Impact of Tourist Areas on the Electrical Grid: A Case Study of the Southern Dominican Republic
Abstract
:1. Introduction
- Evaluating the impact produced by the increase in electrical demand in the transmission lines on the frequency stability and system voltage, which impacts the quality of the energy service provided.
- Presenting some differences between the North American Reliability Corporation (NERC)’s primary international frequency regulations and the regulations applied in the Dominican Republic to maintain frequency stability.
- A methodological study with load profiles of areas used to evaluate the long-term impact of the power capacity by applying quasi-dynamic and RMS/EMT simulations using DIgSILENT software.
2. Methodology
3. Stability in Electrical Grids
4. Case Study
5. Results and Discussion
6. Conclusions and Future Works
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Ge, Y.Y.; Mao, X.; Xue, W.; Xu, N. Improved Energy Structure Prediction Model Based on Energy Demand Forecast. In Proceedings of the 2018 2nd IEEE conference on energy internet and energy system integration (EI2), Beijing, China, 20–22 October 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Patil, S.; Deshmukh, S.R. Development of control strategy to demonstrate load priority system for demand response program. In Proceedings of the 2019 5th IEEE International WIE Conference on Electrical and Computer Engineering, Bengaluru, India, 15–16 November 2019; pp. 1–6. [Google Scholar] [CrossRef]
- IEA World Energy Outlook. 2020. Available online: https://www.iea.blob.core.windows.net/assets/a72d8abf-de08-4385-8711-b8a062d6124a/WEO2020.pdf (accessed on 19 February 2023).
- Patel, T.; Parmar, M. (Special Issue for ITECE 2016) Power System Stability and Control. Int. J. Adv. Res. Eng. Sci. Technol. 2017, 3, 5. Available online: https://ijarest.com/index.php/ijarest/article/view/2019 (accessed on 1 February 2023).
- Meo, M.S.; Chowdhury, M.A.F.; Shaikh, G.M.; Ali, M.; Masood Sheikh, S. Asymmetric impact of oil prices, exchange rate, and inflation on tourism demand in Pakistan: New evidence from nonlinear ARDL. Asia Pacific J. Tour. Res. 2018, 23, 408–422. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, S.; Zhu, Y.; Wang, D.; Liu, J. Modeling, planning, application and management of energy systems for isolated areas: A review. Renew. Sustain. Energy Rev. 2018, 82, 460–470. [Google Scholar] [CrossRef]
- Suanpang, P.; Jamjuntr, P.; Jermsittiparsert, K.; Kaewyong, P. Autonomous Energy Management by Applying Deep Q-Learning to Enhance Sustainability in Smart Tourism Cities. Energies 2022, 15, 1906. [Google Scholar] [CrossRef]
- Orús, A. El Turismo en el Mundo—Datos Estadísticos|Statista. Available online: https://es.statista.com/temas/3612/el-turismo-en-el-mundo/#:~:text=En%202021%2C%20seg%C3%BAn%20datos%20de,inicio%20de%20la%20pandemia%20de (accessed on 10 October 2021).
- Statista Llegadas de Turistas Internacionales a América 1990–2020|Statista. Available online: https://es.statista.com/estadisticas/632568/llegadas-de-turistas-internacionales-a-america/ (accessed on 10 October 2021).
- Banco Central de la República Dominicana Estadísticas Sector Turismo. Available online: https://www.bancentral.gov.do/a/d/2537-sector-turismo (accessed on 30 December 2022).
- Thomas, D.; Deblecker, O.; Ioakimidis, C.S. Optimal design and techno-economic analysis of an autonomous small isolated microgrid aiming at high RES penetration. Energy 2016, 116, 364–379. [Google Scholar] [CrossRef]
- Jorge Eduardo Játiva Sierra. Impacto de la generación distribuida en la estabilidad del voltaje en los sistemas de distribución, Universidad Politécnica Salesiana Sede Quito. 2020. Available online: http://dspace.ups.edu.ec/handle/123456789/19169, (accessed on 10 October 2021).
- Stefánsson, Þ.; Sæþórsdóttir, A.D.; Hall, C.M. When tourists meet transmission lines: The effects of electric transmission lines on tourism in Iceland. Energy Res. Soc. Sci. 2017, 34, 82–92. [Google Scholar] [CrossRef]
- Zhang, D.; Li, H.; Zhu, H.; Zhang, H.; Goh, H.H.; Wong, M.C.; Wu, T. Impact of COVID-19 on Urban Energy Consumption of Commercial Tourism City. Sustain. Cities Soc. 2021, 73, 103133. [Google Scholar] [CrossRef] [PubMed]
- Refaat, S.S.; Abu-Rub, H.; Sanfilippo, A.P.; Mohamed, A. Impact of grid-tied large-scale photovoltaic system on dynamic voltage stability of electric power grids. IET Renew. Power Gener. 2018, 12, 157–164. [Google Scholar] [CrossRef]
- GmbH, D. Quasi-Dynamic Simulation—DIgSILENT. Available online: https://www.digsilent.de/en/quasi-dynamic-simulation.html (accessed on 3 November 2022).
- Organismo Coordinador del Sistema Eléctrico Nacional Interconectado de la República Dominicana (CO-SENI) Operación del Sistema Eléctrico Nacional Interconectado de la República Dominicana (SENI). Available online: https://www.dropbox.com/sh/rhs9u44j7z79u1k/AACEZm9U25eOQNY-XQiDQZMZa/UNIFILAR%20SENI?dl=0&subfolder_nav_tracking=1 (accessed on 9 November 2022).
- Jabir, H.J.; Teh, J.; Ishak, D.; Abunima, H. Impacts of Demand-Side Management on Electrical Power Systems: A Review. Energies 2018, 11, 1050. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Xin, B.; Zhu, H.; Ye, Z. Energy-Saving Operation Strategy for Hotels Considering the Impact of COVID-19 in the Context of Carbon Neutrality. Sustainability 2022, 14, 14919. [Google Scholar] [CrossRef]
- Bharati, A.K.; Ajjarapu, V. SMTD Co-Simulation Framework with HELICS for Future-Grid Analysis and Synthetic Measurement-Data Generation. IEEE Trans. Ind. Appl. 2022, 58, 131–141. [Google Scholar] [CrossRef]
- Lai, Y.; Hu, Y.; Li, W.; Liu, F.; Qie, Z.; Sun, Z. Research on Voltage Stability of Reactive Power Weak Support Regions in Countries along the Belt and Road Based on PSS/E. In Proceedings of the 2022 5th International Conference on Energy, Electrical and Power Engineering (CEEPE), Chongqing, China, 22–24 April 2022; pp. 235–239. [Google Scholar]
- de Lima Vianna, P.; Viana, M.S.; Manassero, G.; Udaeta, M.E. A General Analysis of the Distributed Generation Impact on Electrical Energy Planning. In Proceedings of the 2018 53rd International Universities Power Engineering Conference (UPEC), Glasgow, UK, 4–7 September 2018; pp. 1–6. [Google Scholar]
- Audring, D.; Kuri, A. Modelling and challenges of integration of large renewable power plants. In Proceedings of the 2021 56th International Universities Power Engineering Conference (UPEC), Middlesbrough, UK, 31 August–3 September 2021; pp. 1–6. [Google Scholar]
- Al-Akayshee, A.S.; Kuznetsov, O.N.; Alwazah, I.; Deeb, M. Investigation of the Performance of Iraqi 400kV Electrical Network in DIgSILENT Power Factory. In Proceedings of the 2020 International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), Moscow, Russia, 12–14 March 2020; pp. 1–6. [Google Scholar]
- Adetokun, B.; Muriithi, C. Application and control of flexible alternating current transmission system devices for voltage stability enhancement of renewable-integrated power grid: A comprehensive review. Heliyon 2021, 7, 7. [Google Scholar] [CrossRef] [PubMed]
- Gu, M.; Meegahapola, L.; Wong, K.L. Coordinated Voltage and Frequency Control in Hybrid AC/MT-HVDC Power Grids for Stability Improvement. IEEE Trans. Power Syst. 2021, 36, 635–647. [Google Scholar] [CrossRef]
- Mukherjee, N.; De, D.; Nandagaoli, N. Effect of sudden variation of grid voltage in primary frequency control application using converter based energy storage systems for weak grid systems. In Proceedings of the 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe), Warsaw, Poland, 11–14 September 2017; pp. P.1–P.10. [Google Scholar]
- Bompard, E.; Mazza, A.; Toma, L. Classical grid control: Frequency and voltage stability. In Converter-Based Dynamics and Control of Modern Power Systems; Academic Press: Cambridge, MA, USA, 2021; p. 360. ISBN 978-0-12-818491-2. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780128184912000031 (accessed on 1 February 2023).
- Ojo, Y.; Benmiloud, M.; Lestas, I. Frequency and voltage control schemes for three-phase grid-forming inverters. IFAC PapersOnLine 2020, 53, 13471–13476. [Google Scholar] [CrossRef]
- Yan, L.; Xiaohui, Q.; Yongning, C.; Xinshou, T.; Sujuan, S.; Shenglun, Z.; Xiangmei, K.; Lei, S. Study on Requirement of Control and Stability with Renewable Energy Generation Grid Integration. In Proceedings of the 2019 IEEE 8th International Conference on Advanced Power System Automation and Protection (APAP), Xi’an, China, 21–24 October 2019; pp. 26–30. [Google Scholar]
- Khamies, M.; Magdy, G.; Ebeed, M.; Kamel, S. A robust PID controller based on linear quadratic gaussian approach for improving frequency stability of power systems considering renewables. ISA Trans. 2021, 117, 118–138. [Google Scholar] [CrossRef] [PubMed]
- Guo, J. Application of a novel adaptive sliding mode control method to the load frequency control. Eur. J. Control 2021, 57, 172–178. [Google Scholar] [CrossRef]
- Dreidy, M.; Mokhlis, H.; Mekhilef, S. Inertia response and frequency control techniques for renewable energy sources: A review. Renew. Sustain. Energy Rev. 2017, 69, 144–155. [Google Scholar] [CrossRef]
- Golpîra, H.; Seifi, H.; Haghifam, M.R. Dynamic equivalencing of an active distribution network for large-scale power system frequency stability studies. IET Gener. Transm. Distrib. 2015, 9, 2245–2254. [Google Scholar] [CrossRef]
- Vazquez, S.; Rodriguez, J.; Rivera, M.; Franquelo, L.G.; Norambuena, M. Model Predictive Control for Power Converters and Drives: Advances and Trends. IEEE Trans. Ind. Electron. 2017, 64, 935–947. [Google Scholar] [CrossRef] [Green Version]
- Counsil, W.E.C. Voltage Stability Criteria. Available online: https://www.wecc.org/Reliability/Voltage%20Stability%20Criteria%20May%201998.pdf (accessed on 10 October 2021).
- Electricidad, S. de Reglamento para la Aplicación de la Ley General de Electricidad Número 125-01. 2012, 314. Available online: https://sie.gob.do/images/sie-documentos-pdf/leyes/LeyGeneraldeElecctricidadNo.125-01.pdf, (accessed on 10 October 2021).
- Superintendencia de Electricidad (SIE) Resolucion SIE-060-2015-MEM; Distrito Nacional: Santo Domingo, Dominican Republic, 2015.
- SENI, O.C. Informe Anual de Operaciones y Transacciones Económicas. 2020. Available online: https://www.oc.do/Informes/Administrativos/Informe-Anual/EntryId/175028 (accessed on 10 October 2021).
- Roa, L.; Ogando, L.; LastNameSimó, A.; Aquino, F.; De La Cruz, S. Organismo Coordinador del Sistema Eléctrico Nacional Interconectado de la República Dominicana Para: Agentes del mem Preparado por: Gerencia de Operaciones Oc-Seni. Available online: https://www.oc.org.do/DesktopModules/Bring2mind/DMX/API/Entries/Download?Command=Core_Download&EntryId=160872&language=es-ES&PortalId=0&TabId=188 (accessed on 19 February 2022).
- Lu, Y.; AbouRizk, S.M. Automated Box–Jenkins forecasting modelling. Autom. Constr. 2009, 18, 547–558. [Google Scholar] [CrossRef]
Ref. | Contributions | Limitations | Applied Software |
---|---|---|---|
[25] | FACTS control application to improve the stability of the electrical grid voltage | Does not cover frequency stability | Not specified |
[26] | The control scheme for an MV-HVDC power system to improve stability | The study only focused on a multidimensional droop-based control strategy | DIgSILENT PowerFactory |
[27] | The effect of voltage variation on frequency control was analyzed through phase loop dynamics | A unique problem arises in the frequency control structure when the voltage varies suddenly | MATLAB/Simulink |
[28] | Proposed a controller for voltage and frequency called an automatic voltage regulator, which can be considered as a solution for tuning frequency | Unable to keep voltage and frequency balanced when connected to the grid | MATLAB/Simulink |
[29] | Proposed a simple frequency controller that uses the inverter’s output current as feedback to adapt its frequency | Existing schematics only focus on power and having an excellent transient response | MATLAB |
[30] | Provides an introduction to the grid’s control and stability of integrating renewable energies | The study was not detailed in the context of the electricity market | SimPowerSystems |
Type | Time Responses |
---|---|
Stability against great disturbances | 10 s to 10 min |
Stability against small disturbances | Instant |
Short-term stability | Several seconds |
Long-term stability | Several seconds |
Ref. | Method | Advantages | Application |
---|---|---|---|
[31] | Linear–quadratic control | Eliminates oscillation in three-phase investors, harmonic distortion and voltage degradation, and frequency in photovoltaic systems connected to the grid | Compensate the voltage on the line and optimize the energy flow to the loads |
[32] | Sliding mode control | Guarantees stability and robustness against the uncertainties of the parameters | Used in nonlinear systems and operating systems with discrete timing |
[33] | Robust control | Rectifies frequency fluctuations in investors connected to the grid | Maintain stability in the mode connected to the grid and current control in three-phase investors |
[34] | P-Q control | Ensures a generation equally distributed between active power and reactive power | Control the frequency and voltage during shared loads |
[35] | Predictive control of the model | The concepts in this management method are simple, and its controller is heuristic | Used when there are multiple input and output control problems |
Province | Type of Generation | Generation Plant | Installed Capacity (MW) | Year of Initial Operation |
---|---|---|---|---|
Pedernales | Wind | Los Cocos I | 25.20 | 2012 |
Wind | Quilvio Cabrera | 8.25 | 2011 | |
Barahona | Photovoltaic | Canoa | 25.00 | 2017 |
Thermal power plant | Barahona-Carbón | 51.80 | 2001 | |
Wind | Larimar I | 49.50 | 2016 | |
Wind | Larimar II | 48.30 | 2018 | |
Wind | Los Cocos II | 52.00 | 2012 | |
Independencia | Hydroelectric | Las Damas | 7.50 | 1967 |
Bahoruco | - | - | - | - |
Parameter | NERC | Dominican Republic |
---|---|---|
Active power between 1.5 and 10% of its value | √ | √ |
Frequency insensitivity between 10 and 30 mHz | √ | √ |
The dead band between 0 and 500 mHz | √ | √ |
Frequency drop between 2 and 12% | √ | √ |
Maximum justified delay (2 s) | √ | |
Activation time (30 s) | √ | √ |
Distributed hydroelectric units for regulation | √ |
Years | Load (%) | Current (kA) |
---|---|---|
2021 | 31.022 | 0.152 |
2022 | 30.193 | 0.148 |
2023 | 29.435 | 0.144 |
2024 | 28.745 | 0.141 |
2025 | 28.196 | 0.138 |
2026 | 27.781 | 0.136 |
2027 | 27.501 | 0.135 |
2028 | 27.348 | 0.134 |
2029 | 27.324 | 0.135 |
2030 | 27.428 | 0.135 |
2031 | 27.664 | 0.137 |
2032 | 28.031 | 0.139 |
Years | Bar with Lower Average Voltage | Bar with Higher Average Voltage |
---|---|---|
2021 | 1.007 | 1.082 |
2022 | 1.007 | 1.079 |
2023 | 1.006 | 1.075 |
2024 | 1.006 | 1.071 |
2025 | 1.005 | 1.068 |
2026 | 1.005 | 1.064 |
2027 | 1.005 | 1.060 |
2028 | 1.004 | 1.056 |
2029 | 1.004 | 1.052 |
2030 | 1.003 | 1.047 |
2031 | 1.003 | 1.043 |
2032 | 1.003 | 1.037 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aybar-Mejía, M.; Andrés, R.; Cabral-Soto, A.; Montás, C.; Núñez-García, W.-J.; Matos, E.A.J.; Sbriz-Zeitun, G.; Mariano-Hernández, D. Impact of Tourist Areas on the Electrical Grid: A Case Study of the Southern Dominican Republic. Urban Sci. 2023, 7, 32. https://doi.org/10.3390/urbansci7010032
Aybar-Mejía M, Andrés R, Cabral-Soto A, Montás C, Núñez-García W-J, Matos EAJ, Sbriz-Zeitun G, Mariano-Hernández D. Impact of Tourist Areas on the Electrical Grid: A Case Study of the Southern Dominican Republic. Urban Science. 2023; 7(1):32. https://doi.org/10.3390/urbansci7010032
Chicago/Turabian StyleAybar-Mejía, Miguel, Randy Andrés, Alam Cabral-Soto, Carlos Montás, Wilmer-Johann Núñez-García, Elvin Arnaldo Jiménez Matos, Giuseppe Sbriz-Zeitun, and Deyslen Mariano-Hernández. 2023. "Impact of Tourist Areas on the Electrical Grid: A Case Study of the Southern Dominican Republic" Urban Science 7, no. 1: 32. https://doi.org/10.3390/urbansci7010032
APA StyleAybar-Mejía, M., Andrés, R., Cabral-Soto, A., Montás, C., Núñez-García, W. -J., Matos, E. A. J., Sbriz-Zeitun, G., & Mariano-Hernández, D. (2023). Impact of Tourist Areas on the Electrical Grid: A Case Study of the Southern Dominican Republic. Urban Science, 7(1), 32. https://doi.org/10.3390/urbansci7010032