streetscape and characteristic contents
related to Xi’an and considered suitable to examining elements corresponding to image
segmentation analysis.

Xi’an, China, is an ancient cultural center whose main urban areas have developed
around a grid, with a chess-board-like network of roads. The Ming City (Old City/Main
urban area) District is the center of Xi’an, especially the historic and cultural blocks of
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Beiyuan Gate and Sanxue Street, which have inherited and preserved the best historical
characteristics of the region and streets. COVID-19 brought significant changes to both the
ordinary areas (the northeast and southwest areas of the main urban area) and the historical
areas of the old city (the northeast and southwest areas of the main urban area where
predominantly local people are living) and the historical areas of the old city where many
tourists visit. Because of China’s zero COVID-19 strategy, the impact of the pandemic has
been particularly prominent on walkability. Prior to the outbreak of COVID-19, the streets
of Xi’an’s historic centers were alive with bustling crowds of people and stores on both sides
of the street. However, during the pandemic, due to the restrictions on individual mobility
and the preference of people for staying at home, the walking environment has changed
substantially, making pandemic-related factors a very important element in evaluating
walkability in future research.

The research mainly focuses on the impact of the COVID-19 pandemic on walkability,
specifically in a built environment consisting of street scene elements, in order to identify
the impact of the pandemic on walking patterns in Xi’an’s historic centers. It provides the
basis for considering the pandemic situation as another significant measurement index for
walkability evaluation. This paper fills the research gap of the impact of the COVID-19
pandemic on the walking environment by comparing the walkability before and after
the pandemic based on a multi-method approach. Furthermore, we aim to overcome the
current limitations of measuring street-level walkability which have heavily replied on
observations and onsite manual work, through virtual remote auditing. Based on the
street view data before and after the pandemic, we quantitatively compare changes in
specific components through DL street view analysis and conduct a walkability assessment
by applying our checklist to the two periods. We then construct a walkability model
using regression analysis and analyze the main influencing factors in order to put forward
constructive suggestions for the creation of a pedestrian city in the post-pandemic era
of Xi’an.

2. Materials and Methods
2.1. Street View Selection and Download

The main urban area of Xi’an was selected as the research object of the study. It is
the older part of the urban area within the city wall. The selected area of 1.5 × 2.5 square
kilometers, which includes the Beiyuan Gate and Sanxue Street historical blocks, is shown
in Figure 1. The three-step selection procedure is described below:
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1. Use street intersections as the selection points: All the intersections of the research
area according to longitude and latitude were confirmed in ArcGIS, with some streets
having several intersections. In our street view dataset, each intersection captured
street view images from four directions (0, 90, 180, and 270 degrees).

2. Select the same two to three street views with the same angle for each street before
and after the pandemic (The outbreak in Xi’an began in January 2020. The two
selected periods are 2019, before the outbreak, and 2022, after.) In order to ensure the
consistency of the street visual angle of the downloaded pictures, according to the
selection consistency principle, the horizontal direction of the street was determined
by longitude and latitude, and the vertical focus was placed in the middle, composed
of the end (vanishing point) of the road.

3. Download the street view image using API (Application Programming Interface) data
from Baidu (photo taken in February 2019) and field survey by co-researchers (photo
taken in March 2022). The same street views of the two periods (before and after the
pandemic) were selected for preparation. In total, the same 92 street views were used
for each of the two periods in the historical blocks and the ordinary blocks of the main
urban area, and for each selected point, every two street view images with the same
angle of view and size for comparison (Figure 2). It should be noted that our study
is based on the examination of those photos which were taken in one season of each
period (before and after the pandemic). Both are in the winter and early spring time
when the pedestrian flow on the studied streets is relatively less compared to that in
the summer and autumn seasons. To overcome this limitation, longitudinal studies at
different time periods should be considered for future investigation.
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2.2. Local Integration of Street and Walkability Evaluation Score of Selected Points

The selected target points and street views were examined using accessibility indictors
based on space syntax and a walkability audit tool for establishing subjective walkability.
Firstly, based on the macro indicators of space syntax, we selected two street physical
attribute values related to walkability, integration (local) and connectivity, based on axial
analysis from Hillier’s space syntax theory. Axial analysis is a way of analyzing spatial
layouts represented by an axial map. In order to analyze the configuration layout of each
city, we translated the actual spatial structure into an axial map, which is the least set of
longest lines drawn tangent to vertices that can see each other [30].

The integration value essentially describes the “accessibility” of an element in the
research area network. Integration values of the axial lines at radius 3 (root plus two
topological steps from the root) can be used to represent a localized picture of integration
(hereafter, Int-R3), which has been related to walkability in several previous studies [31–33].
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Secondly, for our subjective walkability evaluation, through a comprehensive review
of existing audit tools, we selected a limited number of items that: (1) have often been
used in previous audit tools such as WASABE, PEDS, and MAPSmini [25,26,28,29,34],
(2) cover various aspects of micro-scale streetscape and the characteristic contents related to
Asian elements [35], and (3) were considered suitable for elements corresponding to image
segmentation analysis.

The basic indicators for evaluating micro-scale walkability, which include aspects of
physical conditions, safety, and the aesthetics of the streets and are basically consistent
with the themes of the 91-item Environment in Asia Scan Tool—Hong Kong (EAST-HK),
such as the presence of wide sidewalks, heavy traffic, crosswalks, commercial stores, street
trees, attractive streetscape, and abandoned buildings, were included in our checklist [34].
East-Asian-specific elements associated with the ultra-dense cities of East Asia, such as
crowdedness and the presence of man-made obstacles to walking, such as cars or motor-
bikes parked on sidewalks [34], were also included. To these, we added characteristics
related to historic cities such as tourist shops and picturesque spots. Finally, we developed a
simple checklist and identified 11 micro-scale indices to measure neighborhood walkability.
These were divided into three main categories: walking environment (Q1–4), safety (Q5–7),
and aesthetic and commercial value (Q8–11).

Taking the street view pictures in the DL as the evaluation object, the scores of all
selected points before and after the pandemic were counted and evaluated. The walkability
evaluation score (hereafter, WES) used in the study is based on the walkability checklist
(Table 1), and ranged from 11 to 22.

Table 1. Walkability checklist.

ITEM CHECK SCORE EXPLAIN

Walking
environment

Q1 Sidewalk width Positive
factor

People could pass each other
smoothly, or about 2 m or more

Q2 Obstructions Negative
factor

Surface irregularities, signboard, stall,
dustbin, and so on

Q3 Cars parked in the street Negative
factor

A car without a driver on the street,
regardless of traffic violation

Q4 Motorcycle (or bicycles)
parked in the street

Negative
factor

A vehicle without a driver on the
street, parked casually

Safety

Q5 Heavy vehicular traffic Negative
factor

Vehicles go by frequently
or occasionally

Q6 Heavy pedestrian traffic Positive
factor

Pedestrians go by frequently
or occasionally

Q7 Crosswalk/crossroad Positive
factor

Including those at the start or end
points of what?

Aesthetic and
commercial

value

Q8
Streetscape

(attractive/well-known
tourist places)

Positive
factor

Subjective evaluation;
beautiful/interesting/comfortable

or not

Q9 Many commercial stores Positive
factor

There are more than 50% commercial
stores on both sides

Q10 Trees along the street Positive
factor

Only those planted on the street,
excluding those planted in residential

and commercial areas

Q11 Abandoned/under
construction buildings

Negative
factor

Buildings such as vacant, abandoned
or under construction buildings

Walkability Score:
Positive factor is applicable: assign 2 points
Negative factor is applicable: assign 1 point
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The WES assessments in Xi’an were performed by five evaluation auditors: 3 males
and 2 females in their twenties and thirties who were students or members of the staff at
Osaka University or the Xi’an University of Architecture and Technology. Each auditor
made a complete evaluation following standard instructions given by researchers. The
image evaluations and field investigations were conducted on all selected points (Figure 2)
to determine the score of each item of each street view. Ultimately, the average values for all
the auditors were determined. The auditors were professionals with a related knowledge
background in the subject area concerned. During the assessment, the five selected auditors
independently conducted virtual audits of all the street view pictures, using the checklist
(Table 1). The research team provided the auditors with clear instructions for the scoring
system of the walkability checklist, and addressed issues the auditors raised (for example,
determination of obstacles and crowding degree of people and vehicles). The assessment
was completed in 25–30 March, and 5–10 April of 2022, and it required in total 10 days.
However, it should be acknowledged that the selection of the auditor team was rather
based on convenience sampling since the availability of the auditors was limited to our
colleagues when the study was conducted.

2.3. Street View Segments Recognition

To detect the component elements of each intersection’s streetscape, we used DeepLab
v3+ [36], a deep learning model developed for semantic image segmentation. Many
semantic pixel-width image segmentation methods based on convolutional networks have
emerged recently, such as YOLO, ImageNet, SegNet, DeepLab, and so on. DeepLab is
considered as highly accurate and easily accessible [37,38].

DeepLab v3+ architecture characteristically adopts atrous convolution in encoder–
decoder networks [36]; in this encoder–decoder structure, the resolution of the extracted
encoder features can be arbitrarily controlled by atrous convolution to compromise between
accuracy and running time.

In this study, we used the top-performing DeepLab V3+ model called xception71_dpc_
cityscapes_trainval, with a Cityscapes mIOU (Model evaluation index: Mean Intersection
over Union) of 82.66%. The DeepLab v3+ model was trained on streetscapes using the
Cityscapes Dataset [39,40], which is an image dataset with an annotation of streetscape
segments. The annotations are defined for 30 classes based on 7 groups and are recognized
as streetscape components, such as human, vehicle, ground, building, infrastructure, nature,
and sky. The dataset provides 19 classes for training (road, sidewalk, building, wall, fence,
pole, traffic light, traffic sign, vegetation, terrain, sky, person, rider, car, truck, bus, train,
motorcycle, and bicycle); the other 11 classes were excluded from the dataset due to rare
segments appearing in the streetscapes [39]. Finally, by identifying the pixels in each
street view element classified into one of the 19 segments, the percentages of segments
(hereafter, PSG) for each street view images can be calculated. The average value of the
overall extraction percentage for every image also reached 91.6% and 90.9% in 2019 and
2022. When a single image had large deviations, we can improve it by adjusting the color
tolerance of extracted elements.

The specific steps and methods for using the models were as follows: firstly, load
the latest version of the pretrained DeepLab model for feature extraction; then, load the
colormap from the Cityscapes dataset. Next, add colors to the various labels, such as
“orange” for person, “green” for bicycle, etc. Finally, visualize the image and add a color
overlay to the different regions.

Based on the above steps, we completed the image segmentation of all the street scenes
with the same virtual angle at 92 selected points in Xi’an before and after the COVID-19
pandemic. An example of the street view pictures before and after the COVID-19 outbreak
is shown in Figures 3 and 4.
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2.4. Multiple Linear Regression Analysis
2.4.1. Create Model

We used a multiple regressive model in SPSS to find correlation between the subjective
walkability evaluation scores, street view segments, and street physical attribute values
of space syntax. The results of the walkability evaluation score of the selected points
(Table 1) were taken as the object variable. The other two types of indicators were used as
explanatory variables—in particular, the percentage of each street view-segmented element
and the two street attribute values (Int-R3 and connectivity) obtained by the axial analysis
of space syntax. In order to select influential variables to build our regression model, we
used the step-wise regression method to screen variables from the list of many possible
independent variables so as to obtain the optimal regression equation.

2.4.2. Exclude Collinearity

For each explanatory variable, we checked for multicollinearity, since there may be
multicollinearity among the explanatory variables that could adversely affect the estimation
accuracy of the model. Using the Variance Inflation Factor (VIF) to assess multicollinearity,
if we found that the value of the VIF for a variable was greater than 10, then the presence
or absence of the effect of that variable was re-examined.

3. Results and Discussion
3.1. Walkability Evaluation Score and Street Physical Attribute Values of the Selected Points
3.1.1. Two Macro Street Physical Attribute Values by Space Syntax

As can be seen from the axis diagram, the points of Beiyuanmen historical block in the
northwest corner has a relatively high degree of Int-R3 (3.37); however, the average value
of Int-R3 (2.66) in the historical block of Sanxue Street in the southeast corner is lower than
that in the ordinary (residential) areas (3.02). Thus, it can be said that the distribution of
Int-R3 within the old city is not uniform (Figure 5). Notably, the connectivity and Int-R3 for
the two periods show the same characteristics. In Xi’an, the average connectivity of the two
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historical blocks (Beiyuan Gate and Sanxue Street) was 14.59 and 8.12, respectively, and the
average value for the southwestern and northeastern ordinary areas was 9.71 (Figure 6).
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Figure 6. Connectivity of points based on axial map before and after the pandemic.

On the whole, the overall integration consistency of Xi’an’s streets is not strong. In
particular, Xi’an’s Int-R3 is not uniform inside the old city wall.

3.1.2. Walkability Evaluation Score (WES) of Selected Points before and after COVID-19

Based on the subjective walkability scores (WES) submitted by the auditors (Table 2),
the total average score of subjective walkability in 2019 (17.81) was higher than that in
2022 (17.42), especially in the historical areas. There were large changes in obstructions
and motor vehicle parking (as related to the walking environment aspect), vehicle and
pedestrian traffic (the safety aspect), and attractive sites and commercial stores (the aesthetic
and commercial value aspect). Among these, the obstacles and vehicular traffic scores
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improved (from 1.45 to 1.64, and from 1.78 to 2.00, respectively); however, the scores for
pedestrian traffic, attractive sites, and, especially, commercial stores decreased significantly
(1.24 to 1.07; 1.35 to 1.20; 1.80 to 1.47).

Table 2. Average Scores of Walkability checklist.

Walking Environment, Q1–4 Safety, Q5–7 Aesthetic and Commercial Value, Q8–11

Total
ScoreSidewalk

Wide
Obstru-
ctions

Cars
Parked

Electric
Vehicles/
Bicycles
(Parked)

Vehicular
Traffic

(Heavy)

Pedestrian
Traffic

(Heavy)

Crosswalk/
Cross-
road

Attractive/
Well-

Known

Comm-
ercial
Stores

Veget-
ation

Abandoned/
Under-

Construction
Buildings

Xi’an
(2019) 1.8372 1.4483 1.6180 1.7791 1.7791 1.2442 1.0698 1.3488 1.8023 1.9070 1.9767 17.8105

Xi’an
(2022) 1.8372 1.6437 1.6552 1.6322 1.9884 1.0698 1.0930 1.1977 1.4651 1.8837 1.9535 17.4194

Ordinary
block
(2019)

1.8250 1.6585 1.3953 1.8000 1.8250 1.0000 1.0000 1.1750 1.6250 1.9000 1.9750 17.1789

Ordinary
block
(2022)

1.8250 1.6098 1.4878 1.7561 1.9750 1.0000 1.0000 1.1000 1.2500 1.8750 1.9250 16.8037

Historical
block
(2019)

1.8478 1.2609 1.8085 1.7609 1.7391 1.4565 1.1500 1.5000 1.9565 1.9130 1.9783 18.3716

Historical
block
(2022)

1.8478 1.6739 1.8043 1.5217 2.0000 1.1304 1.2000 1.2826 1.6522 1.8913 1.9783 17.9826

In addition, the evaluation scores for the two studied periods showed their own char-
acteristics in these three categories (walking environment, safety, aesthetic and commercial
value). In 2019, the WES for sidewalk width (walking environment) in the historical areas
(1.85) was similar to that in the ordinary residential areas (1.83), with more obstructions
(1.26 to 1.66), but fewer cars parked (1.81 to 1.40) in the latter. In terms of safety, the
vehicular traffic situation in the ordinary area was better than that in the historical area
(1.82 vs. 1.74), but the score for pedestrian traffic was much worse. As regards the aesthetic
and commercial aspects, owing to a large number of tourists, the average score for com-
merce and attraction in the historical blocks is much higher than that for the ordinary areas
(1.96 to 1.63); both areas had few construction sites and a similar vegetation situation.

In 2022, the walking environment scores in the historical blocks, except for vehi-
cles/bicycles parked, were worse than those in the ordinary areas (1.76 to 1.52). While in
terms of safety, the three indicators of vehicular traffic flow, pedestrian flow, and crossroad
were better in the historical area than in the ordinary residential areas (2.0 to 1.98, 1.13 to
1.0, and 1.2 to 1.0). Moreover, in terms of the attraction and commercial store indicators, the
historical blocks continued to be evaluated better than the ordinary blocks after COVID-19
(1.28 to 1.1, and 1.65 to 1.25).

Generally speaking, our results showed that the walkability scores assessed in 2022
were superior to those in 2019 in terms of walking environment (with fewer obstacles and
parked motor vehicles) and safety (as related to vehicle and pedestrian flow). However, the
total WES in 2022 is lower than that in 2019 due to the impact of the pandemic on street
vitality, both in terms of street aesthetic and commercial values. The effect of COVID-19 on
the vitality and livability of streets, especially in the historical blocks, is apparent.

3.2. Overall Evaluation of Street View Segments Recognition in Xi’an before and after COVID-19

As can be seen in Table 3, which shows the average PSG of all the selected points
in Xi’an before and after COVID-19, the urban structure has not changed much over the
past three years. The top three segments composing the street scenes in Xi’an in 2019 are
“building”, “road”, and “vegetation”. The segment of “building” has the largest proportion,
accounting for 40.00% of the studied street views. The second largest is “vegetation”, at
22.08%, followed by “road”, at 12.68%. In 2022, “building” still appeared to be the largest
proportion (40.56%). The next largest is “vegetation” (18.34%), followed by “road” (16.47%).
The proportion of “building” in 2022 is similar to that in 2019.
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Table 3. Average value of PSG of each class for all points in Xi’an before and after COVID-19.

Group Class (Segment) Xi’an 2019
before Pandemic (%)

Xi’an 2022
after Pandemic (%)

Ground
road 12.679 16.467
sidewalk 3.379 4.837

Building building 39.998 40.563
wall 2.370 0.863

Infrastructure

fence/stall 1.637 2.764
pole 0.623 0.674
traffic light 0.220 0.160
sign 0.637 0.432

Nature vegetation 22.081 18.346
Sky sky 2.529 2.792

Human
person 4.333 1.867
rider 0.671 0.622

Vehicle
car 6.629 3.569
motorcycle 1.157 1.504
bicycle 0.498 0.440

The proportion of the presence of a “person” in Xi’an is 4.3% before the pandemic,
much higher than the corresponding 1.87% in 2022. Considering the reduction in the
pedestrian proportion from 2019 to 2022, the proportion of Xi’an’s “road” and “sidewalk”
does not change much, and the street layout remains dominated by street trees on both
sides of the street, which still accounts for a large proportion. As the road network has not
changed, the proportion of “road” and “building” has not changed noticeably.

In Xi’an, because the historical blocks are a tourist destination, there are many snack
bars and signboards on both sides of the street, attracting large numbers of tourists. Mobile
stalls are also found continuously in the historical blocks. However, due to the impact
of COVID-19, the number of tourists has fallen markedly, and some shops have been
temporarily closed, resulting in a reduction of store signs and a decrease in the continuity
of shops, especially in the historical blocks (Figures 7 and 8).
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Figure 7. PSG of building-to-sign ratio for selected points before and after the pandemic.

The roads in the historical blocks are relatively narrow, and most of the merged roads
(roads often have been designated for pedestrians) in Xi’an are pedestrianized. This is
regarded as a tourist attraction, attracting both persons and motorcycles. Because many
locals and tourists come into the historic center, the main travel mode is walking. There are
also large numbers of motorcycles used both for sightseeing and goods transport. Ordinary
cars are inconvenient here and are generally restricted from entering the historic center.
Notably, after the pandemic, although there are fewer people, the proportion of motorcycles
has not decreased, and local residents still use the more convenient motorcycles rather than
bicycles in their daily life (Figures 9 and 10). In Xi’an, there are only a few zebra crossings
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in the historical blocks, and the proportion of electric poles and light boards is small due to
the blockage caused by trees.
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Figure 8. PSG of building-to-sign ratio in the historical areas.
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Figure 9. PSG of person and motorcycle.

Urban Sci. 2022, 6, x FOR PEER REVIEW 14 of 23 
 

are inconvenient here and are generally restricted from entering the historic center. Notably, after the pandemic, 

although there are fewer people, the proportion of motorcycles has not decreased, and local residents still use the 

more convenient motorcycles rather than bicycles in their daily life (Figures 9 and 10). In Xi’an, there are only a 

few zebra crossings in the historical blocks, and the proportion of electric poles and light boards is small due to the 

blockage caused by trees. 

 

Figure 9. PSG of person and motorcycle. 

 

Figure 10. PSG of person and motorcycle in historical areas. 

3.3. Regression Analysis for Model Construction and Evaluation of Influencing Factors 

3.3.1. Evaluation of the Model 

Based on the results from image segmentation by DL, the walkability evaluation score (WES) on every picture, and 

the street attribute values calculated by Space Syntax, we created a walkability evaluation system using regression 

analysis. The model we developed was used to evaluate the respective explanatory variables of the system and to 

ultimately compare the changes in walkability in Xi’an before and after the COVID-19 pandemic. In the following, 

an evaluation of the model and its significant explanatory variables is discussed. 

Table 4 shows the coefficients of determination of the model for Xi’an. As can be seen in the table, the R squares 

of the two regression models before and after the COVID-19 pandemic are 0.622 and 0.510, respectively. The F 

values (Table 5) were 7.41 for the 2019 model (significant at the 1% level) and 4.686 for the 2022 model 

0

2

4

6

8

10

12

14

16

0 10 20 30 40

2
0

2
2

2019 

PSG of Person (%)

PSG of Motorcycle (%)

0

2

4

6

8

10

12

14

16

0 10 20 30 40

2
0

2
2

 (
h
is

to
ri

ca
l 

ar
ea

s)

2019 (historical areas)

PSG of Person (%)

PSG of Motorcycle (%)

Figure 10. PSG of person and motorcycle in historical areas.

3.3. Regression Analysis for Model Construction and Evaluation of Influencing Factors
3.3.1. Evaluation of the Model

Based on the results from image segmentation by DL, the walkability evaluation score
(WES) on every picture, and the street attribute values calculated by Space Syntax, we
created a walkability evaluation system using regression analysis. The model we developed
was used to evaluate the respective explanatory variables of the system and to ultimately
compare the changes in walkability in Xi’an before and after the COVID-19 pandemic.
In the following, an evaluation of the model and its significant explanatory variables
is discussed.

Table 4 shows the coefficients of determination of the model for Xi’an. As can be seen
in the table, the R squares of the two regression models before and after the COVID-19
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pandemic are 0.622 and 0.510, respectively. The F values (Table 5) were 7.41 for the 2019
model (significant at the 1% level) and 4.686 for the 2022 model (significant at the 5% level).
The suitability test of the model is mainly based on residual analysis and from the residual
normal probability plots, it can be seen that the residual conforms to the normal distribution
(Figure 11).

Table 4. Coefficients of Determination.

2019

Model Summary b

Model R R Square Adjusted R Square Std. Error of the Estimate
1 0.789 a 0.622 0.502 1.4276575

a. Predictors: (Constant), SMEAN(Bicycle), SMEAN(Sidewalk), SMEAN(Road), SMEAN(Vegetation), SMEAN(Sign), SMEAN(Car),
SMEAN(Connectivity), SMEAN(Motorcycle), SMEAN(Sky), SMEAN(Fence_stand), SMEAN(Pole), SMEAN(Person),

SMEAN(Rider), SMEAN(Int_R3), SMEAN(Building)
b. Dependent Variable: SMEAN(walkability)

2022

Model Summary b

Model R R Square Adjusted R Square Std. Error of the Estimate
1 0.714 a 0.510 0.401 1.2589683

a. Predictors: (Constant), SMEAN(Bicycle), SMEAN(Connectivity), SMEAN(Sidewalk), SMEAN(Fence_stand), SMEAN(Sky),
SMEAN(Road), SMEAN(Rider), SMEAN(Pole), SMEAN(Sign), SMEAN(Car), SMEAN(Wall), SMEAN(Vegetation),

SMEAN(Motorcycle), SMEAN(Person), SMEAN(Int_R3), SMEAN(Building)
b. Dependent Variable: SMEAN(walkability)

Table 5. Analysis of variance (F-analysis).

2019

ANOVA a

Model Sum of Squares df Mean Square F Sig.
Regression 83.386 15 5.559 7.410 <0.001 b

1 Residual 133.963 76 1.763
Total 217.349 91

a. Dependent Variable: SMEAN(walkability)
b. Predictors: (Constant), SMEAN(Bicycle), SMEAN(Sidewalk), SMEAN(Road), SMEAN(Vegetation), SMEAN(Sign), SMEAN(Car),

SMEAN(Connectivity), SMEAN(Motorcycle), SMEAN(Sky), SMEAN(Fence_stand), SMEAN(Pole), SMEAN(Person),
SMEAN(Rider), SMEAN(Int_R3), SMEAN(Building)

2022

ANOVA a

Model Sum of Squares df Mean Square F Sig.
Regression 45.052 16 2.816 4.686 0.017 b

1 Residual 98.054 73 1.343
Total 143.106 89

a. Dependent Variable: SMEAN(walkability)
b. Predictors: (Constant), SMEAN(Bicycle), SMEAN(Connectivity), SMEAN(Sidewalk), SMEAN(Fence_stand), SMEAN(Sky),

SMEAN(Road), SMEAN(Rider), SMEAN(Pole), SMEAN(Sign), SMEAN(Car), SMEAN(Wall), SMEAN(Vegetation),
SMEAN(Motorcycle), SMEAN(Person), SMEAN(Int_R3), SMEAN(Building)
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A diagnosis of multivariable multicollinearity based on VIF (Variance Inflation Factor)
values was conducted to ensure that the variables are independent of one another and that
there is no obvious error in the final results. As can be seen in Tables 6 and 7, the VIF for
each of the independent variables is below 10, which essentially meets the condition of
noncollinearity of variables.

Table 6. Standard Partial Regression Coefficients (2019, before pandemic).

Coefficients a

Model
Unstandardized

Coefficients
Standardized
Coefficients t Sig.

Collinearity Statistics

B Std. Error Beta Tolerance VIF
(Constant) 17.892 3.199 5.593 <0.001

Int_R3 −0.654 0.612 −0.213 -1.068 0.289 0.203 4.918
Connectivity 0.122 0.051 0.473 2.384 0.020 0.206 4.848

Road 0.002 0.044 0.007 0.037 0.970 0.257 3.888
Sidewalk −0.028 0.026 −0.108 −1.079 0.284 0.814 1.228
Building −0.014 0.028 −0.151 −0.493 0.623 0.186 9.571

Fence/stall −0.296 0.138 −0.237 −2.141 0.035 0.662 1.511
Pole 0.120 0.315 0.044 0.381 0.705 0.607 1.647
Sign 0.210 0.190 0.113 1.104 0.273 0.768 1.302

Vegetation −0.002 0.031 −0.023 −0.079 0.937 0.194 8.618
Sky −0.002 0.059 −0.004 −0.040 0.968 0.683 1.464

Person 0.141 0.039 0.455 3.591 <0.001 0.506 1.977
Rider −0.410 0.268 −0.175 −1.531 0.130 0.620 1.614
Car 0.012 0.045 0.032 0.271 0.787 0.576 1.736

Motorcycle −0.057 0.150 −0.139 −1.379 0.050 0.748 1.337

1

Bicycle 0.312 0.336 0.100 0.928 0.356 0.701 1.427
a. Dependent Variable: Walkability
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Table 7. Standard Partial Regression Coefficients (2022, after pandemic).

Coefficients a

Model
Unstandardized

Coefficients
Standardized
Coefficients t Sig.

Collinearity Statistics

B Std. Error Beta Tolerance VIF
(Constant) 16.313 3.338 4.887 <0.001

Int_R3 0.134 0.571 0.054 1.236 0.084 0.179 5.596
Connectivity 0.066 0.046 0.314 2.418 0.040 0.192 5.207

Road 0.001 0.040 0.007 0.933 0.048 0.239 4.176
Sidewalk −0.018 0.051 −0.048 −0.344 0.732 0.486 2.059
Building −0.017 0.026 −0.197 −0.682 0.497 0.113 8.855

Wall −0.514 0.374 −0.149 −1.373 0.174 0.798 1.253
Fence/stall 0.030 0.057 0.059 0.523 0.602 0.731 1.367

Pole 0.030 0.210 0.016 0.144 0.886 0.739 1.352
Sign −0.027 0.249 −0.012 −0.109 0.914 0.805 1.242

Vegetation −0.017 0.032 −0.153 −0.519 0.605 0.108 9.286
Sky −0.050 0.051 −0.127 −0.965 0.338 0.546 1.832

Person 0.053 0.064 0.116 0.823 0.413 0.471 2.123
Rider 0.228 0.170 0.152 1.338 0.185 0.727 1.375
Car −0.006 0.039 −0.020 −0.163 0.871 0.631 1.584

Motorcycle 0.000 0.083 0.000 0.002 0.998 0.661 1.513

1

Bicycle 0.588 0.334 0.180 1.758 0.056 0.893 1.120
a. Dependent Variable: Walkability

3.3.2. Comparative Analysis of Influencing Factors (Significant Explanatory Variables)

The significant (5%) factors (explanatory variables) affecting walkability score before
the pandemic in 2019 are “Connectivity (positive)”, “Person (positive)”, “Fence/stall
(negative)”, and “Motorcycle (negative)”. The significant (5%) factors after the pandemic are
mainly “Connectivity (positive)” and “Road (positive)”; noticeably, the factors of “Person”,
“Motorcycle”, and “Fence/stall” seem to have disappeared in 2022 (Tables 6 and 7).

It would appear that from 2019 to 2022, the positive correlation between the presence
of person and walkability (WES) has weakened and the proportion of pedestrians has
decreased significantly, as people prefer to stay at home following the lockdown policies
in Xi’an.

The positive correlation of street connectivity and walkability (WES) appears not to
have been greatly affected by COVID-19. However, before COVID-19, the street vitality
indicators had a substantial impact on walkability. After the pandemic, with the decline
of street vitality aspects, the walking environment indicators became more prominent,
showing a stronger impact on walkability, with, for example, the proportion of roads
in 2022 showing a positive correlation with walkability. This may be explained by the
possibility that, after the pandemic, fewer people in the area produced more spacious roads.

In contrast, it is obvious that walkability (WES) in both areas is negatively correlated
with the presence of motorcycles before the pandemic. This is possibly due to the large pro-
portion of people using motorcycles and the traffic congestion associated with motorcycle
use. After the pandemic, due to the improvement in the walking environment, factors such
as heavy traffic that are negatively related to walkability were reduced.

The suggestion here is that while the street network and urban structure have not
changed much over the past three years, the elements that make up the bustle and lively
atmosphere of Xi’an’s urban area have changed dramatically, as is evidenced by the changes
in the explanatory variables between the two periods.

4. Conclusions

This paper quantitatively compares the components of street scenes in the main urban
areas of Xi’an before and after the COVID-19 pandemic. Factors that impact walkability
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were identified using a regression model of the two periods, and suggestions for creating
a pedestrian city in the post pandemic era of Xi’an are offered. The main features of the
study can be summarized as follows:

1. The composing elements of streets and roads were quantitatively described through
image segmentation using street views of selected points, and the spatial characteris-
tics of the pre- and post-pandemic periods were compared. The basic street network
or structure has remained essentially the same, and the top three segment proportions
of “building,” “road,” and “vegetation” did not change substantially between the two
periods, while the proportion of the presence of “person” fell dramatically, from 4.3%
(2019) to 1.87% (2022).

2. Based on the walkability checklist, the 2022 results were superior to those of 2019
in terms of the walking environment, with fewer obstacles and parked motorcycles,
and better safety as it relates to vehicle and people flow. However, the total score in
2022 was lower than in 2019 due to the impact of the pandemic on street vitality, as
reflected in street aesthetic and commercial values, in particular. The impact of the
pandemic on the vitality of streets, especially in the historical blocks, is evident.

3. The significant positive factors (explanatory variables) affecting walkability in 2019
were “connectivity” and “person”, whereas the significant positive factors in 2022
mainly are “connectivity” and “bicycle”. On the other hand, it is obvious that walka-
bility is negatively correlated with motorcycles before the pandemic. Although the
street network and urban structure has not changed much during the three-year span
of the study, the elements that make up the bustle and atmosphere of the urban area
have changed dramatically. The main indicators affecting walkability have changed
from street vitality before the pandemic to street environment after the pandemic.

As a factor having real influence on walkability, the pandemic situation needs to
be taken into account when developing evaluation indicators for future research. Street
vitality, particularly in terms of street aesthetic and commercial values, was shown to have a
negative impact on the walkability of the studied area. Parking and traffic safety problems
caused by the increased use of motorcycles also have an obvious negative effect. To create a
walkable street, obstacles such as parked motorbikes should be removed, while improved
safety measures to pedestrians and the role of atmospheric aspects in increasing the vitality
of streets should be reconsidered. In sum, there is clearly room for improving the walking
environment of historical blocks in the post COVID-19 era.

Future research areas are considered in conducting a longitudinal study based on
this methodology for the post pandemic periods in the coming years, not just in one
season that may not show the overall characteristics of different seasons of pedestrian
flow. Furthermore, a comparative study of different locations in Asian and European
countries would bring a worthwhile insight since those countries imposed different levels
of restrictions on tackling the COVID-19 outbreaks.
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