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Abstract: A heat index is a key indicator directly related to meteorological factors influencing human
health, particularly work performance. However, the interaction between air quality, meteorology,
heat, and associated work performance is loosely defined, especially in urban areas. In this study,
we develop a heat index (HI) related to air quality terms, including PM2.5, NOx, and CO, and
meteorology terms, including temperature and relative humidity, to assess work performance in
Thailand’s urban areas, including Chiang Mai, Bangkok, Nakhon Ratchasima, and Ubon Ratchathani,
using a multivariate regression model. The regression models’ performance shows high R2 values
ranging from 0.82 to 0.97, indicating a good level of performance. A recurring trend across all
locations is elevated HI values during April and May, signifying typical pre-monsoon conditions in
tropical regions. Following this peak, the values of the heat index (HI) begin to fall, possibly due to
the start of the wet season. As shown by the decrease in productivity during periods of elevated heat
index values, the observed increase in temperatures has noticeable effects on work performance.
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1. Introduction

A considerable proportion of laborers employed in the construction, agriculture, and
resource industries must endure extended working hours in thermally challenging circum-
stances in many places throughout the world [1]. According to Lundgren et al. [1], the
presence of thermal stress in the workplace is associated with inherent risks and impacts.
Heat-related illness comprises a wide range of conditions, including cramps due to heat
and exhaustion from heat, as well as heat stroke, a rare but dangerous phenomenon [2]. To
reach optimal productivity while guaranteeing worker well-being and safety, environmen-
tal hygienists and security officers must have a simple, resilient, and dependable metric
for determining the level of stress generated by the thermal environment. In promoting
the implementation of this metric, clear criteria must be provided [3]. Employees, par-
ticularly those who work outside or in surroundings without air conditioning, such as
in the construction, agriculture, and industrial sectors, are especially vulnerable to poor
conditions [3].

A heat index (HI) [4] is a key indicator that incorporates temperature and humidity
to assess human temperature experience. This statistic emphasizes the significance of
its influence on health and overall well-being. Many studies have been conducted to
investigate the consequences of heat stress using heat indices, which are generally based
on temperature and humidity [5–7]. However, it is important to recognize that humidity
plays a significant role in the discomfort experienced during hot weather and should be
carefully considered when calculating a heat stress index, particularly in tropical climate
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regions [8–10]. A variety of approaches are used to assess and evaluate heat stress, each of
which is dependent on different environmental and meteorological characteristics. Several
indicators, such as the National Weather Service Heat Index and Humidex, take temperature
and moisture into account. Furthermore, numerous metrics, including the wet bulb globe
temperature (WBGT) [11] and the Environmental Stress Index [12], take solar radiation into
account. In the field of environmental health research, the Steadman apparent temperature
is frequently used as a thermal index [12]. Steadman [4] proposed a heat index (HI), a
statistic that integrates temperature and relative humidity to assess the perceived warmth
of humans. This statistic is critical in determining the potential negative effects of this
factor on human health and general welfare. Koteswara Rao et al. [13] demonstrated a
link between thermal comfort and working performance. Their findings show a negative
relationship between temperature and work performance, with an increase in temperature
leading to a fall in job performance. Vaneckova et al. [14] investigated the link between
temperature and heat index (HI) values in several areas. The results show that there is little
variation in temperature and HI values throughout these locations. Furthermore, when
comparing HI with temperature exposure, the sensitivity of estimates of the influence of
heat on health did not show any significant differences. Anderson and Bell [15] discovered
that an increase in the severity or duration of heatwaves relates to a higher risk of death.

While an HI is mostly related to temperature and relative humidity, these factors, on
the other hand, have a significant and reciprocal influence on air quality [16]. High HI
values, compounded with poor air quality, have the potential to increase the occurrence
of heat-related illnesses and possibly mortality [17]. A previous study thoroughly inves-
tigated the delicate interaction between air quality, weather conditions, and heat, as well
as their aggregate impact on occupational productivity and an increase in heat-related
mortality [18]. Seinfeld and Pandis [16] highlighted the reciprocal connection between
meteorological parameters and air quality, emphasizing the mutual influence of elements
such as temperature, humidity, and pollutant presence. High temperatures and poor air
quality, according to Kjellstrom et al. [19], have the potential to lower labor productivity,
increase fatigue, and impair cognitive processes. The increase in industrial operations, as
well as the increasing number of automobiles on the road, has had a substantial impact on
the deterioration of air quality [20]. Furthermore, the interaction of air quality, meteoro-
logical conditions, and the consequent HI can have a significant impact on occupational
productivity, especially in cities. As previously mentioned, the relationship between air
quality and meteorology is intricate and is commonly used to derive an HI. However, there
has been limited study on the relationship between air quality, meteorology, and HI values,
as well as their impact on work performance in metropolitan regions. Thailand’s metropoli-
tan areas have experienced a decrease in air quality, which has been attributed mostly to
industrial expansion, increased emissions from automobiles, and human activities [21]. In
Thailand, rising levels of air pollutants have generated public nervousness, prompting calls
for immediate action [22]. In this context, air quality terms should be considered when
estimating heat indices. The purpose of this study is to investigate the relationship between
air quality, meteorological conditions, and the heat index in Thailand’s urban areas. We
intend to investigate how these elements interact to affect work performance, with a special
emphasis on the previously unknown aspect of air quality in heat index estimation.

2. Materials and Methods
2.1. General Information of Cities in This Study

We chose four cities with the highest population numbers for this study: Bangkok
(5.49 million), Chiang Mai (1.79 million), Ubon Ratchathani (1.87 million), and Nakhon
Ratchasima (2.63 million). Bangkok, as the core of Thailand’s political, economic, and
cultural endeavors, attracts significant numbers of people from rural areas who want to
improve their job chances, obtain access to education, and embrace a modern lifestyle.
However, it is critical to recognize that a huge demographic shift is now taking place.
Thailand is currently undergoing a demographic change marked by an increase in the
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proportion of elderly adults and a decline in the younger population. The demographic
changes under consideration have significant ramifications for the nation’s socioeconomic
environment, as well as its prospects in areas such as healthcare, labor market participation,
and social welfare. Thailand’s cities exhibit a wide range of environmental and meteorolog-
ical circumstances, as well as hosting a wide range of socioeconomic activities. Bangkok is
an important economic center, whereas Chiang Mai is well-known for its cultural value
and tourist attractiveness. Nakhon Ratchasima is an important economic hub in the north-
eastern region, while Ubon Ratchathani is an important facilitator of cross-border trade
and regional linkages.

2.2. Multivariate Regression Models

A multivariate regression model was used in this work to analyze the complex interac-
tion between air quality, meteorology, and HI [23]. The link between the heat index (HI)
and many meteorological parameters such as temperature and relative humidity, as well
as air quality indicators such as PM2.5, NOx, and CO, is investigated in this study. The
following multivariate regression model was used in the analysis:

HI = β0 + β1(PM2.5) + β2(CO) + β3(NOx) + β4(Temperature) + β5(Relative Humidity) + ε,

where β0 is the intercept; β1, β2, β3, β4, and β5 are the coefficients for PM2.5, CO, NOx,
temperature, and relative humidity, respectively; and ε represents the error term.

The current study made use of measurement data obtained from Thailand’s Pollution
Control Department (PCD). We focused on several metropolitan areas that have been
chosen as case studies. These places include Bangkok’s Meteorological Station, Chiang
Mai’s Yupparaj School, Nakhon Ratchasima’s Electric Power Water Pump Station, and
Ubon Ratchathani’s OTOP Center. Data from numerous locations were collected, including
hourly measurements of carbon monoxide (CO), nitrogen oxides (NOx), temperature,
relative humidity, and mass concentrations of particulate matter with a diameter less than
2.5 µm (PM2.5), as well as meteorological data such as temperature and relative humidity.
According to Amnuaylojaroen et al. [24], the United States Environmental Protection
Agency’s (EPA) criteria served as the basis for the QA/QC procedures undertaken in this
investigation. The sampling goal was to collect quantifiable data on both PM2.5 exposure
and microenvironmental concentrations. The quality assurance (QA) was founded on the
following fundamental principles: (1) meticulous planning, testing, and execution of all
procedures in strict accordance with approved standard operating procedures (SOPs) under
the supervision of the study director; (2) complete traceability of all data generated; and
(3) diligent documentation of any deviations or anomalies encountered during the process.
Missing data in PCD measurements arose frequently, with a frequency of 15% [24,25].

In this study, we also used time series forecasting to estimate missing data points due
to the time-dependent nature of our environmental data and the presence of incomplete
observations. The AutoRegressive Integrated Moving Average (ARIMA) model was used
in this investigation. This statistical technique is well-known for its ability to estimate
future values within a dataset based on its own previous values [26]. Prior to deployment,
the data were sorted chronologically and submitted to a stationarity check to determine the
model’s applicability [27]. Differentiation was used in circumstances when the data were
non-stationary to achieve a stationary series. Model parameters such as differencing order,
autoregressive term order, and moving average term were identified using autocorrelation
function (ACF) and partial autocorrelation function (PACF) plots [28]. Following the identi-
fication of the necessary parameters, the ARIMA model was trained using the available
data points and then used to anticipate the intervals with missing data. The use of imputed
values provided by the ARIMA model aided in the production of a comprehensive dataset,
allowing for more rigorous studies and the formation of more solid conclusions. When ap-
plying the ARIMA model to analyze time series data, such as the PM2.5 datasets of Chiang
Mai, crucial steps are taken to ensure the precision and dependability of the model. Firstly,
it is crucial to deal with any missing values in the data through exploratory data analysis
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(EDA). The existence of missing values in a dataset containing 338 data points can adversely
affect the performance of the model, as ARIMA requires uninterrupted data points for
precise forecasting. The PM2.5 data were subjected to an Augmented Dickey–Fuller (ADF)
test to assess their stationarity. The ADF statistic was calculated to be −6.7403, with a
corresponding p-value of around 3.13 × 10−9. The numbers provided suggest that the
PM2.5 time series is stationary, which is a crucial requirement of ARIMA modeling. After
conducting an examination of the ACF and Partial Autocorrelation Function (PACF), it was
suggested to use an initial ARIMA model with an order of (1,0,0). This model incorporates a
single autoregressive term (p = 1) while excluding differencing (d = 0) and moving average
elements (q = 0). This implies that the model is straightforward but has the potential to be
successful when used in analyzing the time series data. Subsequent stages of the analysis
entail applying the ARIMA (1, 0, 0) model to the PM2.5 data and performing diagnostic
evaluations to gauge the model’s effectiveness and appropriateness. Ultimately, the model
that was adjusted to predict PM2.5 levels was utilized to analyze air quality patterns.

2.3. Heat Index and Decrements in Work Performance

In this study, the heat stress was calculated using the Steadman Heat Index [4] to derive
a generic HI that could be compared with the HI derived from a multivariate regression
model. The HI was calculated by combining relative humidity and temperature, as defined
by Rothfusz [29], via the following formula:

HI = c1 + c2 (T) + c3 (RH) + c4 (T)(RH) + c5 (T2) + c6 (RH2) + c7 (T2)(RH) + c8 (T)(RH2)

+ c9 (T2)(RH2).

where HI is the heat index (in ◦C), T is the air temperature (in ◦C), RH is the relative
humidity (percentage value between 0 and 100), c1 = −8.78, c2 = 1.61, c3 = 2.33, c4 = −0.14,
c5 = −0.012, c6 = −0.016, c7 = 0.002, c8 = 0.0007, and c9 = −0.000003. Table 1 shows the
health effect-based categories of HI values.

Table 1. The impacts of the heat index, which were modified based on the heat index data obtained
from the official website of the National Weather Service in Pueblo, Colorado, United States.

Temperature Range Notes

27–32 ◦C Caution: Fatigue may occur with prolonged exposure and activity.
Continuing activity could result in heat cramps.

32–41 ◦C Extreme caution: Heat cramps and heat exhaustion are possible.
Continuing activity could result in heat stroke.

41–54 ◦C Danger: heat cramps and heat exhaustion are likely; heat stroke is
probable with continued activity.

>54 ◦C Extreme danger: heat stroke is imminent.

We chose to use the heat index (HI) rather than temperature measurements in our heat
health research because heat stress is thought to be a more robust signal in this setting. As
a result, the following equation was used to approximate the drop in work performance, as
follows [30]:

P (%) = 2 × (HI, ◦C) − 50 (1)

where P is the reduction in work performance (%) and HI is the heat index (◦C).

3. Results
3.1. Descriptive Analysis of Air Quality and Meteorology

We created a plot of the seasonal variation in monthly PM2.5, CO, NOx, temperature,
and relative humidity in different locations as shown in Figure 1. It compares the monthly
means of five crucial environmental variables obtained from ground-based observations
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by the Pollution Control Department (PCD) in four provinces, including Chiang Mai,
Ubon Ratchathani, Bangkok, and Nakhon Ratchasima, for CO, NOx, PM2.5, temperature,
and relative humidity. The level of CO concentration in Chiang Mai province rises from
January to March, reaching a peak in February. While CO levels in Ubon Ratchathani
and Nakhon Ratchasima are rather steady throughout the year, the city of Chiang Mai
shows an increase in NOx concentrations during the months of February and March,
which corresponds to an increase in CO levels. Both Ubon Ratchathani and Nakhon
Ratchasima have relatively stable NOx levels throughout the year, with a slight rise noticed
in Nakhon Ratchasima near the end of the year. Meanwhile, both CO and NOx levels
are significantly elevated in Bangkok in October. In terms of temperature, the annual
temperature steadily rises beginning in January, peaks in either April or May, and then
gradually lowers until the end of the year. Chiang Mai has a slightly lower temperature
than the other provinces throughout the middle months of the year. Chiang Mai’s humidity
drops in the early months, corresponding to the dry season, before increasing in the middle
of the year, corresponding to the wet season (May–October). Throughout the mid-year
period, Ubon Ratchathani and Nakhon Ratchasima have high relative humidity levels,
which may coincide with the start of the wet season. PM2.5 concentrations in Chiang
Mai rise considerably during the first few months of the year, notably around February.
PM2.5 concentrations in Ubon Ratchathani and Nakhon Ratchasima are mainly constant
throughout the year, with occasional increases.

Table 2 summarizes descriptive data as well as environmental and air quality ob-
servations for four Thai cities: Chiang Mai, Bangkok, Nakhon Ratchasima, and Ubon
Ratchathani. In terms of overall air quality, Chiang Mai has the highest mean concentration
of PM2.5 at 23.84 mg/m3. The primary cause of air pollution is most likely open burning to
prepare for the planting season [20]. Bangkok has the highest mean CO concentration by
0.81 ppm. High CO levels can be attributed to the presence of urban traffic and industrial
activity [31]. Nakhon Ratchasima has the highest mean NOx concentration at 35.18 ppb.
This finding could suggest the presence of major contaminants in the city derived from
industrial and transportation sources [32]. While air quality in Ubon Ratchathani is bet-
ter than in other provinces, with PM2.5, CO, and NOx concentrations of 27.45 mg/m3,
0.27 ppm, and 9.42 ppb, respectively, Chiang Mai and Nakhon Ratchasima have higher
temperature fluctuations, with standard deviations of 4.67 and 4.14, respectively. Bangkok
has the highest mean relative humidity at 75.04%, while Chiang Mai has the lowest relative
humidity at 53%. Also, Chiang Mai has the highest relative humidity variability, with a
standard deviation of 21.84%.

3.2. Relationship between Heat Index, Air Pollutant, and Meteorology

We created the correlation plots in Figure 2 that enable a comparison of the linear cor-
relations between major air quality and meteorological elements in four different provinces,
including Chiang Mai, Ubon Ratchathani, Bangkok, and Nakhon Ratchasima. In Chiang
Mai province, it is observed that the heat index increases with the increase in temperature.
The correlation between PM2.5 and CO is moderately positive, with a coefficient of 0.58.
Similarly, the correlation between PM2.5 and NOx is moderately positive, with a coeffi-
cient of 0.34. The correlation between relative humidity and temperature is moderately
negative, with a value of −0.57. In Ubon Ratchathani province, there is a very positive
correlation of 0.89 between the HI and temperature and a strong negative correlation of
−0.59 between the HI and relative humidity. The relationship between PM2.5 and CO
is strongly positive, with a correlation coefficient of 0.67. CO and NOx have a modest
positive correlation of 0.57. In Bangkok, there is a significant positive correlation of 0.79
between the HI and temperature. However, there are moderate negative correlations of
−0.42 with CO and −0.41 with NOx. PM2.5 exhibits a highly significant positive association
with CO at a coefficient of 0.79 and a moderately significant positive correlation with NOx
at a coefficient of 0.52. The temperature and relative humidity have a strong negative
correlation of −0.65. In Nakhon Ratchasima province, the HI exhibits a highly positive
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correlation of 0.88 with temperature and a strong negative correlation of −0.68 with relative
humidity, which aligns with similar findings in other provinces. PM2.5 exhibits a modest
positive correlation with CO at a coefficient of 0.61 and with NOx at a coefficient of 0.4.
As seen in other places, there is a significant inverse relationship between temperature
and relative humidity, with a correlation coefficient of −0.62. Across all provinces, the
HI has a strong positive relationship with temperature. This result implies that there is a
positive relationship between rising temperatures and rising felt-heat indices. Furthermore,
there is a minor inverse relationship between the HI and relative humidity in all provinces,
showing that rising humidity levels may partially limit the increase in the heat index. There
is a negative relationship between temperature and relative humidity. This finding is a
common meteorological occurrence that can be attributed to a variety of factors, including
dew point temperatures and the decreased moisture-holding capacity of air, which tends to
increase as temperatures rise [24].
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Table 2. Descriptive statistics and summary of PM2.5, CO, NOx, temperature (Temp.), and relative humidity (RH) derived from PCD observations in urban cities
in Thailand.

Statistics

Chiang Mai Bangkok Nakhon Ratchasima Ubon Ratchathani

PM2.5
(µg/m3)

CO
(ppm)

NOx
(ppb)

Temp.
(◦C)

RH
(%)

PM2.5
(µg/m3)

CO
(ppm)

NOx
(ppb)

Temp.
(◦C)

RH
(%)

PM2.5
(µg/m3)

CO
(ppm)

NOx
(ppb)

Temp.
(◦C)

RH
(%)

PM2.5
(µg/m3)

CO
(ppm)

NOx
(ppb)

Temp.
(◦C)

RH
(%)

Means 23.84 0.81 35.18 29.37 53.00 22.04 0.57 18.11 28.74 75.04 26.39 0.57 22.65 27.00 65.23 25.04 0.27 9.42 27.45 67.88
Standard
deviation 24.56 0.49 25.58 4.67 21.84 15.71 0.27 22.59 2.98 18.76 16.57 0.24 17.63 4.14 16.68 26.05 0.18 9.90 4.53 16.75

25th
percentile 8.00 0.47 17.00 26.30 37.00 11.00 0.40 5.00 26.70 60.00 14.10 0.40 11.00 24.30 53.00 8.00 0.16 3.00 24.70 55.00

Median: 15.00 0.70 27.00 29.00 52.00 18.00 0.50 9.00 28.70 76.00 21.00 0.54 18.00 26.70 65.00 15.00 0.25 6.00 27.20 68.00
75th
percentile 30.00 1.09 46.00 32.40 68.00 28.00 0.80 20.50 30.90 93.00 34.00 0.70 29.00 29.80 77.00 32.00 0.36 13.00 30.60 81.00
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Figure 2. Corrplot of daily HI, PM2.5, CO, NOx, temperature (TEMP), and relative humidity (RH) for
each set of two cities, including Chiang Mai and Ubon Ratchathani (upper) and Bangkok and Nakhon
Ratchasima (lower). The color represents the Pearson correlation, which ranges from −1 (blue) to
1 (red).

We examined the performance in estimating an HI that integrates air quality terms
including PM2.5, CO, and NOx with meteorological factors such as temperature and relative
humidity is illustrated via the scatter plot in Figure 3 and the statistical analysis in Table 3.
As described above, the relationship between air quality, meteorology, and HI is not
linearly correlated; the results of the applied multivariate regression are shown in Table 3.
Table 3 presents a comprehensive examination of the intricate linkages between many
environmental variables and the HI in the four provinces. It summarizes the performance
measures for multivariate regression models compared to the general estimation of HI.
Several factors were included in the models, including PM2.5, CO, NOx, temperature, and
relative humidity. In general, the results show that the regression models for each of the four
provinces function effectively. The MSE values recorded among provinces are noticeably
close, showing a constant level of accuracy in the forecasts. The R2 value for Chiang Mai is
unusually high, at 0.975. The MSE, which is used to evaluate the accuracy of the model’s
predictions, is 57.23. A lower MSE indicates greater model performance, meaning that
the model’s predictions for Chiang Mai are relatively accurate when compared to actual
observed data. For Bangkok, the R2 coefficient is 0.82. The MSE for Bangkok is 66.94,
which is higher than the value for Chiang Mai. However, this MSE score still represents
a high level of prediction accuracy. The city of Nakhon Ratchasima has a high R2 value
of 0.92 and an MSE value of 70.23, while for Ubon Ratchathani, the R2 value is 0.92, with
an MSE value of 70.19. The scatter plot for Chiang Mai in Figure 4 shows a high degree
of alignment between the bulk of data points and the red dashed line. For Bangkok, the
scatter plot shows a significant correlation between the data points and the line of perfect
prediction. The existence of dense clustering throughout the whole HI value range implies
a strong relationship between the multivariate regression model’s predictions and the
general HI estimation. The observed deviations from the ideal line are small, showing via
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multivariate regression that the model predicts the HI for Bangkok with excellent accuracy
and consistency. Ubon Ratchathani’s scatter plot shows a significant concentration of data
points closely clustered around the line of perfect prediction. The scatter plot for Nakhon
Ratchasima shows a significant concentration of data points near the red dashed line. This
means that the model’s predictions are in good agreement with general HI calculations
across a wide range of HI values.

Table 3. Summary of R2 and mean squared error measures for the HI fitting results.

Provinces R-Squared (R2) Mean Squared Error (MSE)

Chiang Mai 0.97 57.23
Bangkok 0.82 66.94
Nakhon Ratchasima 0.92 70.23
Ubon Ratchathani 0.92 70.19
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Figure 3. Scatter plot between actual and predicted HI values (green) in Chiang Mai, Bangkok, Ubon
Ratchathani, and Nakhon Ratchasima during 2020–2022 with trend line (red).
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(upper) and drop in work performance (lower) during 2020–2022 across four distinct provinces in
Thailand: Nakhon Ratchasima, Bangkok, Chiang Mai, and Ubon Ratchathani.

Table 4 displays the coefficients generated using multivariate regression models to
evaluate the relationship equation between air quality, meteorology, and HI in four specific
locations, namely, Chiang Mai, Bangkok, Nakhon Ratchasima, and Ubon Ratchathani.
These parameters, taken together, demonstrate the intricate link between environmental
conditions and the HI. For Chiang Mai, there is a 0.0398-unit positive association between
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an increase in PM2.5 levels and an increase in the HI. This shows that increased PM2.5
concentrations can increase the perceived temperature in the area. In contrast, the neg-
ative coefficient of −0.0207 indicates an inverse association between NOx and HI. This
observation implies that elevated NOx concentrations may potentially reduce the perceived
temperature. It is worth noting that CO and RH are positively connected with HI, implying
that they may contribute to the aggravation of thermal discomfort. The appearance of a
negative coefficient of −4.9023 for temperature is perplexing, and further investigation may
be required to understand the underlying dynamics or potential contradictions in the data.
Bangkok is characterized by the juxtaposition of many components. In this context, PM2.5
has a negative coefficient, meaning that an increase in PM2.5 concentrations may result
in a minor drop in the HI. With values of −3.1062 and −3.9536, respectively, NOx and
temperature exhibit negative associations with the HI. This shows that larger values of these
variables may have a negative link with perceived temperatures. The presence of a positive
coefficient of 0.5451 that is linked with relative humidity emphasizes its contribution to heat
perception amplification. There is a direct link between PM2.5 and NOx levels and the HI in
the Nakhon Ratchasima province, implying that rising concentrations of these pollutants
could potentially amplify the perceived temperature. Nonetheless, CO has a minor inverse
effect, but temperature has a substantially stronger negative coefficient of −5.4602. The
concentration of PM2.5 and NOx in Ubon Ratchathani has a positive association with the HI,
whereas CO has an inverse relationship. The negative temperature coefficient (−5.7860) in
Nakhon Ratchasima suggests a persistent trend that could be ascribed to distinct regional
dynamics or external factors.

Table 4. The coefficients derived from the multivariate regression models for predicting the heat index
(HI) in four distinct locations: Chiang Mai, Bangkok, Nakhon Ratchasima, and Ubon Ratchathani.

Coefficient
Chiang Mai Bangkok Nakhon Ratchasima Ubon Ratchathani

Value p-Value Value p-Value Value p-Value Value p-Value

Intercept 239.86 <0.001 250.73 <0.001 296.89 <0.001 320.50 <0.001
PM2.5 0.039 <0.001 −0.009 <0.001 0.009 0.079 0.034 0.077
NOx −0.02 <0.001 −3.10 0.090 2.45 <0.001 0.35 <0.001
CO 0.17 <0.001 0.058 0.088 −0.033 <0.001 −0.13 <0.001
Temperature −4.90 <0.001 −3.95 <0.001 −5.46 <0.001 −5.78 <0.001
Relative
humidity 1.22 <0.001 0.54 <0.001 0.53 <0.001 0.34 <0.001

3.3. Heat Index and Work Performance

Figure 4 depicts the seasonal changes in Thailand’s monthly mean HI in four distinct
provinces, including Nakhon Ratchasima, Bangkok, Chiang Mai, and Ubon Ratchathani.
There was a substantial surge in HI during the months of April and May that was above
the precautionary threshold of 32 ◦C, marking this time as the yearly heat intensity peak.
Throughout the year, Bangkok has the highest HI values among the provinces, particularly
in May at 35 ◦C. In contrast, Chiang Mai has lower HI values than the other provinces,
notably during the milder months at the start and end of the year. However, beginning
in May, Chiang Mai’s temperature rises significantly, with the HI remaining continuously
high until October, ranging between 33 ◦C and 38 ◦C. The HI patterns in Ubon Ratchathani
and Nakhon Ratchasima are comparable, with Ubon Ratchathani generally exhibiting
marginally lower values. The higher temperature and relative humidity seen in Figure 2
contribute to the higher HI observed in Chiang Mai and Bangkok compared to other
provinces. At the lower plot, the relationship between rising temperatures and decreased
human output becomes clear. In this context, the loss in work performance is expressed as
a percentage, highlighting the enormous challenges posed by extreme temperatures. Work
performance suffers significantly during the rainy season in both Bangkok and Chiang Mai.
In Bangkok, the drop runs from 10% to 20%, whereas in Chiang Mai, it goes from 15% to
25%. The considerable drop in work productivity seen in both provinces during the peak
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summer months of May underlines the difficulty that people experience in maintaining
optimal thermal comfort and efficiency in such climatic conditions.

4. Discussion

In this study, we used multivariate regression models to understand the non-linear
relationship between air quality, meteorology, and HI. This has limitations when com-
pared to more advanced methods such as three-way decision (TWD) under probabilistic
linguistic term sets (PLTSs), hesitant trapezoidal fuzzy (HTrF) information systems, and
hyperautomation in intuitive fuzzy (IF) settings, particularly in complex environmental
data analyses. For example, Han et al. [33] focused on minimizing expected losses through
delayed decisions, an approach mirrored here, where detailed statistical analysis helps
us to understand and predict the HI under varying environmental conditions, guiding
decision-making in public health and urban planning. Li et al. [34] used fuzzy logic to
deal with uncertain and imprecise data. Our research employed multivariate regression,
showcasing a different but effective approach to addressing complexity and uncertainty in
environmental data analysis. Ding et al. [35] used IF sets for managing uncertainties and
vagueness in air quality evaluation. One of the primary constraints of multivariate regres-
sion is its handling of uncertainty and imprecision. Unlike methods that utilize fuzzy logic
or rough sets, traditional regression requires precise numerical data and may not effectively
manage the inherent uncertainties often found in environmental data [36]. Additionally,
multivariate regression assumes linear relationships between variables, which can be a
significant limitation in environmental studies where relationships might be non-linear or
influenced by multifaceted interactions [37]. Advanced methods, like hyperautomation in
IF settings, which incorporate cognitive computation methods are better equipped to model
these complex, non-linear relationships [38]. The integration of subjective judgments or
expert opinions is another area where multivariate regression falls short. Environmental as-
sessments often benefit from the inclusion of expert knowledge and subjective assessments,
which methods employing fuzzy sets or rough sets can effectively incorporate [39].

The correlation analysis found that the linear correlation between air quality, meteorol-
ogy, and HI does not imply a relationship; it was discovered that the relationship between
air pollution and meteorological parameters, as well as its influence, is non-linear [23].
Nevertheless, the correlations among air quality, meteorology, and the heat index in the
provinces of Chiang Mai, Ubon Ratchathani, Bangkok, and Nakhon Ratchasima correspond
to the findings of a previous study that investigated comparable relationships. The robust
positive associations between the heat index and temperature recorded across all provinces
are consistent with agreed-upon meteorological principles. According to McGregor and
Vanos [40], the heat index is directly affected by the air temperature, a well-acknowledged
principle in meteorology. The inverse correlation between the heat index and humidity,
although apparently perplexing, can be attributed to the dynamics observed at higher
temperatures, where the relative influence of humidity on the heat index might be less
substantial. This is consistent with the finding reached by Desert et al. [41], who proposed
that under exceedingly high temperatures, the augmented discomfort caused by elevated
humidity might not be noticeably distinct. Another key issue is the indirect impact of air
quality on the heat index. The impact of air quality, particularly as regards pollutants like
PM2.5, CO, and NOx, on local and regional temperature changes has been well established,
influencing the perceived HI. PM2.5 plays a dual role in temperature regulation. Also, black
carbon, a key component of PM2.5, could absorb sunlight and, hence, raise the temperature
of the surrounding environment. Ramanathan and Carmichael [42] point out that this
phenomenon leads to localized warming. However, it should be noted that PM2.5 particles
could diffuse solar radiation, which may result in a potential reduction in ground-level
temperature while simultaneously trapping heat within the atmosphere [24]. CO and NOx
have a primarily indirect effect on temperature. These substances play critical roles in the
formation of ground-level ozone, a strong greenhouse gas. Ozone (O3) is formed when CO
and NOx combine in the presence of sunlight. This can absorb outgoing infrared radiation,
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contributing to the greenhouse effect and producing an increase in surface temperature [43].
The rise in temperature generated by these pollutants has a direct impact on the heat index
(HI), making situations appear more oppressive than would be expected based just on
ambient temperature [44].

The occurrence of a considerable increase in HI values in April and May, as observed
in the provinces of Chiang Mai, Ubon Ratchathani, Bangkok, and Nakhon Ratchasima,
is consistent with trends observed in many tropical regions. These months typically rep-
resent the peak of the hot season in tropical areas, characterized by exceptionally high
temperatures right before the start of the monsoonal rainfall [30]. The impact of urban sur-
roundings on local climates, as examined in Oke [45], is quite pertinent in this context. Their
study demonstrated that urban environments, characterized by compact infrastructure and
human presence, exhibit a heat retention phenomenon, leading to higher temperatures
in comparison to rural areas. In urban environments, rising temperatures can result in
reduced demand for heating in residential areas during colder months, but a significant rise
in the need for cooling during warmer seasons. Urban regions generally experience higher
temperatures compared to rural locations, especially in the colder months. The disparity in
temperature can result in a diminished need for domestic heating in metropolitan regions.
The study conducted by Doick et al. [46] emphasized this feature, demonstrating that
urbanization can result in reduced heating needs during the winter because of the elevated
temperatures found in cities. The relationship between urban heat island intensity and
increased energy demand for cooling is thoroughly examined in the study conducted by
Tian et al. [47]. They evaluated energy consumption patterns in urban areas and discovered
a clear connection between these two factors. In addition, this occurrence can worsen air
quality problems, as highlighted by Liu et al. [48], who discovered that elevated tempera-
tures in metropolitan regions might result in the heightened production of ground-level
ozone and other secondary pollutants.

According to Dunne et al. [31], severe temperatures could place a strain on the ther-
moregulatory processes of the human body, resulting in a deterioration in both cognitive
and physical skills. The drop in job performance observed during periods of high heat index
values in Thailand’s provinces underlines the larger global issue of preserving occupational
health and productivity in the face of rising temperatures. Excessive heat index assess-
ments may significantly restrict the ability to perform physical work. Kjellstrom et al. [49]
found that heat stress diminishes the physical capabilities and productivity of workers,
especially in physically strenuous occupations. This occurs because of the body’s endeavor
to maintain thermal equilibrium, which can result in dehydration, heat exhaustion, and
heat stroke, significantly impeding the capacity to accomplish physical duties effectively. In
addition to impacting physical performance, heat stress also influences cognitive function.
Taylor et al. [50] discovered that elevated temperatures have an adverse effect on cognitive
performance, especially in tasks that require substantial mental focus and decision-making
abilities. Maintaining cognitive abilities may be crucial in professional situations.

Adopting a comprehensive plan to minimize rising HI values, particularly in urban
areas, is critical. Urban greening is a critical method for this. Trees, in addition to pro-
viding shade, can naturally cool the surrounding air by releasing water vapor through
transpiration [51]. Another possible method is to use reflective and cool roofing materi-
als. These materials, according to Akbari et al. [52], could increase solar reflection while
decreasing heat absorption. As a result of this property, the temperatures of building
surfaces and the surrounding air are decreased. According to Yahia and Johansson [53],
there may be benefits to reinforcing architectural designs to enhance natural ventilation in
areas with substantial peaks in HI values. This strategy can help minimize reliance on air
conditioning systems while also contributing to increased energy efficiency. Furthermore,
Kjellstrom et al. [19] proposed that public awareness campaigns emphasizing the impor-
tance of maintaining proper hydration and taking regular breaks during periods of high
heat could effectively reduce health hazards associated with increased heat index values. It
is possible to create more resilient urban environments by implementing these empirically
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supported solutions. This strategy not only protects public health, but also improves living
conditions in response to rising temperatures.

5. Conclusions

In this study, we developed an HI by integrating air quality terms such as PM2.5,
CO, and NOx with meteorological factors such as temperature and relative humidity to
estimate the HI using a multivariate regression model evaluating work performance in
metropolitan areas of Thailand, specifically, Chiang Mai, Bangkok, Nakhon Ratchasima, and
Ubon Ratchathani. The findings demonstrate that the novel estimation method provides
a significantly higher degree of confidence in calculating the HI compared to generic
estimation methods. This is evident from the R2 values of 0.97, 0.82, 0.92, and 0.92 obtained
for Chiang Mai, Bangkok, Nakhon Ratchasima, and Ubon Ratchathani, respectively. The
MSE values in Chiang Mai, Bangkok, Nakhon Ratchasima, and Ubon Ratchathani were
57.23, 66.94, 70.23, and 70.19, respectively. This novel approach to estimating the HI reveals
a significant spike in the HI throughout the months of April and May, which exceeds
the threshold of caution of 32 ◦C, indicating that this period is the yearly heat intensity
peak. Because of the high HI, work productivity in these places is reduced by 10% to
25%, especially during the summer. By implementing empirically verified strategies, it is
possible to construct more resilient urban ecosystems. In the context of rising temperatures,
this method not only protects public health but also improves living conditions.

Nevertheless, this study’s use of multivariate regression, albeit efficient, does have
significant constraints. The major restrictions of the method include the assumption of
linear correlations between variables, difficulties in handling uncertainty and imprecision
in environmental data, limited flexibility under changing conditions, and the integration of
data from many sources. Subsequent investigations should prioritize the exploration of
non-linear models or machine learning methods to effectively capture intricate environ-
mental interactions. By integrating sophisticated uncertainty modeling techniques, such as
fuzzy logic or probabilistic models, the reliability of results can be significantly improved.
Creating flexible models that can adjust to evolving environmental circumstances and in-
corporating diverse data types from several origins, such as satellite data and IoT networks,
could yield a more comprehensive image. To enhance our understanding of the generaliz-
ability of the findings, it is beneficial to broaden the scope by considering a wider variety
of environmental factors and conducting comparative studies across various geographical
regions. Examining the enduring effects of climate change on air quality and the human
health index (HI) will be essential for forthcoming urban development and public health
projects, guaranteeing sustainable interactions with our evolving environment.
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