Emissions of Greenhouse Gases from Municipal Solid Waste Management System in Ho Chi Minh City of Viet Nam
Abstract
:1. Introduction
2. Ho Chi Minh City
3. Methodology
3.1. Data Collection
3.2. GHG Emission Estimation
4. Result and Discussion
4.1. Waste Generation and Management Practices
4.2. Waste Characterization
4.3. GHG Emission Estimation
4.3.1. GHG Emissions from MSW Transportation
4.3.2. GHG Emissions from Anaerobic Decomposition of Organic Waste in Landfills
4.3.3. GHG Emissions from Composting
4.3.4. Estimation of GHG from Waste Recycling
4.3.5. Net GHG Emissions from the Whole Waste Management System
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, P.M.V. IPCC, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Midgley Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Gautam, S.P.; Bundela, P.S.; Pandey, A.K.; Awasthi, M.K.; Sarsaiya, S. Composting of municipal solid waste of Jabalpur city. Glob. J. Environ. Res. 2010, 4, 43–46. [Google Scholar]
- Thanomnim, B.; Papong, S.; Onbhuddha, R. The methodology to evaluate food Waste generation with existing data in Thailand. Thai Environ. Eng. J. 2022, 36, 1–9. Available online: https://so05.tci-thaijo.org/index.php/teej/article/view/255003/174182 (accessed on 27 April 2022).
- UNEP (United Nations Environmental Programme). Waste Management in ASEAN Countries: Summary Report. 2017. Available online: https://www.unep.org/resources/report/waste-management-asean-countries-summary-report (accessed on 20 December 2017).
- UNFCCC. GHG Emission Summary of Viet Nam. 2010. Available online: https://unfccc.int/files/ghg_data/ghg_data_unfccc/ghg_profiles/application/pdf/vnm_ghg_profile.pdf (accessed on 20 March 2011).
- Verma, R.; Borongan, G.; Memon, M. Municipal Solid Waste Management in Ho Chi Minh City, Viet Nam, Current Practices and Future Recommendation. Procedia Environ. Sci. 2016, 35, 127–139. [Google Scholar] [CrossRef]
- Menikpura, N.; Sang-Arun. User Manual Estimation Tool for Greenhouse Gas (GHG) Emissions from Municipal Solid Waste (MSW) Management in a Life Cycle Perspective. September 2013. Available online: http://enviroscope.iges.or.jp/modules/envirolib/view.php?docid=4273 (accessed on 30 September 2013).
- Buuren, J.V.; Potting, J. Project Report, Deliverable 3.1: Relevant Potential Impacts and Methodologies for Environmental Impacts Assessment Related to Solid Waste Management in Asian Developing Countries; ISSOWAMA (Integrated Sustainable Solid Waste Management) in Asia Project: Bremerhaven, Germany, 2011. [Google Scholar]
- IPCC. Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Kanagawa, Japan, 2006. [Google Scholar]
- Kristanto, G.A.; Pratama, M.A.; Rahmawati, D.F. Estimation of greenhouse gas emissions from solid waste management and wastewater treatment in the Nizam Zachman Fishery Port, Jakarta, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2020, 423, 012039. [Google Scholar] [CrossRef]
- Kristanto, G.A.; Koven, W. Estimating greenhouse gas emissions from municipal solid waste management in Depok, Indonesia. City Environ. Interact. 2019, 4, 100027. [Google Scholar] [CrossRef]
- Tun, M.M.; Juchelková, D. Estimation of greenhouse gas emissions: An alternative approach to waste management for reducing the environmental impacts in Myanmar. Environ. Eng. Res. 2019, 24, 618–629. [Google Scholar] [CrossRef] [Green Version]
- Beltran-Siñani, M.; Gil, A. Accounting Greenhouse Gas Emissions from Municipal Solid Waste Treatment by Composting: A Case of Study Bolivia. Eng 2021, 2, 267–277. [Google Scholar] [CrossRef]
- Moghadam, M.A.; Feizi, R.; Fard, M.P.; Fard, N.J.H.; Omidinasab, M.; Faraji, M.; Shenavar, B. Estimating greenhouse emissions from sanitary landfills using Land-GEM and IPCC model based on realistic scenarios of different urban areas: A case study of Iran. J. Environ. Health Sci. Eng. 2021, 19, 819–830. [Google Scholar] [CrossRef] [PubMed]
- DONRE. DONRE (Department of Natural Resource and Management)-Ho Chi Minh City (2012), The Report on Overview of the SWM System of HCMC 2012. 2012. Available online: http://www.donre.hochiminhcity.gov.vn/default.aspx (accessed on 17 May 2012).
- DORNE. DONRE (Department of Natural Resource and Management)-Ho Chi Minh City (2014), The Report on Overview of the SWM System of HCMC 2014. 2014. Available online: http://www.donre.hochiminhcity.gov.vn/default.aspx (accessed on 10 March 2014).
- DONRE. DONRE (Department of Natural Resource and Management)-Ho Chi Minh City (2009), The Report on Overview of the SWM System of HCMC 2009. 2009. Available online: http://www.donre.hochiminhcity.gov.vn/default.aspx (accessed on 20 September 2009).
- Hoornweg, D.; Bhada-Tata, P. What a Waste, A Global Review of Solid Waste Management, Urban Development & Local Government Unit World Bank, 1818 H Street, NW, Washington, DC 20433, USA. 2012. Available online: https://openknowledge.worldbank.org/handle/10986/17388 (accessed on 31 March 2012).
S.No. | Sources | Quantity of Waste (Tonnes/Day) | Percentage (%) Composition |
---|---|---|---|
1. | Municipal solid waste (MSW) | 6800–7000 | 85.6 |
2. | Construction and demolition waste | 500–800 | 9.8 |
3. | Healthcare waste | 20–25 | 0.3 |
4. | Hazardous waste | 250–350 | 4.3 |
Total solid waste generation | 8175 |
Factor | Unit | Method of Deriving |
---|---|---|
Amount of mix waste disposal | Tonne/month | Amount/description |
Amount deposited | Gg/Year | MSW disposal (tonnes/month) × 12/1000 |
Degradable Organic Carbon (DOC) | DOC | DOCMSW = % of food waste × 0.15 + % of garden waste × 0.43 + % of paper waste × 0.4 + % of textile waste × 0.24 |
Fraction of DOC decomposing under Anaerobic condition (DOCf) | DOCf | Recommended value is 0.5 |
Methane generation rate constant | k | k value is dependent on waste composition of location kMSW = % of food waste × 0.4 + % of garden waste × 0.17 + % of paper waste × 0.07 + % of textile waste × 0.07 + % of disposal nappies × 0.17 + % of wood and straw × 0.035 |
Half- life time(t1/2, years) | h = In(2)/k | Can be calculated based on derived k value |
exp1 | exp(-k) | Can be calculated based on derived k value |
Process start in decomposition year, month M | M | After 12 months |
Exp2 | exp(-k((13-M)/12 | Can be calculated based on derived k and M values |
Fraction to CH4 | F | The recommended value 0.5 |
Methane oxidation on landfill cover | OX | The recommended value for the sanitary landfill with landfill cover is 0.1. for open dumpsites the OX value would be zero |
MCF for the landfill/open dumpsite | MCF | According to management practices, this value can change, MCF values for managed (has landfill cover and liner), unmanaged-deep (>5 m waste), unmanaged-shallow (<5 m waste), uncategorized are 1, 0.8, 0.4, and 0.6 respectively. |
At the Sanitary Landfill (Decomposition) | ||
---|---|---|
Activities | Quantity | Unit |
Total mix waste disposal at the landfill sites | 255,000 | tonnes/months |
Total disposal capacity per year | 3,060,000 | tonnes/year |
Methane emission from disposed waste | 113.62 | Gg/year |
kg of CH4/tonne | 37.13 | kg of CH4/tonne |
Conversion of CH4 to CO2-eq | 21.00 | kg of CO2-eq/kg of CH4 |
GHG emission from landfilling/open dumping | 779.78 | kg of CO2-eq/tonne of waste |
At the Sanitary Landfill (Operational Activities) | ||
Diesel consumption for operating machineries at the landfill | 120,000 | L/month |
Total waste handled at the landfill sites | 255,000 | tonnes/month |
A diesel requirement | 0.47 | L/tonne of waste |
The total energy in consumed diesel | 17.14 | MJ/tonne of waste |
Default CO2 emission factor for combustion | 74,100 | kg CO2/TJ |
GHG emissions due to fossil fuel consumption | 1.27 | kg of CO2 eq/tonne of waste |
Total GHG emissions from sanitary landfill sites | 781.05 | kg of CO2 eq/tonne of waste |
Activities | Quantity | Unit |
---|---|---|
Total amount of food waste use for composting | 11,000 | tonnes/month |
Total amount of fossil-fuel use for operational activities | 64,000 | L/month |
Total amount of compost production | 4800 | tonnes/month |
GHG emissions from operational activities | 15.68 | kg of CO2-eq/tonne of waste |
GHG emissions from waste degradation | 177.00 | kg of CO2-eq/tonne of waste |
Direct GHG emissions from composting | 192.68 | kg of CO2-eq/tonne of waste |
Avoided GHG emissions from organic waste landfilling | 892.30 | kg of CO2-eq/tonne of waste |
Net GHG emissions from composting (life cycle perspective) | −699.12 | kg of CO2-eq/tonne of organic waste |
No. | Type of Waste | Quantity of Recycling of Waste (Tonnes/Month) | ||||
---|---|---|---|---|---|---|
202 Junkshops (Group A) | Composition (in %) | 100 Junkshops (Group B) | Composition (in %) | Total Waste Recycled (A+B) | ||
1. | Paper | 1696.8 | 55.7 | 1667 | 28.89 | 3363.8 |
2. | Plastic | 140.2 | 4.6 | 3654 | 63.33 | 3794.2 |
3. | Nilon | 39.2 | 1.3 | - | 0.00 | 39.2 |
4. | Aluminum | 40.9 | 1.3 | 78.5 * | 1.36 * | 1124.3 * |
5. | Iron | 1004.8 | 33.0 | |||
6. | Zinc | 0.1 | 0.0 | |||
7. | Lead | 0.01 | 0.0 | - | 0.1 | |
8. | Glass | 48.3 | 1.6 | 336 | 5.82 | 384.3 |
9. | Rag | 36.7 | 1.2 | - | 0.00 | 36.7 |
10. | Scrap | 36.6 | 1.2 | - | 0.00 | 36.6 |
11. | Rubber | - | - | 34.6 | 0.60 | 34.6 |
Total | 3043.6 | 5770.1 | 8913.7 |
Activity | GHG Emissions (kg of CO2-eq/Tonne of Waste) | Total MSW (Tonnes/Year) | GHG Emissions (Tonnes of CO2-eq./Year) | ||
---|---|---|---|---|---|
Direct Emission | Indirect Emission Saving | Net Emission | |||
Transportation | 6.15 | 0.00 | 6.15 | 2,365,565 | 14,548 |
Landfilling of mix MSW | 781.05 | 0.00 | 781.05 | 3,060,000 | 2,390,013 |
Composting | 192.68 | −892.30 | −699.12 | 768,000 | −536,924 |
Anaerobic Digestion | NA | NA | NA | NA | NA |
Mechanical Biological Treatment | NA | NA | NA | NA | NA |
Recycling | 1263.95 | −3181.13 | −1917.18 | 105,764.4 | −202,769.39 |
Incineration | NA | NA | NA | NA | NA |
Open burning | NA | NA | NA | NA | NA |
Whole System | 768.61 | −72.47 | 696.14 | 1,664,867.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verma, R.L.; Borongan, G. Emissions of Greenhouse Gases from Municipal Solid Waste Management System in Ho Chi Minh City of Viet Nam. Urban Sci. 2022, 6, 78. https://doi.org/10.3390/urbansci6040078
Verma RL, Borongan G. Emissions of Greenhouse Gases from Municipal Solid Waste Management System in Ho Chi Minh City of Viet Nam. Urban Science. 2022; 6(4):78. https://doi.org/10.3390/urbansci6040078
Chicago/Turabian StyleVerma, Ram Lal, and Guilberto Borongan. 2022. "Emissions of Greenhouse Gases from Municipal Solid Waste Management System in Ho Chi Minh City of Viet Nam" Urban Science 6, no. 4: 78. https://doi.org/10.3390/urbansci6040078
APA StyleVerma, R. L., & Borongan, G. (2022). Emissions of Greenhouse Gases from Municipal Solid Waste Management System in Ho Chi Minh City of Viet Nam. Urban Science, 6(4), 78. https://doi.org/10.3390/urbansci6040078