Electric Vehicles Selection Based on Brčko District Taxi Service Demands, a Multi-Criteria Approach
Abstract
:1. Introduction
2. Literature Review
2.1. The Use of EVs in Taxi Services
2.2. Application of MCDM Approaches in the Selection of Electric Vehicles
3. Methodology
- Phase 1. Determination of alternatives and criteria.
- Phase 2. Data collection and the taxi drivers’ evaluation of the criteria.
- Phase 3. Calculation of the subjective weights of the criteria.
- Phase 4. Formation of the primary decision matrix.
- Phase 5. Calculation of the objective weight and the final weight of the criteria.
- Phase 6. Ranking of alternatives.
- Phase 7. Conducting a sensitivity analysis.
- The EVs under consideration must have authorized service centers in the area of Brčko District;
- EVs must originate from manufacturers with which taxi drivers are already familiar and have prior expertise;
- EVs must transport at least 5 passengers;
- EVs must be priced at a maximum of EUR 40,000, considering that Bosnia and Herzegovina is a developing nation with limited financial resources, including those for taxi drivers.
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghosh, A.; Ghorui, N.; Mondal, S.P.; Kumari, S.; Mondal, B.K.; Das, A.; Gupta, M.S. Application of Hexagonal Fuzzy MCDM Methodology for Site Selection of Electric Vehicle Charging Station. Mathematics 2021, 9, 393. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development (A/RES/70/1); UN General Assembly: New York, NY, USA, 2015; Available online: https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf (accessed on 19 September 2022).
- Bassi, A.M.; Pallaske, G.; Niño, N.; Casier, L. Does Sustainable Transport Deliver Societal Value? Exploring Concepts, Methods, and Impacts with Case Studies. Future Transp. 2022, 2, 115–134. [Google Scholar] [CrossRef]
- Weiland, S.; Hickmann, T.; Lederer, M.; Marquardt, J.; Schwindenhammer, S. The 2030 Agenda for Sustainable Development: Transformative Change through the Sustainable Development Goals? Polit. Gov. 2021, 9, 90–95. [Google Scholar] [CrossRef]
- Bosnia and Herzegovina Releases New Climate Pledge under Paris Agreement | United Nations Development Programme. Available online: https://www.undp.org/bosnia-herzegovina/news/bosnia-and-herzegovina-releases-new-climate-pledge-under-paris-agreement (accessed on 19 September 2022).
- United Nations Economic Commission for Europe Environment Division. Available online: https://unece.org/sites/default/files/2021-09/UNDA%201819AE%20Needs%20Assessment%20Bosnia%20and%20Herzegovina.pdf (accessed on 19 September 2022).
- Nationally Determined Contribution of Bosnia and Herzegovina (NDC) for the PERIOD 2020–2030. Available online: https://unfccc.int/sites/default/files/NDC/2022-06/NDC%20BiH_November%202020%20FINAL%20DRAFT%2005%20Nov%20ENG%20LR.pdf (accessed on 19 September 2022).
- Development of the Environmental Strategy and Action Plan of Bosnia and Herzegovina. Available online: https://www.sei.org/projects-and-tools/projects/bosnia-herzegovina-environmental-policy/ (accessed on 19 September 2022).
- Nationally Determined Contribution of Bosnia and Herzegovina (NDC) for the Period 2020–2030 | United Nations Framework Convention on Climate Change. Available online: https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Bosnia%20and%20Herzegovina%20First/NDC%20BiH_November%202020%20FINAL%20DRAFT%2005%20Nov%20ENG%20LR.pdf (accessed on 19 September 2022).
- Sheldon, T.L.; Dua, R. Effectiveness of China’s plug-in electric vehicle subsidy. Energy Econ. 2020, 88, 104773. [Google Scholar] [CrossRef]
- Rajagopal, D.; Sawant, V.; Bauer, G.S.; Phadke, A.A. Benefits of electrifying app-taxi fleet—A simulation on trip data from New Delhi. Transp. Res. Part D Transp. Environ. 2021, 102, 103113. [Google Scholar] [CrossRef]
- Anand, A.; Ghose, D.; Pradhan, S.; Shabbiruddin; Bhoi, A.K. Optimal Selection of Electric Motor for E-Rickshaw Application Using MCDM Tools; Springer: Berlin/Heidelberg, Germany, 2020; pp. 501–509. [Google Scholar] [CrossRef]
- Tseng, C.-M.; Chau, S.C.-K.; Liu, X. Improving Viability of Electric Taxis by Taxi Service Strategy Optimization: A Big Data Study of New York City. IEEE Trans. Intell. Transp. Syst. 2018, 20, 817–829. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.-C.; Yan, S.; Huang, Y.-W. Optimal scheduling of a taxi fleet with mixed electric and gasoline vehicles to service advance reservations. Transp. Res. Part C Emerg. Technol. 2018, 93, 479–500. [Google Scholar] [CrossRef]
- Tamis, M.; Hoed, R.V.D. Moving a Taxi Sector to Become Electric: Characterizing Taxi Drivers Interested in Purchasing a Full Electric Vehicle. World Electr. Veh. J. 2020, 11, 20. [Google Scholar] [CrossRef] [Green Version]
- Baek, S.; Kim, H.; Chang, H.J. A Feasibility Test on Adopting Electric Vehicles to Serve as Taxis in Daejeon Metropolitan City of South Korea. Sustainability 2016, 8, 964. [Google Scholar] [CrossRef]
- Scorrano, M.; Danielis, R.; Giansoldati, M. Mandating the use of the electric taxis: The case of Florence. Transp. Res. Part A Policy Pract. 2019, 132, 402–414. [Google Scholar] [CrossRef]
- La Rocca, C.R.; Cordeau, J.-F. Heuristics for electric taxi fleet management at Teo Taxi. INFOR Inf. Syst. Oper. Res. 2019, 57, 642–666. [Google Scholar] [CrossRef]
- Jung, J.; Jayakrishnan, R.; Choi, K. Dually sustainable urban mobility option: Shared-taxi operations with electric vehicles. Int. J. Sustain. Transp. 2015, 11, 567–581. [Google Scholar] [CrossRef]
- Lokhandwala, M.; Cai, H. Siting charging stations for electric vehicle adoption in shared autonomous fleets. Transp. Res. Part D Transp. Environ. 2020, 80, 102231. [Google Scholar] [CrossRef]
- Cilio, L.; Babacan, O. Allocation optimisation of rapid charging stations in large urban areas to support fully electric taxi fleets. Appl. Energy 2021, 295, 117072. [Google Scholar] [CrossRef]
- Fraile-Ardanuy, J.; Castano-Solis, S.; Álvaro-Hermana, R.; Merino, J.; Castillo, Á. Using mobility information to perform a feasibility study and the evaluation of spatio-temporal energy demanded by an electric taxi fleet. Energy Convers. Manag. 2018, 157, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Su, S.; Liu, B.; Yamashita, K.; Li, Y.; Du, L. Trajectory-driven Planning of Electric Taxi Charging Stations Based on Cumulative Prospect Theory. Sustain. Cities Soc. 2022, 86, 104125. [Google Scholar] [CrossRef]
- Vaidya, B.; Mouftah, H.T. Dynamic wireless charging for CAEV taxi fleet in urban environment. Internet Technol. Lett. 2020, 3. [Google Scholar] [CrossRef] [Green Version]
- Vaidya, B.; Mouftah, H.T. IoT Applications and Services for Connected and Autonomous Electric Vehicles. Arab. J. Sci. Eng. 2019, 45, 2559–2569. [Google Scholar] [CrossRef]
- Sałabun, W.; Karczmarczyk, A. Using the COMET Method in the Sustainable City Transport Problem: An Empirical Study of the Electric Powered Cars. Procedia Comput. Sci. 2018, 126, 2248–2260. [Google Scholar] [CrossRef]
- Ziemba, P. Multi-Criteria Stochastic Selection of Electric Vehicles for the Sustainable Development of Local Government and State Administration Units in Poland. Energies 2020, 13, 6299. [Google Scholar] [CrossRef]
- Biswas, T.K.; Das, M.C. Selection of Commercially Available Electric Vehicle using Fuzzy AHP-MABAC. J. Inst. Eng. India Ser. C 2018, 100, 531–537. [Google Scholar] [CrossRef]
- Biswas, T.K.; Stević, Ž.; Chatterjee, P.; Yazdani, M. An Integrated Methodology for Evaluation of Electric Vehicles Under Sustainable Automotive Environment; IGI Global: Hershey, PA, USA, 2019; pp. 41–62. [Google Scholar] [CrossRef]
- Khan, F.; Ali, Y.; Khan, A.U. Sustainable hybrid electric vehicle selection in the context of a developing country. Air Qual. Atmos. Health 2020, 13, 489–499. [Google Scholar] [CrossRef]
- Biswas, T.; Chatterjee, P.; Choudhuri, B. Selection of commercially available alternative passenger vehicle in automotive environment. Oper. Res. Eng. Sci. Theory Appl. 2020, 3, 16–27. [Google Scholar] [CrossRef]
- Büyüközkan, G.; Uztürk, D. Fleet Vehicle Selection for Sustainable Urban Logistics. In Proceedings of the 2020 the 9th International Conference on Informatics, Environment, Energy and Applications, Amsterdam, The Netherlands, 13–16 March 2020. [Google Scholar] [CrossRef]
- Ali, Y.; Mehmood, B.; Huzaifa, M.; Yasir, U.; Khan, A.U. Development of a new hybrid multi criteria decision-making method for a car selection scenario. Facta Univ. Ser. Mech. Eng. 2020, 18, 357–373. [Google Scholar] [CrossRef]
- Sonar, H.C.; Kulkarni, S.D. An Integrated AHP-MABAC Approach for Electric Vehicle Selection. Res. Transp. Bus. Manag. 2021, 41, 100665. [Google Scholar] [CrossRef]
- Oztaysi, B.; Onar, S.C.; Kahraman, C. Electric Vehicle Selection by Using Fuzzy KEMIRA. J. Mult.-Valued Log. Soft Comput. 2021, 37, 437–461. [Google Scholar]
- Cakir, E.; Tas, M.A.; Ulukan, Z. Neutrosophic Fuzzy MARCOS Approach for Sustainable Hybrid Electric Vehicle Assessment. In Proceedings of the 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Melbourne, Australia, 17–20 October 2021; pp. 3423–3428. [Google Scholar] [CrossRef]
- Ziemba, P. Selection of Electric Vehicles for the Needs of Sustainable Transport under Conditions of Uncertainty—A Comparative Study on Fuzzy MCDA Methods. Energies 2021, 14, 7786. [Google Scholar] [CrossRef]
- Ziemba, P. Multi-criteria approach to stochastic and fuzzy uncertainty in the selection of electric vehicles with high social acceptance. Expert Syst. Appl. 2021, 173, 114686. [Google Scholar] [CrossRef]
- Tepe, S. The Interval-Valued Spherical Fuzzy Based Methodology and its Application to Electric Car Selection. Duzce Univ. J. Sci. Technol. 2021, 9, 1970–1983. [Google Scholar] [CrossRef]
- Oztaysi, B.; Kahraman, C.; Onar, S.C. Electric Vehicle Selection by Using Fuzzy SMART; Springer: Cham, Switzerland, 2022; pp. 200–207. [Google Scholar] [CrossRef]
- Wei, Q.; Zhou, C. A multi-criteria decision-making framework for electric vehicle supplier selection of government agencies and public bodies in China. Environ. Sci. Pollut. Res. 2022, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Stopka, O.; Stopkova, M.; Pecman, J. Application of Multi-Criteria Decision Making Methods for Evaluation of Selected Passenger Electric Cars: A Case Study. Commun.-Sci. Lett. Univ. Zilina 2022, 24, A133–A141. [Google Scholar] [CrossRef]
- Puška, A.; Nedeljković, M.; Hashemkhani Zolfani, S.; Pamučar, D. Application of Interval Fuzzy Logic in Selecting a Sustainable Supplier on the Example of Agricultural Production. Symmetry 2021, 13, 774. [Google Scholar] [CrossRef]
- Stević, Ž.; Tanackov, I.; Puška, A.; Jovanov, G.; Vasiljević, J.; Lojaničić, D. Development of Modified SERVQUAL–MCDM Model for Quality Determination in Reverse Logistics. Sustainability 2021, 13, 5734. [Google Scholar] [CrossRef]
- Hinov, N.; Punov, P.; Gilev, B.; Vacheva, G. Model-Based Estimation of Transmission Gear Ratio for Driving Energy Consumption of an EV. Electronics 2021, 10, 1530. [Google Scholar] [CrossRef]
- Ecer, F. A consolidated MCDM framework for performance assessment of battery electric vehicles based on ranking strategies. Renew. Sustain. Energy Rev. 2021, 143, 110916. [Google Scholar] [CrossRef]
- Naumovich, N.I.; Belousov, E.V.; Grigor’Ev, M.A. New Engineering Solutions for the Traction Electric Drive of a Gazelle-Next Medium-Duty Van. Russ. Electr. Eng. 2020, 91, 302–306. [Google Scholar] [CrossRef]
- Du, J.; Meng, X.; Li, J.; Wu, X.; Song, Z.; Ouyang, M. Insights into the characteristics of technologies and industrialization for plug-in electric cars in China. Energy 2018, 164, 910–924. [Google Scholar] [CrossRef]
- Bessler, S.; Kemal, M.S.; Silva, N.; Olsen, R.; Iov, F.; Drenjanac, D.; Schwefel, H.-P. Distributed flexibility management targeting energy cost and total power limitations in electricity distribution grids. Sustain. Energy Grids Netw. 2018, 14, 35–46. [Google Scholar] [CrossRef]
- Li, C.; Du, Q.; Liu, X. Indirect predictive torque control for switched reluctance motor in EV application. Energy Rep. 2022, 8, 857–865. [Google Scholar] [CrossRef]
- Zhu, M.; Liu, Z.; Li, J.; Zhu, S.X. Electric vehicle battery capacity allocation and recycling with downstream competition. Eur. J. Oper. Res. 2019, 283, 365–379. [Google Scholar] [CrossRef]
- Lucas, A.; Barranco, R.; Refa, N. EV Idle Time Estimation on Charging Infrastructure, Comparing Supervised Machine Learning Regressions. Energies 2019, 12, 269. [Google Scholar] [CrossRef] [Green Version]
- Figenbaum, E. Battery Electric Vehicle Fast Charging–Evidence from the Norwegian Market. World Electr. Veh. J. 2020, 11, 38. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Tian, J.; Li, T. Adaptive real-time optimal energy management strategy for extender range electric vehicle. Energy 2020, 197, 117237. [Google Scholar] [CrossRef]
- Noel, L.; de Rubens, G.Z.; Kester, J.; Sovacool, B.K. Understanding the socio-technical nexus of Nordic electric vehicle (EV) barriers: A qualitative discussion of range, price, charging and knowledge. Energy Policy 2020, 138, 111292. [Google Scholar] [CrossRef]
- Eslaminia, A.; Azimi, P. Solving the Electric Vehicle Routing Problem Considering the Vehicle Volume Limitation Using a Simulated Annealing Algorithm. J. Ind. Manag. Perspect. 2020, 9, 165–188. [Google Scholar] [CrossRef]
- Štilić, A.; Štilić, I. Selection of Exterior Wall System and MCDM Derived Decision. J. Facade Des. Eng. 2022, 10, 1–28. [Google Scholar] [CrossRef]
- Keršulienė, V.; Zavadskas, E.K.; Turskis, Z. Selection of rational dispute resolution method by applying new step-wise weight assessment ratio analysis (swara). J. Bus. Econ. Manag. 2010, 11, 243–258. [Google Scholar] [CrossRef]
- Puška, A.; Pamucar, D.; Stojanović, I.; Cavallaro, F.; Kaklauskas, A.; Mardani, A. Examination of the Sustainable Rural Tourism Potential of the Brčko District of Bosnia and Herzegovina Using a Fuzzy Approach Based on Group Decision Making. Sustainability 2021, 13, 583. [Google Scholar] [CrossRef]
- Puška, A.; Nedeljković, M.; Šarkoćević, Ž.; Golubović, Z.; Ristić, V.; Stojanović, I. Evaluation of Agricultural Machinery Using Multi-Criteria Analysis Methods. Sustainability 2022, 14, 8675. [Google Scholar] [CrossRef]
- Pamučar, D.; Ćirović, G. The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation area Comparison (MABAC). Expert Syst. Appl. 2015, 42, 3016–3028. [Google Scholar] [CrossRef]
- Bozanic, D.; Jurišić, D.; Erkić, D. LBWA–Z-MAIRCA Model Supporting Decision Making in the Army. Oper. Res. Eng. Sci. Theory Appl. 2020, 3, 87–110. [Google Scholar] [CrossRef]
- Mešić, A.; Miškić, S.; Stević, Ž.; Mastilo, Z. Hybrid MCDM Solutions for Evaluation of the Logistics Performance Index of the Western Balkan Countries. Economics 2022, 10, 13–34. [Google Scholar] [CrossRef]
- Durmić, E.; Stević, Ž.; Chatterjee, P.; Vasiljević, M.; Tomašević, M. Sustainable supplier selection using combined FUCOM—Rough SAW model. Rep. Mech. Eng. 2020, 1, 34–43. [Google Scholar] [CrossRef]
- Jokić, Ž.; Božanić, D.; Pamučar, D. Selection of fire position of mortar units using LBWA and fuzzy MABAC model. Oper. Res. Eng. Sci. Theory Appl. 2021, 4. [Google Scholar] [CrossRef]
- Demirdağ, Ş.A.; Korucuk, S.; Karamaşa, Ç. Evaluation of innovative management success criteria in hotel establishments: Case study in Giresun-Turkey. Decis. Mak. Appl. Manag. Eng. 2021, 4, 26–46. [Google Scholar] [CrossRef]
- Karamaşa, Ç.; Karabasevic, D.; Stanujkic, D.; Kookhdan, A.R.; Mishra, A.R.; Ertürk, M. An extended single-valued neutrosophic ahp and multimoora method to evaluate the optimal training aircraft for flight training organizations. Facta Univ. Ser. Mech. Eng. 2021, 19, 555–578. [Google Scholar] [CrossRef]
- Tešić, D.Z.; Božanić, D.I.; Pamučar, D.S.; Din, J. DIBR—Fuzzy MARCOS model for selecting a location for a heavy mechanized bridge. Vojn. Glas. 2022, 70, 314–339. [Google Scholar] [CrossRef]
Author(s) | Year | Article Title | Method(s) |
---|---|---|---|
Biswas and Das [28] | 2019 | Selection of Commercially Available Electric Vehicle using Fuzzy AHP-MABAC | AHP MABAC |
Biswas et al. [29] | 2019 | An Integrated Methodology for the Evaluation of Electric Vehicles under a Sustainable Automotive Environment | CoCoSo CRITIC |
Khan et al. [30] | 2020 | Sustainable Hybrid Electric Vehicle Selection in the Context of a Developing Country | TOPSIS |
Biswas et al. [31] | 2020 | Selection of Commercially Available Alternative Passenger Vehicles in the Automotive Environment | CoCoSo CRITIC |
Büyüközkan and Uztürk [32] | 2020 | Fleet Vehicle Selection for Sustainable Urban Logistics | SAW VIKOR |
Ziemba [27] | 2020 | Multi-Criteria Stochastic Selection of Electric Vehicles for the Sustainable Development of Local Government and State Administration Units in Poland | PROSA Monte Carlo |
Ali et al. [33] | 2020 | Development of a New Hybrid Multi-criteria Decision-making Method for a Car Selection Scenario | TOPSIS FCF-TOPSIS AHP |
Sonar and Kulkarni [34] | 2021 | An Integrated AHP-MABAC Approach for Electric Vehicle Selection | AHP MABAC |
Oztaysi et al. [35] | 2021 | Electric Vehicle Selection by Using Fuzzy KEMIRA | KEMIRA |
Cakir et al. [36] | 2021 | Neutrosophic Fuzzy MARCOS Approach for Sustainable Hybrid Electric Vehicle Assessment | MARCOS |
Ziemba [37] | 2021 | Selection of Electric Vehicles for the Needs of Sustainable Transport under Conditions of Uncertainty—A Comparative Study on Fuzzy MCDA Methods | TOPSIS SAW NEAT F-PROMETHEE II |
Ziemba [38] | 2021 | Multi-Criteria Approach to Stochastic and Fuzzy Uncertainty in the Selection of Electric Vehicles with High Social Acceptance | NEAT F-PROMETHEE Monte Carlo SMAA |
TEPE [39] | 2021 | The Interval-Valued Spherical Fuzzy-Based Methodology and Its Application to Electric Car Selection | IVSF AHP ELECTRE |
Oztaysi [40] | 2022 | Electric Vehicle Selection by Using Fuzzy SMART | SMART |
Wei and Zhou [41] | 2022 | Multi-Criteria Decision-Making Framework for the Electric Vehicle Supplier Selection of Government Agencies and Public Bodies in China | BWM VIKTOR |
Stopka et al. [42] | 2022 | Application of Multi-Criteria Decision-Making Methods for Evaluation of Selected Passenger Electric Cars: A Case Study | Basic variant method AHP |
ID | Criterion | Abvr. | Description | Unit | Reference | Criterion Type |
---|---|---|---|---|---|---|
C1 | Acceleration 0–100 km/h | ACC | Acceleration from 0 to 100 km/h | s | Hinov et al. [45], Ecer [46] | cost |
C2 | Top Speed | TS | Maximum EV speed | km/h | Naumovich et al. [47], Du et al. [48] | benefit |
C3 | Total Power | TP | Total engine power | hp | Bessler et al. [49], Ziemba [27] | benefit |
C4 | Total Torque | TT | Engine torque | Nm | Ecer [44], Li [50] | benefit |
C5 | Battery Capacity | BC | Battery capacity | KW | Zhu et al. [51], Ziemba [27] | benefit |
C6 | Charge Time | CT | Battery charging time in minutes using a standard outlet | min | Lucas et al. [52], Sonar and Kulkarni [34] | cost |
C7 | Fast-charge Time | FT | Battery charging time in minutes using a fast charger | min | Figenbaum [53], Ecer [46] | cost |
C8 | Range | R | Full battery range | km | Yang et al. [54], Sonar and Kulkarni [34] | benefit |
C9 | Price | P | EV value expressed in Euro currency | € | Noel et al. [55], Ecer [46] | cost |
C10 | Cargo Volume | CV | Total trunk volume | L | Ziemba [27], Eslaminia and Azimi [56] | benefit |
C1 (ACC) | C2 (TS) | C3 (TP) | C4 (TT) | C5 (BC) | C6 (CT) | C7 (FT) | C8 (R) | C9 (P) | C10 (CV) | |
---|---|---|---|---|---|---|---|---|---|---|
T1 | 3 | 3 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 3 |
T2 | 3 | 3 | 4 | 3 | 4 | 4 | 4 | 5 | 4 | 4 |
T3 | 2 | 1 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 3 |
T4 | 5 | 3 | 4 | 5 | 5 | 5 | 5 | 5 | 3 | 4 |
T5 | 2 | 1 | 3 | 3 | 5 | 5 | 5 | 5 | 5 | 4 |
T6 | 5 | 3 | 3 | 5 | 3 | 3 | 4 | 3 | 2 | 2 |
T7 | 3 | 4 | 5 | 2 | 5 | 4 | 5 | 5 | 5 | 2 |
T8 | 1 | 2 | 3 | 2 | 5 | 5 | 5 | 5 | 5 | 4 |
T9 | 1 | 1 | 4 | 3 | 5 | 5 | 5 | 4 | 5 | 3 |
T10 | 3 | 4 | 4 | 3 | 5 | 5 | 5 | 5 | 5 | 3 |
T11 | 1 | 1 | 4 | 3 | 5 | 5 | 5 | 4 | 5 | 5 |
T12 | 2 | 2 | 3 | 1 | 4 | 5 | 4 | 5 | 5 | 3 |
Average | 2.58 | 2.33 | 3.83 | 3.25 | 4.67 | 4.67 | 4.75 | 4.67 | 4.50 | 3.33 |
Range | 9 | 10 | 6 | 8 | 2 | 2 | 1 | 2 | 5 | 7 |
Criteria | sj | kj | qj | wj |
---|---|---|---|---|
C7 (FT) | 1.0000 | 1.0000 | 0.1678 | |
C5 (BC) | 0.0833 | 1.0833 | 0.9231 | 0.1549 |
C6 (CT) | 0.0000 | 1.0000 | 0.9231 | 0.1549 |
C8 (R) | 0.0000 | 1.0000 | 0.9231 | 0.1549 |
C9 (P) | 0.1667 | 1.1667 | 0.7912 | 0.1328 |
C3 (TP) | 0.6667 | 1.6667 | 0.4747 | 0.0797 |
C10(CV) | 0.5000 | 1.5000 | 0.3165 | 0.0531 |
C4 (TT) | 0.0833 | 1.0833 | 0.2921 | 0.0490 |
C1 (ACC) | 0.6667 | 1.6667 | 0.1753 | 0.0294 |
C2 (TS) | 0.2500 | 1.2500 | 0.1402 | 0.0235 |
sum | 5.9594 |
C1 (ACC) | C2 (TS) | C3 (TP) | C4 (TT) | C5 (BC) | C6 (CT) | C7 (FT) | C8 (R) | C9 (P) | C10 (CV) | |
---|---|---|---|---|---|---|---|---|---|---|
A1 | 8.1 | 150 | 100 | 260 | 50.0 | 435 | 26 | 285 | 32,895 | 309 |
A2 | 7.9 | 144 | 110 | 320 | 40.0 | 765 | 43 | 235 | 32,940 | 435 |
A3 | 8.1 | 150 | 100 | 260 | 50.0 | 435 | 26 | 285 | 31,050 | 265 |
A4 | 9.7 | 140 | 107 | 271 | 35.5 | 195 | 39 | 170 | 34,990 | 366 |
A5 | 9.9 | 155 | 100 | 395 | 42.0 | 390 | 47 | 250 | 35,495 | 332 |
A6 | 10.0 | 150 | 96 | 250 | 40.0 | 135 | 29 | 250 | 35,200 | 440 |
A7 | 9.7 | 150 | 100 | 260 | 50.0 | 435 | 26 | 265 | 36,140 | 380 |
A8 | 9.9 | 157 | 100 | 395 | 42.0 | 390 | 47 | 230 | 33,495 | 315 |
A9 | 9.2 | 150 | 100 | 260 | 50.0 | 435 | 26 | 255 | 37,650 | 310 |
A10 | 8.5 | 150 | 100 | 260 | 50.0 | 435 | 26 | 255 | 36,330 | 434 |
A11 | 7.3 | 160 | 150 | 310 | 62.0 | 375 | 33 | 350 | 38,060 | 385 |
C1 (ACC) | C2 (TS) | C3 (TP) | C4 (TT) | C5 (BC) | C6 (CT) | C7 (FT) | C8 (R) | C9 (P) | C10 (CV) | |
---|---|---|---|---|---|---|---|---|---|---|
A1 | 0.9012 | 0.9375 | 0.6667 | 0.6582 | 0.8065 | 0.3103 | 1.0000 | 0.8143 | 0.9439 | 0.7023 |
A2 | 0.9241 | 0.9000 | 0.7333 | 0.8101 | 0.6452 | 0.1765 | 0.6047 | 0.6714 | 0.9426 | 0.9886 |
A3 | 0.9012 | 0.9375 | 0.6667 | 0.6582 | 0.8065 | 0.3103 | 1.0000 | 0.8143 | 1.0000 | 0.6023 |
A4 | 0.7526 | 0.8750 | 0.7133 | 0.6861 | 0.5726 | 0.6923 | 0.6667 | 0.4857 | 0.8874 | 0.8318 |
A5 | 0.7374 | 0.9688 | 0.6667 | 1.0000 | 0.6774 | 0.3462 | 0.5532 | 0.7143 | 0.8748 | 0.7545 |
A6 | 0.7300 | 0.9375 | 0.6400 | 0.6329 | 0.6452 | 1.0000 | 0.8966 | 0.7143 | 0.8821 | 1.0000 |
A7 | 0.7526 | 0.9375 | 0.6667 | 0.6582 | 0.8065 | 0.3103 | 1.0000 | 0.7571 | 0.8592 | 0.8636 |
A8 | 0.7374 | 0.9813 | 0.6667 | 1.0000 | 0.6774 | 0.3462 | 0.5532 | 0.6571 | 0.9270 | 0.7159 |
A9 | 0.7935 | 0.9375 | 0.6667 | 0.6582 | 0.8065 | 0.3103 | 1.0000 | 0.7286 | 0.8247 | 0.7045 |
A10 | 0.8588 | 0.9375 | 0.6667 | 0.6582 | 0.8065 | 0.3103 | 1.0000 | 0.7286 | 0.8547 | 0.9864 |
A11 | 1.0000 | 1.0000 | 1.0000 | 0.7848 | 1.0000 | 0.3600 | 0.7879 | 1.0000 | 0.8158 | 0.8750 |
SD | 0.0944 | 0.0346 | 0.1012 | 0.1377 | 0.1193 | 0.2329 | 0.1952 | 0.1251 | 0.0560 | 0.1354 |
sum | 9.0887 | 10.350 | 7.7533 | 8.2051 | 8.2500 | 4.4728 | 9.0621 | 8.0857 | 9.8122 | 9.0250 |
MSD | 0.0104 | 0.0033 | 0.0131 | 0.0168 | 0.0145 | 0.0521 | 0.0215 | 0.0155 | 0.0057 | 0.0150 |
wo | 0.0619 | 0.0199 | 0.0778 | 0.1000 | 0.0862 | 0.3103 | 0.1283 | 0.0922 | 0.0340 | 0.0894 |
C1 (ACC) | C2 (TS) | C3 (TP) | C4 (TT) | C5 (BC) | C6 (CT) | C7 (FT) | C8 (R) | C9 (P) | C10 (CV) | |
---|---|---|---|---|---|---|---|---|---|---|
wo | 0.0619 | 0.0199 | 0.0778 | 0.1000 | 0.0862 | 0.3103 | 0.1283 | 0.0922 | 0.0340 | 0.0894 |
ws | 0.0294 | 0.0235 | 0.0797 | 0.0490 | 0.1549 | 0.1549 | 0.1678 | 0.1549 | 0.1328 | 0.0531 |
w | 0.0456 | 0.0217 | 0.0787 | 0.0745 | 0.1205 | 0.2326 | 0.1481 | 0.1235 | 0.0834 | 0.0712 |
Alternative | Qi | Rank |
---|---|---|
A1 | 0.0681 | 5 |
A2 | −0.1671 | 11 |
A3 | 0.0721 | 3 |
A4 | −0.0495 | 10 |
A5 | −0.0401 | 9 |
A6 | 0.1353 | 2 |
A7 | 0.0717 | 4 |
A8 | −0.0348 | 8 |
A9 | 0.0099 | 7 |
A10 | 0.0643 | 6 |
A11 | 0.2055 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Štilić, A.; Puška, A.; Đurić, A.; Božanić, D. Electric Vehicles Selection Based on Brčko District Taxi Service Demands, a Multi-Criteria Approach. Urban Sci. 2022, 6, 73. https://doi.org/10.3390/urbansci6040073
Štilić A, Puška A, Đurić A, Božanić D. Electric Vehicles Selection Based on Brčko District Taxi Service Demands, a Multi-Criteria Approach. Urban Science. 2022; 6(4):73. https://doi.org/10.3390/urbansci6040073
Chicago/Turabian StyleŠtilić, Anđelka, Adis Puška, Aleksandar Đurić, and Darko Božanić. 2022. "Electric Vehicles Selection Based on Brčko District Taxi Service Demands, a Multi-Criteria Approach" Urban Science 6, no. 4: 73. https://doi.org/10.3390/urbansci6040073
APA StyleŠtilić, A., Puška, A., Đurić, A., & Božanić, D. (2022). Electric Vehicles Selection Based on Brčko District Taxi Service Demands, a Multi-Criteria Approach. Urban Science, 6(4), 73. https://doi.org/10.3390/urbansci6040073