Assessing the Connectivity of Urban Green Spaces for Enhanced Environmental Justice and Ecosystem Service Flow: A Study of Tehran Using Graph Theory and Least-Cost Analysis
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Determining Factors Affecting Green Space Connectivity
3.2. Preparation of the First Cost Layer
3.3. Preparation of Green Space Hubs and Distance Layer
3.4. Developing the Corridors Layer
3.5. Developing a Strategy to Improve Connectivity
4. Results and Discussion
4.1. Resistance Factors
4.2. Existing Green Space Connectivity Cost Layer
4.3. Hub Network Mapping and Developing the Corridor Layer
4.4. Developing a Strategy to Improve Connectivity through New Green Spaces
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420); United Nations: New York, NY, USA, 2019; p. 236. ISBN 978-92-1-148319-2. [Google Scholar]
- Hassanzadehkermanshahi, K.; Shirowzhan, S. Measuring Urban Sustainability over Time at National and Regional Scale for Addressing United Nations Sustainable Development Goal (SDG) 11: Iran and Tehran as Case Studies. Sustainability 2022, 14, 7402. [Google Scholar] [CrossRef]
- Esfandi, S.; Nourian, F. Urban Carrying Capacity Assessment Framework for Mega Mall Development. A Case Study of Tehran’s 22 Municipal Districts. Land Use Policy 2021, 109, 105628. [Google Scholar] [CrossRef]
- Das, M.; Das, A. Dynamics of Urbanization and Its Impact on Urban Ecosystem Services (UESs): A Study of a Medium Size Town of West Bengal, Eastern India. J. Urban Manag. 2019, 8, 420–434. [Google Scholar] [CrossRef]
- Estoque, R.C.; Ooba, M.; Togowa, T.; Hijioka, Y.; Murayama, Y. Monitoring Global Land-Use Efficiency in the Context of the UN 2030 Agenda for Sustainable Development. Habitat Int. J. 2021, 115, 102403. [Google Scholar] [CrossRef]
- Tayebi, S.; Alavi, S.A.; Esfandi, S.; Meshkani, L.; Shamsipour, A. Evaluation of Land Use Efficiency in Tehran’s Expansion between 1986 and 2021: Developing an Assessment Framework Using DEMATEL and Interpretive Structural Modeling Methods. Sustainability 2023, 15, 3824. [Google Scholar] [CrossRef]
- Li, Y.; Ren, C.; Ho, J.Y.; Shi, Y. Landscape Metrics in Assessing How the Configuration of Urban Green Spaces Affects Their Cooling Effect: A Systematic Review of Empirical Studies. Landsc. Urban Plan. 2023, 239, 104842. [Google Scholar] [CrossRef]
- Koh, C.; Kondo, M.C.; Rollins, H.; Bilal, U. Socioeconomic Disparities in Hypertension by Levels of Green Space Availability: A Cross-Sectional Study in Philadelphia, PA. Int. J. Environ. Res. Public Health 2022, 19, 2037. [Google Scholar] [CrossRef] [PubMed]
- Lonsdorf, E.V.; Nootenboom, C.; Janke, B.; Horgan, B.P. Assessing Urban Ecosystem Services Provided by Green Infrastructure: Golf Courses in the Minneapolis-St. Paul Metro Area. Landsc. Urban Plan. 2021, 208, 104022. [Google Scholar] [CrossRef]
- Mu, B.; Liu, C.; Tian, G.; Xu, Y.; Zhang, Y.; Mayer, A.L.; Lv, R.; He, R.; Kim, G. Conceptual Planning of Urban-Rural Green Space from a Multidimensional Perspective: A Case Study of Zhengzhou, China. Sustainability 2020, 12, 2863. [Google Scholar] [CrossRef]
- Zargari, M.; Mofidi, A.; Entezari, A.; Baaghideh, M. Climatic Comparison of Surface Urban Heat Island Using Satellite Remote Sensing in Tehran and Suburbs. Sci. Rep. 2024, 14, 643. [Google Scholar] [CrossRef]
- Jennings, V.; Johnson Gaither, C.; Gragg, R.S. Promoting Environmental Justice Through Urban Green Space Access: A Synopsis. Environ. Justice 2012, 5, 1–7. [Google Scholar] [CrossRef]
- Rusche, K.; Reimer, M.; Stichmann, R. Mapping and Assessing Green Infrastructure Connectivity in European City Regions. Sustainability 2019, 11, 1819. [Google Scholar] [CrossRef]
- Egerer, M.; Anderson, E. Social-Ecological Connectivity to Understand Ecosystem Service Provision across Networks in Urban Landscapes. Land 2020, 9, 530. [Google Scholar] [CrossRef]
- Belmeziti, A.; Cherqui, F.; Kaufmann, B. Improving the Multi-Functionality of Urban Green Spaces: Relations between Components of Green Spaces and Urban Services. Sustain. Cities Soc. 2018, 43, 1–10. [Google Scholar] [CrossRef]
- Mahmoudzadeh, H.; Massoudi, H. Application of Graph and Least-Cost Theory to Urban Green Space Network Development and Enhancing Landscape Ecological Connectivity (Case Study: Tabriz City). J. Environ. Stud. 2020, 46, 121–142. [Google Scholar] [CrossRef]
- Guzmán-Colón, D.K.; Pidgeon, A.M.; Martinuzzi, S.; Radeloff, V.C. Conservation Planning for Island Nations: Using a Network Analysis Model to Find Novel Opportunities for Landscape Connectivity in Puerto Rico. Glob. Ecol. Conserv. 2020, 23, e01075. [Google Scholar] [CrossRef]
- Nor, A.N.M.; Aziz, H.A.; Nawawi, S.A.; Jamil, R.M.; Abas, M.A.; Hambali, K.A.; Yusoff, A.H.; Ibrahim, N.; Rafaai, N.H.; Corstanje, R.; et al. Evolution of Green Space under Rapid Urban Expansion in Southeast Asian Cities. Sustainability 2021, 13, 12024. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, T.T.; Zheng, X. A Method of Linking Functional and Structural Connectivity Analysis in Urban Green Infrastructure Network Construction. Urban Ecosyst. 2022, 25, 909–925. [Google Scholar] [CrossRef]
- Park, S. A Preliminary Study on Connectivity and Perceived Values of Community Green Spaces. Sustainability 2017, 9, 692. [Google Scholar] [CrossRef]
- Herreros-Cantis, P.; Mcphearson, T. Mapping Supply of and Demand for Ecosystem Services to Assess Environmental Justice in New York City. Ecol. Appl. 2021, 31, e02390. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Liu, H.; Zheng, T. Does the Connectivity of Urban Public Green Space Promote Its Use? An Empirical Study of Wuhan. Environ. Res. Artic. 2020, 17, 297. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Pei, Z. Urban Green Corridors Analysis for a Rapid Urbanization City Exemplified in Gaoyou City, Jiangsu. Forests 2020, 11, 1374. [Google Scholar] [CrossRef]
- Xiu, N.; Ignatieva, M.; van den Bosch, C.K.; Chai, Y.; Wang, F.; Cui, T.; Yang, F. A Socio-Ecological Perspective of Urban Green Networks: The Stockholm Case. Urban Ecosyst. 2017, 20, 729–742. [Google Scholar] [CrossRef]
- Wang, J.; Rienow, A.; David, M.; Albert, C. Green Infrastructure Connectivity Analysis across Spatiotemporal Scales: A Transferable Approach in the Ruhr Metropolitan Area, Germany. Sci. Total Environ. J. 2022, 813, 152463. [Google Scholar] [CrossRef]
- Kimberley, A.; Hooftman, D.; Bullock, J.M.; Honnay, O.; Krickl, P.; Lindgren, J.; Plue, J.; Poschlod, P.; Traveset, A.; Cousins, S.A.O. Functional Rather than Structural Connectivity Explains Grassland Plant Diversity Patterns Following Landscape Scale Habitat Loss. Landsc. Ecol. 2021, 36, 265–280. [Google Scholar] [CrossRef]
- Aguilera, M.A.; González, M.G. Urban Infrastructure Expansion and Artificial Light Pollution Degrade Coastal Ecosystems, Increasing Natural-to-Urban Structural Connectivity. Landsc. Urban Plan. 2023, 229, 104609. [Google Scholar] [CrossRef]
- Enssle, F.; Kabisch, N. Urban Green Spaces for the Social Interaction, Health and Well-Being of Older People—An Integrated View of Urban Ecosystem Services and Socio-Environmental Justice. Environ. Sci. Policy 2020, 109, 36–44. [Google Scholar] [CrossRef]
- Wolch, J.R.; Byrne, J.; Newell, J.P. Urban Green Space, Public Health, and Environmental Justice: The Challenge of Making Cities ‘Just Green Enough’. Landsc. Urban Plan. 2014, 125, 234–244. [Google Scholar] [CrossRef]
- Calderón-Argelich, A.; Benetti, S.; Anguelovski, I.; Connolly, J.J.T.; Langemeyer, J.; Baró, F. Tracing and Building up Environmental Justice Considerations in the Urban Ecosystem Service Literature: A Systematic Review. Landsc. Urban Plan. 2021, 214, 104130. [Google Scholar] [CrossRef]
- Zuniga-Teran, A.A.; Gerlak, A.K. A Multidisciplinary Approach to Analyzing Questions of Justice Issues in Urban Greenspace. Sustainability 2019, 11, 3055. [Google Scholar] [CrossRef]
- Ghorbani, S.; Salehi, E.; Faryadi, S.; Jafari, H.R. Analyzing Urban Environmental Justice Based on Supply, Demand, and Access to Cooling Ecosystem Services in Tehran, Iran. J. Environ. Plan. Manag. 2022, 65, 288–310. [Google Scholar] [CrossRef]
- Wilkerson, M.L.; Mitchell, M.G.E.; Shanahan, D.; Wilson, K.A.; Ives, C.D.; Lovelock, C.E.; Rhodes, J.R. The Role of Socio-Economic Factors in Planning and Managing Urban Ecosystem Services. Ecosyst. Serv. 2018, 31, 102–110. [Google Scholar] [CrossRef]
- Derkzen, M.L.; van Teeffelen, A.J.A.; Verburg, P.H. REVIEW: Quantifying Urban Ecosystem Services Based on High-Resolution Data of Urban Green Space: An Assessment for Rotterdam, the Netherlands. J. Appl. Ecol. 2015, 52, 1020–1032. [Google Scholar] [CrossRef]
- Nasri Roodsari, E.; Hoseini, P. An Assessment of the Correlation between Urban Green Space Supply and Socio-Economic Disparities of Tehran Districts—Iran. Environ. Dev. Sustain. 2022, 24, 12867–12882. [Google Scholar] [CrossRef]
- Seppelt, R.; Dormann, C.F.; Eppink, F.V.; Lautenbach, S.; Schmidt, S. A Quantitative Review of Ecosystem Service Studies: Approaches, Shortcomings and the Road Ahead: Priorities for Ecosystem Service Studies. J. Appl. Ecol. 2011, 48, 630–636. [Google Scholar] [CrossRef]
- Vidal, D.G.; Fernandes, C.O.; Viterbo, L.M.F.; Vilaça, H.; Barros, N.; Maia, R.L. Combining an Evaluation Grid Application to Assess Ecosystem Services of Urban Green Spaces and a Socioeconomic Spatial Analysis. Int. J. Sustain. Dev. World Ecol. 2021, 28, 291–302. [Google Scholar] [CrossRef]
- Taylor, L.; Hochuli, D.F. Defining Greenspace: Multiple Uses Across Multiple Disciplines. Landsc. Urban Plan. 2017, 158, 25–38. [Google Scholar] [CrossRef]
- Lin, B.; Meyers, J.; Barnett, G. Understanding the Potential Loss and Inequities of Green Space Distribution with Urban Densification. Urban For. Urban Green. 2015, 14, 952–958. [Google Scholar] [CrossRef]
- Niemelä, J.; Saarela, S.R.; Söderman, T.; Kopperoinen, L.; Yli-Pelkonen, V.; Väre, S.; Kotze, D.J. Using the Ecosystem Services Approach for Better Planning and Conservation of Urban Green Spaces: A Finland Case Study. Biodivers. Conserv. 2010, 19, 3225–3243. [Google Scholar] [CrossRef]
- Zarghamfard, M.; Bahadori, B.; Hoseinzadeh, R.; Safaralizadeh, E. An Analysis of Spatial Inequality in Tehran Metropolis: Applying Selected Residential Quality Indicators to Its 22 Urban Districts. BGSS 2023, 59, 7–23. [Google Scholar] [CrossRef]
- Tehran Municipality. Tehran’s Green Space Master Plan; Tehran Urban Research and Planning Center: Tehran, Iran, 2022; pp. 1–200. [Google Scholar]
- Egerer, M.; Fouch, N.; Anderson, E.C.; Clarke, M. Socio-Ecological Connectivity Differs in Magnitude and Direction across Urban Landscapes. Sci. Rep. 2020, 10, 4252. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Hortal, L.; Saura, S. Comparison and Development of New Graph-Based Landscape Connectivity Indices: Towards the Priorization of Habitat Patches and Corridors for Conservation. Landsc. Ecol. 2006, 21, 959–967. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, Y.; Jim, C.Y.; Song, H. Assessing Structural Connectivity of Urban Green Spaces in Metropolitan Hong Kong. Sustainability 2017, 9, 1653. [Google Scholar] [CrossRef]
- Davies, R.G.; Barbosa, O.; Fuller, R.A.; Tratalos, J.; Burke, N.; Lewis, D.; Warren, P.H.; Gaston, K.J. City-Wide Relationships between Green Spaces, Urban Land Use and Topography. Urban Ecosyst. 2008, 11, 269–287. [Google Scholar] [CrossRef]
- Hepcan, Ş. Analyzing the Pattern and Connectivity of Urban Green Spaces: A Case Study of Izmir, Turkey. Urban Ecosyst. 2013, 16, 279–293. [Google Scholar] [CrossRef]
- Schetke, S.; Haase, D.; Breuste, J. Green Space Functionality under Conditions of Uneven Urban Land Use Development. J. Land Use Sci. 2010, 5, 143–158. [Google Scholar] [CrossRef]
- Stessens, P.; Khan, A.Z.; Huysmans, M.; Canters, F. Analysing Urban Green Space Accessibility and Quality: A GIS-Based Model as Spatial Decision Support for Urban Ecosystem Services in Brussels. Ecosyst. Serv. 2017, 28, 328–340. [Google Scholar] [CrossRef]
- Kabisch, N.; Haase, D. Green Justice or Just Green? Provision of Urban Green Spaces in Berlin, Germany. Landsc. Urban Plan. 2014, 122, 129–139. [Google Scholar] [CrossRef]
- Zhang, Z.; Meerow, S.; Newell, J.P.; Lindquist, M. Enhancing Landscape Connectivity through Multifunctional Green Infrastructure Corridor Modeling and Design. Urban For. Urban Green. 2019, 38, 305–317. [Google Scholar] [CrossRef]
- Saura, S.; Pascual-Hortal, L. Conefor Sensinode 2.2 User’s Manual; University of Lleida: Lleida, Spain, 2007; pp. 1–56. [Google Scholar]
- Hegetschweiler, K.T.; de Vries, S.; Arnberger, A.; Bell, S.; Brennan, M.; Siter, N.; Olafsson, A.S.; Voigt, A.; Hunziker, M. Linking Demand and Supply Factors in Identifying Cultural Ecosystem Services of Urban Green Infrastructures: A Review of European Studies. Urban For. Urban Green. 2017, 21, 48–59. [Google Scholar] [CrossRef]
- Chaudhary, S.; McGregor, A.; Houston, D.; Chettri, N. Environmental Justice and Ecosystem Services: A Disaggregated Analysis of Community Access to Forest Benefits in Nepal. Ecosyst. Serv. 2018, 29, 99–115. [Google Scholar] [CrossRef]
- Capotorti, G.; Alós Ortí, M.M.; Copiz, R.; Fusaro, L.; Mollo, B.; Salvatori, E.; Zavattero, L. Biodiversity and Ecosystem Services in Urban Green Infrastructure Planning: A Case Study from the Metropolitan Area of Rome (Italy). Urban For. Urban Green. 2019, 37, 87–96. [Google Scholar] [CrossRef]
- Green, O.O.; Garmestani, A.S.; Albro, S.; Ban, N.C.; Berland, A.; Burkman, C.E.; Gardiner, M.M.; Gunderson, L.; Hopton, M.E.; Schoon, M.L.; et al. Adaptive Governance to Promote Ecosystem Services in Urban Green Spaces. Urban Ecosyst. 2016, 19, 77–93. [Google Scholar] [CrossRef]
- Liu, O.Y.; Russo, A. Assessing the Contribution of Urban Green Spaces in Green Infrastructure Strategy Planning for Urban Ecosystem Conditions and Services. Sustain. Cities Soc. 2021, 68, 102772. [Google Scholar] [CrossRef]
- Lovell, S.T.; Taylor, J.R. Supplying Urban Ecosystem Services through Multifunctional Green Infrastructure in the United States. Landsc. Ecol. 2013, 28, 1447–1463. [Google Scholar] [CrossRef]
- Ghasemi, K.; Hamzenejad, M.; Meshkini, A. The Spatial Analysis of the Livability of 22 Districts of Tehran Metropolis Using Multi-Criteria Decision Making Approaches. Sustain. Cities Soc. 2018, 38, 382–404. [Google Scholar] [CrossRef]
- Rajaei, S.A.; Mansourian, H. Urban Growth and Housing Quality in Iran. Soc. Indic. Res. 2017, 131, 587–605. [Google Scholar] [CrossRef]
- Reyhan, M.K.; Memarzadeh, R.; Doosti, S.; Latifi, A. Interaction between High-Rise Building, Wind and Pollution in District Twenty-Two of Tehran Municipality, Iran. Glob. Nest J. 2022, 24, 382–391. [Google Scholar] [CrossRef]
- Rezaei, N.; Rasouli, M.; Azhdari, B. The Attitude of the Local Community to the Impact of Building Reuse: Three Cases in an Old Neighborhood of Tehran. Herit. Soc. 2018, 11, 105–125. [Google Scholar] [CrossRef]
- Xu, Y.; Qiu, X.; Yang, X.; Lu, X.; Chen, G. Disaster Risk Management Models for Rural Relocation Communities of Mountainous Southwestern China under the Stress of Geological Disasters. Int. J. Disaster Risk Reduct. 2020, 50, 101697. [Google Scholar] [CrossRef]
- Kaushik, M.; Tiwari, S.; Manisha, K. Habitat Patch Size and Tree Species Richness Shape the Bird Community in Urban Green Spaces of Rapidly Urbanizing Himalayan Foothill Region of India. Urban Ecosyst. 2022, 25, 423–436. [Google Scholar] [CrossRef]
- Kristianova, K.; Vitkova, L. Green Spaces As Strategy for Urban Regeneration and Development-Examples From Bratislava. Teka Kom. Urban. I Archit. 2016, 44, 283–288. [Google Scholar]
- Yung, E.H.K.; Conejos, S.; Chan, E.H.W. Social Needs of the Elderly and Active Aging in Public Open Spaces in Urban Renewal. Cities 2016, 52, 114–122. [Google Scholar] [CrossRef]
- Iojă, C.I.; Grădinaru, S.R.; Onose, D.A.; Vânău, G.O.; Tudor, A.C. The Potential of School Green Areas to Improve Urban Green Connectivity and Multifunctionality. Urban For. Urban Green. 2014, 13, 704–713. [Google Scholar] [CrossRef]
- Ahmadi, N.; Golestani, M.A.; Bayzidan, M. The Current Status of Urban Parks and Green Spaces in Tehran, Iran; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2017; pp. 155–160. [Google Scholar]
- Jennings, V.; Browning, M.H.E.M.; Rigolon, A. Urban Green Space at the Nexus of Environmental Justice and Health Equity. In Urban Green Spaces: Public Health and Sustainability in the United States; Jennings, V., Browning, M.H.E.M., Rigolon, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 47–69. ISBN 978-3-030-10469-6. [Google Scholar]
Factor | Resistance to Creating New Green Space | Resistance to the Flow of Ecosystem Services between Existing Green Spaces | Source | |||
---|---|---|---|---|---|---|
Effect Direction | Normalized Weight | Effect Direction | Normalized Weight | |||
UGI factors (over 11 hectares) | Distance between green spaces | ↓ | 0.089 | ↑ | 0.091 | [16,44,45] |
Area of green spaces | ↑ | 0.083 | ↓ | 0.085 | ||
Distance of urban parcels from green space | ↓ | 0.031 | ↑ | 0.032 | ||
Land use/Land cover factors | Residential | ↑ | 0.074 | ↑ | 0.076 | [32,35,45,46,47,48,49] |
Other green spaces (below 11 hectares) | ↑ | 0.061 | ↓ | 0.062 | ||
Urban Services | ↑ | 0.038 | ↑ | 0.039 | ||
Commercial | ↑ | 0.038 | ↑ | 0.041 | ||
Military | ↓ | 0.054 | ↑ | 0.051 | ||
Agricultural and garden | ↓ | 0.053 | ↓ | 0.052 | ||
Urban facilities and equipment | ↑ | 0.038 | ↑ | 0.052 | ||
Mixed residential–commercial | ↑ | 0.051 | ↑ | 0.061 | ||
Mixed residential–urban service | ↑ | 0.038 | ↑ | 0.054 | ||
Water bodies | ↑ | 0.038 | ↓ | 0.041 | ||
Barren land | ↓ | 0.047 | ↓ | 0.057 | ||
Building density | ↑ | 0.079 | ↑ | 0.076 | ||
Socioeconomic and demographic factors | Population density | ↓ | 0.054 | ↑ | 0.054 | [12,16,21,38,45,50,51] |
Land price | ↑ | 0.086 | ↑ | 0.075 | ||
The ratio of the population aged under 14 to the total population | ↓ | 0.025 | - | - | ||
The ratio of the population aged over 60 to the total population | ↓ | 0.022 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alavi, S.A.; Esfandi, S.; Khavarian-Garmsir, A.R.; Tayebi, S.; Shamsipour, A.; Sharifi, A. Assessing the Connectivity of Urban Green Spaces for Enhanced Environmental Justice and Ecosystem Service Flow: A Study of Tehran Using Graph Theory and Least-Cost Analysis. Urban Sci. 2024, 8, 14. https://doi.org/10.3390/urbansci8010014
Alavi SA, Esfandi S, Khavarian-Garmsir AR, Tayebi S, Shamsipour A, Sharifi A. Assessing the Connectivity of Urban Green Spaces for Enhanced Environmental Justice and Ecosystem Service Flow: A Study of Tehran Using Graph Theory and Least-Cost Analysis. Urban Science. 2024; 8(1):14. https://doi.org/10.3390/urbansci8010014
Chicago/Turabian StyleAlavi, Seyed Ali, Saeed Esfandi, Amir Reza Khavarian-Garmsir, Safiyeh Tayebi, Aliakbar Shamsipour, and Ayyoob Sharifi. 2024. "Assessing the Connectivity of Urban Green Spaces for Enhanced Environmental Justice and Ecosystem Service Flow: A Study of Tehran Using Graph Theory and Least-Cost Analysis" Urban Science 8, no. 1: 14. https://doi.org/10.3390/urbansci8010014
APA StyleAlavi, S. A., Esfandi, S., Khavarian-Garmsir, A. R., Tayebi, S., Shamsipour, A., & Sharifi, A. (2024). Assessing the Connectivity of Urban Green Spaces for Enhanced Environmental Justice and Ecosystem Service Flow: A Study of Tehran Using Graph Theory and Least-Cost Analysis. Urban Science, 8(1), 14. https://doi.org/10.3390/urbansci8010014