Unequal Landscapes: Vulnerability Traps in Informal Settlements of the Jacuí River Delta (Brazil)
Abstract
:1. Introduction
1.1. Urban Development and Compound Effects of Hazards
1.2. Risk Response Motivation and Capacity
1.3. Poverty–Vulnerability Traps
1.4. Urban Floods in Informal Settlements: Components of Anthropogenic and Natural Hazard Exposure in the Jacuí River Delta
2. Materials and Methods
2.1. Survey Structure and Methodological Considerations
2.2. Data Collection, Correction, and Validation
2.3. Data Analysis
3. Results
3.1. Characteristics of the Sample
3.2. Risk Perception
3.3. Risk Response
Variable | Description | |||
---|---|---|---|---|
Risk response | Categorical scale, non-ordered. RP1 = Evacuate, RP2 = Turn off power, RP3 = Place obstacles to block water entry, RP4 = Adjust house’s interior: move objects higher, RP5 = Adjust house’s exterior: move objects higher, RP6 = Stock up food, RP7 = Seek information, RP8 = Join a community alert group, RP9 = Ask for help from leader or Civil Defence, RP10 = Provide information about what to do, RP11 = Pray, RP12 = Other, RP13 = Nothing, there was no time, RP14 = Adapt the household to flooding before the event. | |||
Ethnicity | Categorical scale, non-ordered. ETC = White, ETB = Black, ETN = Native, ETP = “Pardo” | |||
Variable | Description (range) | Flood protection status | Households by flood protection status | Households total |
Flood protection status | 1 = inside flood-protected areas, 2 = outside flood-protected areas | 1 = protected | 592 (40.80%) | 1451 (100%) |
2 = unprotected | 859 (59.20%) | |||
Variable | Description (range) | Flood protection status | Mean by status of households (S.D.) | Mean in all households (S.D.) |
Risk perception (RPC) | 1 = NA, 2 = Knew household could be flooded, 3 = Did not know (1–3) | 1 = protected | 1.53 (0.84) | 1.9 (0.89) |
2 = unprotected | 2.17 (0.84) | |||
Gender (GEN) | 1 = NA, 2 = Female, 3 = Male (1–3) | 1 = protected | 2.46 (0.53) | 2.48 (0.50) |
2 = unprotected | 2.50 (0.54) | |||
Cargo capacity (CCA) | 1 = NA, 2 = Small capacity only, 3 = Large capacity (1–3) | 1 = protected | 2.72 (0) | 2.74 (0.50) |
2 = unprotected | 2.77 (0.47) | |||
Number of residents in household (NRS) | Numerical (1–19) | 1 = protected | 4.74 (2.32) | 4.58 (2.27) |
2 = unprotected | 4.47 (2.26) | |||
Monthly income (INC) | Numerical, USD (00.00–4811.40) | 1 = protected | 425.90 (439.22) | 390.06 (430.18) |
2 = unprotected | 370.19 (422.33) | |||
Age (AGE) | Numerical, years (0–120) | 1 = protected | 33.50 (22.72) | 32.28 (21.73) |
2 = unprotected | 31.40 (20.99) |
Variable | Description | Flood Protection Status | 1 = Yes | 2 = No | 3 = No Answer | Total | |
---|---|---|---|---|---|---|---|
By Household Status | In All Households | ||||||
Flood impact in 2015 | Was this house/building flooded in October 2015? | 1 = protected | 173 (11.92%) | 826 (56.93%) | 574 (39.56%) | 51 (3.51%) | 1451 (100%) |
2 = unprotected | 653 (45.00%) | ||||||
Previous knowledge about risk exposure | Did you already know this house or building could be flooded? | 1 = protected | 43 (2.96%) | 289 (19.92%) | 498 (34.32%) | 664 (45.76%) | 1451 (100%) |
2 = unprotected | 246 (16.95%) | ||||||
Hazard impact estimation | Did you imagine the water could reach that level when you built or moved here? | 1 = protected | 15 (1.03%) | 80 (5.51%) | 707 (48.73%) | 664 (45.76%) | 1451 (100%) |
2 = unprotected | 65 (4.48%) |
Flood Protection Status | 1 = Certainly or Probably | 2 = Not Likely or Not at All | 3 = No Answer | Total | ||||
---|---|---|---|---|---|---|---|---|
By Household Status | In All Households | By Household Status | In All Households | |||||
Future risk expectation | Do you believe your home may be flooded in the next ten years? | 1 = protected | 362 (24.95%) | 1,012 (69.75%) | 196 (13.51%) | 359 (24.74%) | 80 (5.51%) | 1451 (100%) |
2 = unprotected | 650 (44.80%) | 163 (11.23%) |
At this Point [When the Water Reached the House], What Have You Done to Protect Yourself and the House? | Flood Protection Status | Risk Response Option Frequency among Households | |
---|---|---|---|
By Household Status | In All Households | ||
Evacuate (RP1) | 1 = protected | 35 (2.41%) | 381 (26.26%) |
2 = unprotected | 346 (23.85%) | ||
Turn off power (RP2) | 1 = protected | 106 (7.31%) | 436 (30.05%) |
2 = unprotected | 330 (22.74%) | ||
Place obstacles to block water entry (RP3) | 1 = protected | 82 (5.65%) | 175 (12.06%) |
2 = unprotected | 93 (6.41%) | ||
Adjust interior (RP4) | 1 = protected | 168 (11.58%) | 760 (52.38%) |
2 = unprotected | 592 (40.80%) | ||
Adjust exterior (RP5) | 1 = protected | 61 (4.20%) | 326 (22.47%) |
2 = unprotected | 265 (18.26%) | ||
Stock food reserves (RP6) | 1 = protected | 16 (1.10%) | 177 (12.20%) |
2 = unprotected | 161 (11.10%) | ||
Seek information (RP7) | 1 = protected | 12 (0.83%) | 49 (3.38%) |
2 = unprotected | 37 (2.55%) | ||
Join a community alert group (RP8) | 1 = protected | 7 (0.48%) | 30 (2.07%) |
2 = unprotected | 23 (1.59%) | ||
Ask for help (RP9) | 1 = protected | 19 (1.31%) | 127 (8.75%) |
2 = unprotected | 108 (7.44%) | ||
Provide information (RP10) | 1 = protected | 27 (1.86%) | 120 (8.27%) |
2 = unprotected | 93 (6.41%) | ||
Pray (RP11) | 1 = protected | 98 (6.75%) | 342 (23.57%) |
2 = unprotected | 244 (16.82%) | ||
Other (RP12) | 1 = protected | 221 (15.23%) | 274 (18.88%) |
2 = unprotected | 53 (3.65%) | ||
Nothing. There was no time (RP13) | 1 = protected | 74 (5.10%) | 128 (8.82%) |
2 = unprotected | 54 (3.72%) | ||
Prepare before the flood (RP14) | 1 = protected | 120 (8.27%) | 451 (31.08%) |
2 = unprotected | 331 (22.81%) |
3.4. Association between Variables under the Logistic Regression Approach
Variable | Model 85 | Model 86 | Model 87 | Model 88 | Model 89 | Model 90 |
---|---|---|---|---|---|---|
Did you know about flooding? Yes (RPC) | −1.074 ** (0.0) | −0.8814 ** (0.0) | −0.8829** (0.0) | −0.7441 ** (0.003) | −0.8952 ** (0.0) | −0.8524 ** (0.001) |
Monthly income (INC) | −0.0007 ** (0.0) | −0.0007** (0.0) | −0.0007 ** (0.0) | −0.0007 ** (0.0) | −0.0008 ** (0.0) | |
Age (AGE) | 0.0006 (0.911) | −0.0063 (0.319) | 0.001 (0.86) | −0.0062 (0.335) | ||
Caucasian (ETC) | −0.1462 * (0.013) | 12.9931 (0.99) | 18.7544 ** (0.0) | |||
Native (ETN) | 13.8464 (0.989) | 19.7517 (.) | ||||
Pardo (ETP) | 13.0029 (0.99) | 18.9396 ** (0.0) | ||||
Black (ETB) | 12.6047 (0.99) | 18.5492 ** (0.0) | ||||
How many people live in this household now? (NRS) | −0.1442 * (0.02) | |||||
Small cargo capacity transportation mode only (CCA) | 0.5754 (0.118) | |||||
Number of observations | 672 | 614 | 614 | 614 | 614 | 614 |
chi2 | 22.3588 | 39.2620 | 39.2745 | 46.5209 | 44.0775 | 53.4634 |
Prob > chi2 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Pseudo R2 | 0.0395 | 0.0767 | 0.0767 | 0.0909 | 0.0861 | 0.1045 |
Variable | Model 169 | Model 170 | Model 171 | Model 172 | Model 173 | Model 174 |
---|---|---|---|---|---|---|
Did you know about flooding? Yes (RPC) | 0.0182 (0.832) | 0.0494 (0.585) | 0.042 (0.643) | 0.0263 (0.774) | 0.0058 (0.949) | −0.0129 (0.89) |
Monthly income (INC) | −0.0001 ** (0.003) | −0.0001 ** (0.008) | −0.0001 ** (0.006) | −0.0001 * (0.027) | −0.0001 ** (0.007) | |
Age (AGE) | −0.0074 ** (0.001) | −0.0043 (0.065) | −0.0076 ** (0.001) | −0.0045 (0.055) | ||
Caucasian (ETC) | 0.0944 ** (0.0) | −0.574 (0.072) | −0.5439 (0.091) | |||
Native (ETN) | −0.2606 (0.564) | −0.1484 (0.744) | ||||
Pardo (ETP) | −0.013 (0.969) | 0.028 (0.933) | ||||
Black (ETB) | −0.7101 * (0.047) | −0.7537 * (0.037) | ||||
How many people live in this household now? (NRS) | 0.1034 ** (0.0) | |||||
Small cargo capacity transportation mode only (CCA) | 0.2008 (0.101) | |||||
Number of observations | 2.277 | 2.065 | 2.065 | 2.049 | 2.065 | 2.049 |
Chi2 | 0.0450 | 10.1098 | 21.7742 | 33.8552 | 49.6160 | 66.1073 |
Prob > chi2 | 0.8319 | 0.0064 | 0.0001 | 0.0000 | 0.0000 | 0.0000 |
Pseudo R2 | 0.0000 | 0.0035 | 0.0076 | 0.0119 | 0.0174 | 0.0233 |
Set (a) all households (risk landscapes 1 and 2) | |||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RP1 | RP2 | RP3 | RP4 | RP5 | RP6 | RP7 | RP8 | RP9 | RP10 | RP11 | RP12 | RP13 | RP14 | ||||||||||||||||
RPC | ■ | ● | ● | ○ | ● | ● | |||||||||||||||||||||||
INC | ● | ■ | ● | ● | ● | ■ | ☐ | ||||||||||||||||||||||
AGE | ● | ● | ☐ | ||||||||||||||||||||||||||
ETC | ○ | ☐ | ☐ | ● | |||||||||||||||||||||||||
ETN | ○ | ■ | ○ | ||||||||||||||||||||||||||
ETP | ☐ | ☐ | ● | ● | |||||||||||||||||||||||||
ETB | ● | ○ | ○ | ● | |||||||||||||||||||||||||
NRS | ■ | ○ | ☐ | ● | |||||||||||||||||||||||||
CCA | ■ | ☐ | ● | ||||||||||||||||||||||||||
Set (b) households in flood-protected areas (risk landscape 1, Humaitá-Navegantes) | Set (c) households outside flood-protected areas (risk landscape 2, Arquipélago) | ||||||||||||||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | ||
RPC | ● | ■ | ○ | ● | RPC | ● | ● | ○ | ● | ● | ● | ||||||||||||||||||
INC | ● | ■ | ■ | ● | ☐ | INC | ● | ■ | ● | ● | ○ | ● | ■ | ■ | ☐ | ||||||||||||||
AGE | ☐ | ■ | ☐ | AGE | ● | ||||||||||||||||||||||||
ETC | ■ | ETC | ☐ | ● | |||||||||||||||||||||||||
ETN | ETN | ○ | |||||||||||||||||||||||||||
ETP | ■ | ETP | ☐ | ● | ○ | ● | |||||||||||||||||||||||
ETB | ■ | ETB | ○ | ||||||||||||||||||||||||||
NRS | ○ | ● | ☐ | ■ | ● | NRS | ■ | ■ | ■ | ☐ | ○ | ○ | |||||||||||||||||
CCA | ● | ☐ | ☐ | CCA | ☐ | ■ | ■ | ○ | ☐ | ● |
4. Discussion
5. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cutter, S.L.; Emrich, C.T. Moral Hazard, Social Catastrophe: The Changing Face of Vulnerability along the Hurricane Coasts. Ann. Am. Acad. Pol. Soc. Sci. 2006, 604, 102–112. [Google Scholar] [CrossRef]
- Cinner, J.E.; Adger, W.N.; Allison, E.H.; Barnes, M.L.; Brown, K.; Cohen, P.J.; Gelcich, S.; Hicks, C.C.; Hughes, T.P.; Lau, J.; et al. Building Adaptive Capacity to Climate Change in Tropical Coastal Communities. Nat. Clim. Chang. 2018, 8, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Adger, W.N. Vulnerability. Glob. Environ. Chang. 2006, 16, 268–281. [Google Scholar] [CrossRef]
- Pelling, M. The Vulnerability of Cities: Natural Disasters and Social Resilience; Earthscan: London, UK, 2003; ISBN 1849773378. [Google Scholar]
- Revi, A.; Satterthwaite, D.E.; Aragón-Durand, F.; Corfee-Morlot, J.; Kiunsi, R.B.R.; Pelling, M.; Roberts, D.C.; Solecki, W.; Balbus, J.; Cardona, O.D.; et al. Urban Areas. In Climate Change 2014—Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects; Cambridge University Press: Cambridge, UK, 2015; pp. 535–612. [Google Scholar] [CrossRef]
- Batty, M. Building a Science of Cities. Cities 2014, 29, S9–S16. [Google Scholar] [CrossRef] [Green Version]
- Paresi, M.; Melchiorri, M.; Siragusa, A.; Kemper, T. Atlas of the Human Planet 2016: Mapping Human Presence on Earth with the Global Human Settlement Layer; JRC Science Hub: Ispra, Italy, 2016; ISBN 9789279620225. [Google Scholar]
- Crutzen, P.J. Geology of Mankind. Nature 2002, 415, 23. [Google Scholar] [CrossRef]
- Gibbard, P.; Walker, M.; Bauer, A.; Edgeworth, M.; Edwards, L.; Ellis, E.; Finney, S.; Gill, J.L.; Maslin, M.; Merritts, D.; et al. The Anthropocene as an Event, Not an Epoch. J. Quat. Sci. 2022, 37, 395–399. [Google Scholar] [CrossRef]
- IPCC WGII. Sixth Assessment Report: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Scheffran, J. Climate Change and Weather Extremes as Risk Multipliers: Tipping Points, Cascading Events, and Societal Instability. In Climate Change, Security Risks, and Violent Conflicts. Essays from Integrated Climate Research in Hamburg; Brzoska, M., Scheffran, J., Eds.; Hamburg University Press: Hamburg, Germany, 2020; pp. 19–48. ISBN 9783943423815. [Google Scholar]
- Elmqvist, T.; Andersson, E.; McPhearson, T.; Bai, X.; Bettencourt, L.; Brondizio, E.; Colding, J.; Daily, G.; Folke, C.; Grimm, N.; et al. Urbanization in and for the Anthropocene. NPJ Urban Sustain. 2021, 1, 6. [Google Scholar] [CrossRef]
- Satterfield, T.A.; Mertz, C.K.; Slovic, P. Discrimination, Vulnerability, and Justice in the Face of Risk. Risk Anal. 2004, 24, 141–162. [Google Scholar] [CrossRef]
- Bolin, B.; Kurtz, L.C. Race, Class, Ethnicity, and Disaster Vulnerability. In Handbook of Disaster Research; Rodríguez, H., Donner, W., Trainor, J.E., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 181–203. ISBN 9783319632544. [Google Scholar] [CrossRef]
- Cummings, C.L.; Rosenthal, S.; Kong, W.Y. Secondary Risk Theory: Validation of a Novel Model of Protection Motivation. Risk Anal. 2020, 41, 204–220. [Google Scholar] [CrossRef]
- Tessler, Z.D.; Vorosmarty, C.J.; Grossberg, M.; Gladkova, I.; Aizenman, H.; Syvitski, J.P.M.; Foufoula-Georgiou, E. Profiling Risk and Sustainability in Coastal Deltas of the World. Science 2015, 349, 638–643. [Google Scholar] [CrossRef] [Green Version]
- Bangalore, M.; Smith, A.; Veldkamp, T. Exposure to Floods, Climate Change, and Poverty in Vietnam. Econ. Disasters Clim. Chang. 2019, 3, 79–99. [Google Scholar] [CrossRef] [Green Version]
- Deinne, C.E.; Ajayi, D.D. Dynamics of Inequality, Poverty and Sustainable Development of Delta State, Nigeria. GeoJournal 2021, 86, 431–443. [Google Scholar] [CrossRef]
- Garschagen, M.; Romero-Lankao, P. Exploring the Relationships between Urbanization Trends and Climate Change Vulnerability. Clim. Chang. 2015, 133, 37–52. [Google Scholar] [CrossRef]
- Monteiro, A.; Ankrah, J.; Madureira, H.; Pacheco, M.O. Climate Risk Mitigation and Adaptation Concerns in Urban Areas: A Systematic Review of the Impact of IPCC Assessment Reports. Climate 2022, 10, 115. [Google Scholar] [CrossRef]
- Henrique, K.P.; Tschakert, P. Pathways to Urban Transformation: From Dispossession to Climate Justice. Prog. Hum. Geogr. 2021, 45, 1169–1191. [Google Scholar] [CrossRef]
- De Koning, K.; Filatova, T. Repetitive Floods Intensify Outmigration and Climate Gentrification in Coastal Cities. Environ. Res. Lett. 2020, 15, 034008. [Google Scholar] [CrossRef]
- Boubacar, S.; Pelling, M.; Barcena, A.; Montandon, R. The Erosive Effects of Small Disasters on Household Absorptive Capacity in Niamey: A Nested HEA Approach. Environ. Urban. 2017, 29, 33–50. [Google Scholar] [CrossRef] [Green Version]
- Brondizio, E.S.; Vogt, N.D.; Mansur, A.V.; Anthony, E.J.; Costa, S.; Hetrick, S. A Conceptual Framework for Analyzing Deltas as Coupled Social–Ecological Systems: An Example from the Amazon River Delta. Sustain. Sci. 2016, 11, 591–609. [Google Scholar] [CrossRef]
- Yang, L.; Scheffran, J.; Qin, H.; You, Q. Climate-Related Flood Risks and Urban Responses in the Pearl River Delta, China. Reg. Environ. Chang. 2014, 15, 379–391. [Google Scholar] [CrossRef]
- Romero-Lankao, P.; Gnatz, D.M.; Sperling, J.B. Examining Urban Inequality and Vulnerability to Enhance Resilience: Insights from Mumbai, India. Clim. Chang. 2016, 139, 351–365. [Google Scholar] [CrossRef]
- Harvey, D. Space as a Keyword. In Spaces of Global Capitalism: Towards a Theory of Uneven Geographical Development; Verso: London, UK, 2006; p. 154. ISBN 1844675501. [Google Scholar]
- Borsdorf, A.; Hidalgo, R.; Sánchez, R. A New Model of Urban Development in Latin America: The Gated Communities and Fenced Cities in the Metropolitan Areas of Santiago de Chile and Valparaíso. Cities 2007, 24, 365–378. [Google Scholar] [CrossRef]
- Gilbert, A.; Gugler, J. Cities, Poverty, and Development: Urbanization in the Third World; Oxford University Press: Oxford, UK, 1984; ISBN 90198740841. [Google Scholar]
- Gilbert, A. Urban Growth, Employment and Housing. In Latin American Development: Geographical Perspectives; Preston, D.A., Ed.; Longman, Harlow, Essex: Harlow, UK, 1987; pp. 169–198. [Google Scholar]
- Hardoy, J.; Pandiella, G. Urban Poverty and Vulnerability to Climate Change in Latin America. Environ. Urban. 2009, 21, 203–224. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.P.; Polidori, M.C.; Peres, O.M.; Saraiva, M.V. The Place of the Poor in the City: Theoretical Exploration on Peripherization and Poverty in the Production of Latin-American Urban Space. Urbe 2017, 9, 430–442. [Google Scholar] [CrossRef] [Green Version]
- Winsemius, H.C.; Jongman, B.; Veldkamp, T.I.E.; Hallegatte, S.; Bangalore, M.; Ward, P.J. Disaster Risk, Climate Change, and Poverty: Assessing the Global Exposure of Poor People to Floods and Droughts. Environ. Dev. Econ. 2018, 23, 328–348. [Google Scholar] [CrossRef] [Green Version]
- Dodman, D.; Archer, D.; Satterthwaite, D. Editorial: Responding to Climate Change in Contexts of Urban Poverty and Informality. Environ. Urban. 2019, 31, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Gran Castro, J.A.; Robles, S.L.R. Climate Change and Flood Risk: Vulnerability Assessment in an Urban Poor Community in Mexico. Environ. Urban. 2019, 31, 75–92. [Google Scholar] [CrossRef]
- Bubeck, P.; Botzen, W.J.W.; Kreibich, H.; Aerts, J.C.J.H. Detailed Insights into the Influence of Flood-Coping Appraisals on Mitigation Behaviour. Glob. Environ. Chang. 2013, 23, 1327–1338. [Google Scholar] [CrossRef]
- Lo, A.Y. The Role of Social Norms in Climate Adaptation: Mediating Risk Perception and Flood Insurance Purchase. Glob. Environ. Chang. 2013, 23, 1249–1257. [Google Scholar] [CrossRef]
- Lo, A.Y.; Xu, B.; Chan, F.K.S.; Su, R. Social Capital and Community Preparation for Urban Flooding in China. Appl. Geogr. 2015, 64, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Penning-Rowsell, E.C.; Sultana, P.; Thompson, P.M. The ‘Last Resort’? Population Movement in Response to Climate-Related Hazards in Bangladesh. Environ. Sci. Policy 2013, 27, S44–S59. [Google Scholar] [CrossRef]
- Watson, V. “The Planned City Sweeps the Poor Away...”: Urban Planning and 21st Century Urbanisation. Prog. Plann. 2009, 72, 151–193. [Google Scholar] [CrossRef]
- Abramo, P. The Com-Fused City: Land Market and the Production of Urban Infrastructure in Great Latin-American Cities. Eure Rev. Latinoam. Estud. Urbano Reg. 2012, 38, 35–69. [Google Scholar]
- Barros, J.X. Exploring Urban Dynamics in Latin American Cities Using an Agent-Based Simulation Approach. In Agent-Based Models of Geographical Systems; Heppenstall, A.J., Crooks, A.T., See, L.M., Batty, M., Eds.; Springer: Dordrecht, The Netherlands, 2004; ISBN 978-90-481-8926-7. [Google Scholar]
- Wheaton, W.C. Urban Spatial Development with Durable but Replaceable Capital. J. Urban Econ. 1982, 12, 53–67. [Google Scholar] [CrossRef]
- Janoschka, M. El Nuevo Modelo de La Ciudad Latinoamericana: Fragmentación y Privatización. EURE 2002, 28, 85. [Google Scholar] [CrossRef]
- Adger, W.N. Social and Ecological Resilience: Are They Related? Prog. Hum. Geogr. 2000, 24, 347–364. [Google Scholar] [CrossRef]
- Bubeck, P.; Botzen, W.J.W.; Aerts, J.C.J.H. A Review of Risk Perceptions and Other Factors That Influence Flood Mitigation Behavior. Risk Anal. 2012, 32, 1481–1495. [Google Scholar] [CrossRef] [Green Version]
- Ajibade, I.; McBean, G. Climate Extremes and Housing Rights: A Political Ecology of Impacts, Early Warning and Adaptation Constraints in Lagos Slum Communities. Geoforum 2014, 55, 76–86. [Google Scholar] [CrossRef]
- Hjälm, A. The ‘Stayers’: Dynamics of Lifelong Sedentary Behaviour in an Urban Context. Popul. Space Place 2014, 20, 569–580. [Google Scholar] [CrossRef]
- Bergman, P.; Chetty, R.; DeLuca, S.; Hendren, N.; Katz, L.F.; Palmer, C. Creating Moves to Opportunity: Experimental Evidence on Barriers to Neighborhood Choice. NBER Work. Pap. Ser. 2019, 26164. [Google Scholar] [CrossRef]
- Feitosa, F.F.; Le, Q.B.; Vlek, P.L.G.; Miguel V Monteiro, A.; Rosemback, R. Countering Urban Segregation in Brazilian Cities: Policy-Oriented Explorations Using Agent-Based Simulation. Environ. Plan. B Plan. Des. 2012, 39, 1131–1150. [Google Scholar] [CrossRef]
- Reyer, C.P.O.; Adams, S.; Albrecht, T.; Baarsch, F.; Boit, A.; Canales Trujillo, N.; Cartsburg, M.; Coumou, D.; Eden, A.; Fernandes, E.; et al. Climate Change Impacts in Latin America and the Caribbean and Their Implications for Development. Reg. Environ. Chang. 2017, 17, 1601–1621. [Google Scholar] [CrossRef]
- Magrin, G.O.; Marengo, J.A.; Boulanger, J.-P.; Buckeridge, M.S.; Castellanos, E.; Poveda, G.; Scarano, F.R.; Vicuña, S. Central and South America. In Climate Change 2014: Impacts, Adaptation and Vulnerability Part B: Regional Aspects Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Girardin, L.O., Ometto, J.P., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 1499–1566. [Google Scholar] [CrossRef] [Green Version]
- Marques, W.C. The Temporal Variability of the Freshwater Discharge and Water Levels at the Patos Lagoon, Brazil. Int. J. Geosci. 2012, 03, 758–766. [Google Scholar] [CrossRef] [Green Version]
- Fundação Zoobotânica; SEMA/RS; MCN/RS. Parque Estadual Do Delta Do Jacuí: Plano de Manejo; Secretaria Estadual do Meio Ambiente do Rio Grande do Sul, Fundação Zoobotânica, Museu de Ciências Naturais/RS: Porto Alegre, Brazil, 2014. [Google Scholar]
- IBGE. National Continuous Sampling Survey (PNAD); IBGE: Rio de Janeiro, Brazil, 2020.
- Allasia, D.G.; Tassi, R.; Bemfica, D.; Goldenfum, J.A. Decreasing Flood Risk Perception in Porto Alegre—Brazil and Its Influence on Water Resource Management Decisions. IAHS-AISH Proc. Rep. 2015, 370, 189–192. [Google Scholar] [CrossRef] [Green Version]
- PNUD; IPEA; Fundação João Pinheiro. Atlas of Human Development in Brazil. Available online: http://www.atlasbrasil.org.br/2013/en (accessed on 24 May 2020).
- World Bank Group. Convivendo Com as Inundações: Um Estudo Para Construir Resiliência Com as Comunidades de Porto Alegre; World Bank Group: Porto Alegre, Brazil, 2019. [Google Scholar]
- Martinbiancho, G.K.; Medeiros, M.S.; Fleischmann, A.S.; Dornelles, F.; Fan, F.M.; Paiva, R.; Lopes, V.A.R.; Collischonn, W. Aplicação Preliminar do Modelo Hidrológico MGB-IPH para Análise do Evento Extremo de Cheia em 1941 no Estado do Rio Grande do Sul. In Proceedings of the I Encontro Nacional de Desastres, Porto Alegre, Brazil, 25–27 July 2018; Associação Brasileira de Recursos Hídricos: Porto Alegre, Brazil, 2018. [Google Scholar]
- World Bank Group. Convivendo Com as Inundações—Nota Metodológica; World Bank Group: Porto Alegre, Brazil; Prefeitura Municipal de Porto Alegre: Porto Alegre, Brazil, 2019. [Google Scholar]
- Long, J.S.; Freese, J. Regression Models for Categorical Dependent Variables Using Stata; Stata Press: College Station, TX, USA, 2006; ISBN 1597180114. [Google Scholar]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Ord, J.K.; Getis, A. Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geogr. Anal. 1996, 27, 286–306. [Google Scholar] [CrossRef]
- IBGE. Censo Demográfico 2010: Dados Do Universo Agregados Por Setores; IBGE: Brasília, Brazil, 2011.
- Waters, J.; Adger, W.N. Spatial, Network and Temporal Dimensions of the Determinants of Adaptive Capacity in Poor Urban Areas. Glob. Environ. Chang. 2017, 46, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.P.; Rodriguez Lopez, J.M.; Heider, K.; Steinwärder, L.; Scheffran, J. One Year of the COVID-19 Pandemic in the Global South: Uneven Vulnerabilities in Brazilian Cities. Erdkunde 2022, 76, 75–91. [Google Scholar] [CrossRef]
- Lorenz, C.; Bermudi, P.M.M.; de Aguiar, B.S.; Failla, M.A.; Toporcov, T.N.; Chiaravalloti-Neto, F.; Barrozo, L.V. Examining Socio-Economic Factors to Understand the Hospital Case Fatality Rates of COVID-19 in the City of São Paulo, Brazil. Trans. R. Soc. Trop. Med. Hyg. 2021, 115, 1282–1287. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira Santos, A.; Rodriguez-Lopez, J.M.; Chiarel, C.; Scheffran, J. Unequal Landscapes: Vulnerability Traps in Informal Settlements of the Jacuí River Delta (Brazil). Urban Sci. 2022, 6, 76. https://doi.org/10.3390/urbansci6040076
Pereira Santos A, Rodriguez-Lopez JM, Chiarel C, Scheffran J. Unequal Landscapes: Vulnerability Traps in Informal Settlements of the Jacuí River Delta (Brazil). Urban Science. 2022; 6(4):76. https://doi.org/10.3390/urbansci6040076
Chicago/Turabian StylePereira Santos, Alexandre, Juan Miguel Rodriguez-Lopez, Cleiton Chiarel, and Jürgen Scheffran. 2022. "Unequal Landscapes: Vulnerability Traps in Informal Settlements of the Jacuí River Delta (Brazil)" Urban Science 6, no. 4: 76. https://doi.org/10.3390/urbansci6040076
APA StylePereira Santos, A., Rodriguez-Lopez, J. M., Chiarel, C., & Scheffran, J. (2022). Unequal Landscapes: Vulnerability Traps in Informal Settlements of the Jacuí River Delta (Brazil). Urban Science, 6(4), 76. https://doi.org/10.3390/urbansci6040076