Biodiesel Production by Transesterification of Recycled Oil Catalyzed with Zinc Oxide Prepared Starting from Used Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization and Pretreatment of Discarded Vegetable Oil
2.2. Preparation of Zinc Oxide and Characterization
2.3. Biodiesel Preparation and Characterization
2.4. Material Flow Analysis (MFA)
3. Results and Discussion
3.1. Zinc Oxide Characterization
3.1.1. Zinc Oxide Color, Purity, and Yield
3.1.2. Zinc Oxide Particle Size
3.1.3. XRD Analysis
3.1.4. Pore Size and Surface Area
3.2. Material Flow Analysis (MFA)
3.3. Cooking Oil Processing and Characterization
3.4. Biodiesel
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- INEC. Información Ambiental en Los Hogares 2020. Available online: https://www.ecuadorencifras.gob.ec/documentos/web-inec/Encuestas_Ambientales/Hogares/Hogares-2022/MOD_AMB_HOGAR_ENEMDU_2022.pdf (accessed on 26 May 2023).
- Ebin, B.; Petranikova, M.; Steenari, B.-M.; Ekberg, C. Investigation of Zinc Recovery by Hydrogen Reduction Assisted Pyrolysis of Alkaline and Zinc-Carbon Battery Waste. Waste Manag. 2017, 68, 508–517. [Google Scholar] [CrossRef]
- Farzana, R.; Rajarao, R.; Behera, P.R.; Hassan, K.; Sahajwalla, V. Zinc Oxide Nanoparticles from Waste Zn-C Battery via Thermal Route: Characterization and Properties. Nanomaterials 2018, 8, 717. [Google Scholar] [CrossRef] [Green Version]
- Mahandra, H.; Singh, R.; Gupta, B. Recycling of Zn-C and Ni-Cd Spent Batteries Using Cyphos IL 104 via Hydrometallurgical Route. J. Clean. Prod. 2018, 172, 133–142. [Google Scholar] [CrossRef]
- INEN. Disposición de Productos Pilas y Baterias En Desuso, Requisitos. 2011. Available online: https://www.normalizacion.gob.ec/buzon/normas23/2534.pdf (accessed on 26 May 2023).
- Abid Charef, S.; Affoune, A.M.; Caballero, A.; Cruz-Yusta, M.; Morales, J. Simultaneous Recovery of Zn and Mn from Used Batteries in Acidic and Alkaline Mediums: A Comparative Study. Waste Manag. 2017, 68, 518–526. [Google Scholar] [CrossRef]
- Chicaiza, O. Programa de Gestión de Pilas Usadas. 2021. Available online: https://documentosboletinoficial.buenosaires.gob.ar/publico/PE-DIS-MAYEPGC-DGPOLEA-49-19-ANX.pdf (accessed on 26 May 2023).
- Viswanathan, B. Chapter 12—Batteries. In Energy Sources; Viswanathan, B., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 263–313. ISBN 978-0-444-56353-8. [Google Scholar]
- Chen, W.-S.; Liao, C.-T.; Lin, K.-Y. Recovery Zinc and Manganese from Spent Battery Powder by Hydrometallurgical Route. Energy Procedia 2017, 107, 167–174. [Google Scholar] [CrossRef]
- Tanong, K.; Tran, L.-H.; Mercier, G.; Blais, J.-F. Recovery of Zn (II), Mn (II), Cd (II) and Ni (II) from the Unsorted Spent Batteries Using Solvent Extraction, Electrodeposition and Precipitation Methods. J. Clean. Prod. 2017, 148, 233–244. [Google Scholar] [CrossRef] [Green Version]
- Padoan, E.; Hernandez Kath, A.; Vahl, L.C.; Ajmone-Marsan, F. Potential Release of Zinc and Cadmium From Mine-Affected Soils Under Flooding, a Mesocosm Study. Arch. Environ. Contam. Toxicol. 2020, 79, 421–434. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, L.; Li, Y.; Li, H.; Wang, W.; Ye, B. Impacts of Lead/Zinc Mining and Smelting on the Environment and Human Health in China. Environ. Monit. Assess. 2012, 184, 2261–2273. [Google Scholar] [CrossRef] [PubMed]
- Tao, M.; Zhang, X.; Wang, S.; Cao, W.; Jiang, Y. Life Cycle Assessment on Lead–Zinc Ore Mining and Beneficiation in China. J. Clean. Prod. 2019, 237, 117833. [Google Scholar] [CrossRef]
- Ćwieląg-Drabek, M.; Piekut, A.; Gut, K.; Grabowski, M. Risk of Cadmium, Lead and Zinc Exposure from Consumption of Vegetables Produced in Areas with Mining and Smelting Past. Sci. Rep. 2020, 10, 3363. [Google Scholar] [CrossRef] [Green Version]
- Oviedo Anchundia, R.; Moína-Quimí, E.; Naranjo-Morán, J.; Barcos-Arias, M. Contaminación Por Metales Pesados En El Sur Del Ecuador Asociada a La Actividad Minera. Bionatura 2017, 2, 437–441. [Google Scholar] [CrossRef]
- Jia, Y.; Zhang, T.; Zhai, Y.; Bai, Y.; Ren, K.; Shen, X.; Cheng, Z.; Zhou, X.; Hong, J. Exploring the Potential Health and Ecological Damage of Lead–Zinc Production Activities in China: A Life Cycle Assessment Perspective. J. Clean. Prod. 2022, 381, 135218. [Google Scholar] [CrossRef]
- Elgharbawy, A.S.; Sadik, W.A.; Sadek, O.M.; Kasaby, M.A.; Elgharbawy, A.S.; Sadik, W.A.; Sadek, O.M.; Kasaby, M.A. A review on biodiesel feedstocks and production technologies. J. Chil. Chem. Soc. 2021, 66, 5098–5109. [Google Scholar] [CrossRef]
- Collin, T.; Cunningham, R.; Jefferson, B.; Villa, R. Characterisation and Energy Assessment of Fats, Oils and Greases (FOG) Waste at Catchment Level. Waste Manag. 2020, 103, 399–406. [Google Scholar] [CrossRef]
- Chicaiza, O. Programa de Gestión de Aceite Vegetal. 2021. [Google Scholar]
- Vásconez, L. Convenios en Cinco Ciudades del Ecuador Para Reciclar Aceites Usados. Available online: https://www.elcomercio.com/actualidad/ecuador/convenios-ciudades-ecuador-reciclar-aceites.html (accessed on 1 September 2021).
- Bardhan, P.; Deka, A.; Bhattacharya, S.S.; Mandal, M.; Kataki, R. Chapter 18—Economical Aspect in Biomass to Biofuel Production. In Value-Chain of Biofuels; Yusup, S., Rashidi, N.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 395–427. ISBN 978-0-12-824388-6. [Google Scholar]
- Topi, D. Transforming Waste Vegetable Oils to Biodiesel, Establishing of a Waste Oil Management System in Albania. SN Appl. Sci. 2020, 2, 513. [Google Scholar] [CrossRef] [Green Version]
- Neupane, D. Biofuels from Renewable Sources, a Potential Option for Biodiesel Production. Bioengineering 2023, 10, 29. [Google Scholar] [CrossRef]
- Sheehan, J.; Camobreco, V.; Duffield, J.; Graboski, M.; Shapouri, H. An Overview of Biodiesel and Petroleum Diesel Life Cycles; National Renewable Energy Laboratory (U.S.): Golden, CO, USA, 2000; p. 60. [Google Scholar] [CrossRef] [Green Version]
- Hamza, B.; Rouan, M.; Hammi, M.; Ziat, Y.; Chigr, M. Synthesis of Biodiesel by Transesterification of Used Frying Oils (UFO) through Basic Homogeneous Catalysts (NaOH and KOH). Biointerface Res. Appl. Chem. 2021, 11, 12858–12868. [Google Scholar] [CrossRef]
- Sierra-Cantor, J.F.; Parra-Santiago, J.J.; Guerrero-Fajardo, C.A. Leaching and Reusing Analysis of Calcium–Zinc Mixed Oxides as Heterogeneous Catalysts in the Biodiesel Production from Refined Palm Oil. Int. J. Environ. Sci. Technol. 2019, 16, 643–654. [Google Scholar] [CrossRef]
- Ramírez, J.; Buestán, L.; López-Maldonado, E.A.; Pinos-Vélez, V. Preparation and Physicochemical Characterization of Biodiesel from Recycled Vegetable Oil in Cuenca, Ecuador by Transesterification Catalyzed by KOH and NaOH. Eng 2023, 4, 954–963. [Google Scholar] [CrossRef]
- Sipayung, R. Budiyono Optimization of Biodiesel Production from Used Cooking Oil Using Modified Calcium Oxide as Catalyst and N-Hexane as Solvent. Mater. Today Proc. 2022, 63, S32–S39. [Google Scholar] [CrossRef]
- Yusuff, A.S.; Bhonsle, A.K.; Trivedi, J.; Bangwal, D.P.; Singh, L.P.; Atray, N. Synthesis and Characterization of Coal Fly Ash Supported Zinc Oxide Catalyst for Biodiesel Production Using Used Cooking Oil as Feed. Renew. Energy 2021, 170, 302–314. [Google Scholar] [CrossRef]
- Hossain, M.N.; Siddik Bhuyan, M.S.U.; Md Ashraful Alam, A.H.; Seo, Y.C. Optimization of Biodiesel Production from Waste Cooking Oil Using S–TiO2/SBA-15 Heterogeneous Acid Catalyst. Catalysts 2019, 9, 67. [Google Scholar] [CrossRef] [Green Version]
- Chuquichanga, E.; León, D. Obtención de Óxido de Zinc a Partir de Pilas Zinc Carbono Desechables. Perú. 2019. Available online: http://repositorio.unac.edu.pe/handle/20.500.12952/4293 (accessed on 14 March 2023).
- Samadhi, T. Environmental Impact of Sodium Sulfate Decomposition in Silicate Glass Manufacturing. Ph.D. Thesis, Alfred University, Alfred, NY, USA, 2003. [Google Scholar]
- HERA. Cover Note of Sodium Sulfate. 2006. Available online: https://www.heraproject.com/files/39-f-06_sodium_sulfate_human_and_environmental_risk_assessment_v2.pdf (accessed on 26 May 2023).
- INEN Biodiesel. Requisitos. 2013. Available online: https://www.normalizacion.gob.ec/buzon/normas23/2482.pdf (accessed on 26 May 2023).
- ASTM Chapter 5|Biodiesel. Available online: https://www.astm.org/mnl120170046.html (accessed on 4 January 2022).
- EN Combustibles Para Automoción. Combustibles Par. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma/?c=N0052852 (accessed on 31 August 2022).
- Alvarado, E.; GONZALES, K.; Mendoza, O. Propuesta de un Método para la Recuperación de Zinc de Pilas Alcalinas Usadas bajo el Enfoque de Producción más Limpia; Universidad de El Salvador: San Salvador, El Salvador, 2010. [Google Scholar]
- ITC Trade Map—Estadísticas Del Comercio Para El Desarrollo Internacional de Las Empresas. Available online: https://www.trademap.org/Index.aspx (accessed on 2 March 2023).
- INEC. Informacion Ambiental En Hogares 2022. Available online: https://www.ecuadorencifras.gob.ec/documentos/web-inec/Encuestas_Ambientales/Hogares/Hogares-2022/MOD_AMB_HOGAR_ENEMDU_2022.pdf (accessed on 1 March 2023).
- Agbemafle, R.; Aggor-Woananu, S.E.; Akutey, O.; Bentum, J. Heavy Metal Concentrations in Leachates and Crops Grown Around Waste Dumpsites in Sekondi-Takoradi in the Western Region of Ghana. Res. J. Environ. Toxicol. 2019, 14, 16–25. [Google Scholar] [CrossRef]
- Hussain, S.; Khan, M.; Sheikh, T.M.M.; Mumtaz, M.Z.; Chohan, T.A.; Shamim, S.; Liu, Y. Zinc Essentiality, Toxicity, and Its Bacterial Bioremediation: A Comprehensive Insight. Front. Microbiol. 2022, 13, 900740. [Google Scholar] [CrossRef]
- Ryu, M.-S.; Aydemir, T.B. Chapter 23—Zinc. In Present Knowledge in Nutrition, 11th ed.; Marriott, B.P., Birt, D.F., Stallings, V.A., Yates, A.A., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 393–408. ISBN 978-0-323-66162-1. [Google Scholar]
- Kan, X.; Dong, Y.; Feng, L.; Zhou, M.; Hou, H. Contamination and Health Risk Assessment of Heavy Metals in China’s Lead–Zinc Mine Tailings: A Meta–Analysis. Chemosphere 2021, 267, 128909. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Zhang, H.; Ji, D.; Huang, Z.; Fangqun, G.; Zhou, J. Environmental Contamination and Health Risk Assessment to Toxic Elements in an Active Lead–Zinc Mining Area. Expo. Health 2022, 1–12. [Google Scholar] [CrossRef]
- Johansen, P.; Asmund, G.; Aastrup, P.; Tamstorf, M. Environmental Impact of the Lead-Zinc Mine at Mestervig, East Greenland; National Environmental Research Institute, University of Aarhus: Aarhus, Denmark, 2008. [Google Scholar]
- López, L.; Bocanegra, J.; Malagón-Romero, D. Obtención de biodiesel por transesterificación de aceite de cocina usado. Ing. Univ. 2015, 19, 155–172. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, D.; Riesco, J. Obtención de Biodiesel a Partir de Mezclas de Aceite de Cocina Usado y Aceite de Higuerilla Por Transesterificación. Available online: https://www.jovenesenlaciencia.ugto.mx/index.php/jovenesenlaciencia/article/view/1296 (accessed on 5 September 2022).
- Tacias Pascacio, V.G.; Rosales Quintero, A.; Torrestiana Sánchez, B.; Tacias Pascacio, V.G.; Rosales Quintero, A.; Torrestiana Sánchez, B. Evaluación y caracterización de grasas y aceites residuales de cocina para la producción de biodiésel: Un caso de estudio. Rev. Int. Contam. Ambient. 2016, 32, 303–313. [Google Scholar] [CrossRef]
- Gavhane, R.S.; Kate, A.M.; Pawar, A.; Safaei, M.R.; Soudagar, M.M.E.; Mujtaba Abbas, M.; Muhammad Ali, H.; Banapurmath, N.R.; Goodarzi, M.; Badruddin, I.A.; et al. Effect of Zinc Oxide Nano-Additives and Soybean Biodiesel at Varying Loads and Compression Ratios on VCR Diesel Engine Characteristics. Symmetry 2020, 12, 1042. [Google Scholar] [CrossRef]
- Sánchez, E.M. Obtención de Biodiesel a Partir de Aceites Vegetales Empleando Catalizadores Sólidos Nanoestructurados. 2021. Available online: https://ria.utn.edu.ar/bitstream/handle/20.500.12272/5187/Tesis%20Doctoral%20-%20S%C3%A1nchez%20Faba%2C%20Edgar%20M.%20-%20UTN%20FRC.pdf?sequence=1&isAllowed=y (accessed on 24 March 2022).
- Diaz, D.; Camargo, G.; Molano, M. Evaluación de Catalizadores de Óxido de Zinc y Su Actividad Catalítica En La Reacción de Transesterificación Para La Producción de Biodiésel. Afinidad 2008, 65, 299–305. [Google Scholar]
- Fangfang, F.; Alagumalai, A.; Mahian, O. Sustainable Biodiesel Production from Waste Cooking Oil: ANN Modeling and Environmental Factor Assessment. Sustain. Energy Technol. Assess. 2021, 46, 101265. [Google Scholar] [CrossRef]
- Sivarethinamohan, S.; Hanumanthu, J.R.; Gaddam, K.; Ravindiran, G.; Alagumalai, A. Towards Sustainable Biodiesel Production by Solar Intensification of Waste Cooking Oil and Engine Parameter Assessment Studies. Sci. Total Environ. 2022, 804, 150236. [Google Scholar] [CrossRef]
- Dasta, P.; Pratap Singh, A.; Pratap Singh, A. Zinc Oxide Nanoparticle as a Heterogeneous Catalyst in Generation of Biodiesel. Mater. Today Proc. 2022, 52, 751–757. [Google Scholar] [CrossRef]
- Guo, M.; Jiang, W.; Ding, J.; Lu, J. Highly Active and Recyclable CuO/ZnO as Photocatalyst for Transesterification of Waste Cooking Oil to Biodiesel and the Kinetics. Fuel 2022, 315, 123254. [Google Scholar] [CrossRef]
Input | Type of Oil | Catalyst | Oil/Alcohol | Reaction Time, min | Yield, % | Ref. | |
---|---|---|---|---|---|---|---|
Type | % | ||||||
1 | Used Frying Oil from Sunflower | KOH | 1 | 1:6 | 60 | 99.3 | [25] |
2 | Waste Cooking Oil | KOH | 0.5 | 1:6 | 60 | 93.13 | [26] |
3 | Waste Municipal Organic Oil | KOH | 1 | 1:6 | 90 | 93.31 | [27] |
4 | Waste Municipal Organic Oil | NaOH | 0.5 | 1:6 | 90 | 85.96 | [27] |
5 | Waste Cooking Oil | CaO | 1 | 1:8 | 90 | 96 | [28] |
6 | Refined Palm oil | CaO-ZnO | 7.5 | 1:30 | 120 | 86.99 | [26] |
7 | Waste Cooking Oil | CFA/ZnO | 0.5 | 1:12 | 180 | 98.14 | [29] |
8 | Waste Cooking Oil | S–TiO2/SBA-15 | 1 | 1:15 | 30 | 94.96 | [30] |
Component | Percentage, % |
---|---|
Zinc (anode) | 16.86 |
Manganese dioxide (cathode) | 29.00 |
Carbon | 5.71 |
Mercury | 0.01 |
Cadmium | 0.08 |
Ammonium chloride (electrolyte) | 25.76 |
Plastic and others | 22.76 |
Characteristic | |
---|---|
Color | White |
Purity, % | 98.49 |
Particle size (1–10 nm), % | 20.92 |
Yield, % | 56.20 |
Description | Value |
---|---|
Surface area, m2g−1 | 1.93 |
Pore volume, cm³g−1 | 0.79 |
Metal | |||
---|---|---|---|
Zn | 500.89 | 1229 | 100.00 |
Oil Characterization | |
---|---|
Density, | 0.965 |
Viscosity, | 50.912 |
Water amount, % | 0.15 |
Biodiesel Characterization | |
---|---|
Heating power, | 37.553 |
Density, | 0.892 |
Viscosity, | 4.189 |
Water amount, % | 0.001 |
Yield, % | 70.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seminario-Calle, D.; Ortega-Maldonado, M.; Pinos-Vélez, V.; Cisneros, J.; Montero-Izquierdo, A.; Echeverría-Paredes, P.; Duque-Sarango, P.; Álvarez-Lloret, P. Biodiesel Production by Transesterification of Recycled Oil Catalyzed with Zinc Oxide Prepared Starting from Used Batteries. Urban Sci. 2023, 7, 80. https://doi.org/10.3390/urbansci7030080
Seminario-Calle D, Ortega-Maldonado M, Pinos-Vélez V, Cisneros J, Montero-Izquierdo A, Echeverría-Paredes P, Duque-Sarango P, Álvarez-Lloret P. Biodiesel Production by Transesterification of Recycled Oil Catalyzed with Zinc Oxide Prepared Starting from Used Batteries. Urban Science. 2023; 7(3):80. https://doi.org/10.3390/urbansci7030080
Chicago/Turabian StyleSeminario-Calle, Domenica, Melissa Ortega-Maldonado, Verónica Pinos-Vélez, Juan Cisneros, Andrés Montero-Izquierdo, Paulina Echeverría-Paredes, Paola Duque-Sarango, and Paúl Álvarez-Lloret. 2023. "Biodiesel Production by Transesterification of Recycled Oil Catalyzed with Zinc Oxide Prepared Starting from Used Batteries" Urban Science 7, no. 3: 80. https://doi.org/10.3390/urbansci7030080
APA StyleSeminario-Calle, D., Ortega-Maldonado, M., Pinos-Vélez, V., Cisneros, J., Montero-Izquierdo, A., Echeverría-Paredes, P., Duque-Sarango, P., & Álvarez-Lloret, P. (2023). Biodiesel Production by Transesterification of Recycled Oil Catalyzed with Zinc Oxide Prepared Starting from Used Batteries. Urban Science, 7(3), 80. https://doi.org/10.3390/urbansci7030080