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Abstract: In the realm of urban geotechnical infrastructure development, accurate estimation of the
California Bearing Ratio (CBR), a key indicator of the strength of unbound granular material and
subgrade soil, is paramount for pavement design. Traditional laboratory methods for obtaining
CBR values are time-consuming and labor-intensive, prompting the exploration of novel compu-
tational strategies. This paper illustrates the development and application of machine learning
techniques—multivariate linear regression (MLR), artificial neural networks (ANN), and the adap-
tive neuro-fuzzy inference system (ANFIS)—to indirectly predict the CBR based on the soil type,
plasticity index (PI), and maximum dry density (MDD). Our study analyzed 2191 soil samples for
parameters including PI, MDD, particle size distribution, and CBR, leveraging theoretical calculations
and big data analysis. The ANFIS demonstrated superior performance in CBR prediction with an
R2 value of 0.81, surpassing both MLR and ANN. Sensitivity analysis revealed the PI as the most
significant parameter affecting the CBR, carrying a relative importance of 46%. The findings under-
score the potent potential of machine learning and neuro-fuzzy inference systems in the sustainable
management of non-renewable urban resources and provide crucial insights for urban planning,
construction materials selection, and infrastructure development. This study bridges the gap between
computational techniques and geotechnical engineering, heralding a new era of intelligent urban
resource management.

Keywords: urban planning and management; California bearing ratio; adaptive neuro-fuzzy
inference system; artificial neural networks

1. Introduction

The sweeping global phenomenon of urbanization is molding the face of our planet,
with increasingly more of the world’s population calling cities their home. This transforma-
tive trend is full of challenges as cities worldwide grapple with a growing urban populace’s
environmental and infrastructural implications [1]. The urban landscape requires con-
tinuous adaptation and expansion, necessitating substantial resource consumption and
putting immense pressure on our planet’s finite natural assets. The urbanization trend’s
exponential trajectory and the resulting resource demands have inevitably altered urban
relationships with the environment [2]. Amidst this unprecedented consumption rate, the
challenge is finding new resources to sustain urban growth and enhancing how we utilize
current resources to support urban lifestyles. This task involves refining our strategies
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to generate more value and a higher quality of life with less input or, in other words,
transitioning towards more sustainable cities [3]. Cities have always functioned akin to
living organisms, drawing in resources and energy to survive. Yet, the increasing urban
inflows catalyzed by technological advancements and population growth necessitate more
systematic and sustainable resource management [4]. A critical area of this discourse is
the development of new, sustainable materials suitable for urban cities, with particular
emphasis on the construction sector—a significant consumer of resources and a substantial
contributor to environmental degradation.

In particular, soil, extensively used in construction activities, especially for roads and
pavements, is under immense pressure. Thus, understanding soil properties and behavior
is paramount for the sector’s sustainability. A key soil parameter utilized in road and
pavement design is the California Bearing Ratio (CBR), which measures the highest density
of soil’s penetration resistance [5]. This ratio is significant in designing the thickness of
pavement and sub-base layers, and it can be represented as follows:

CBR =
Test Load

Standard Load
× 100 (1)

The ‘Test Load’ refers to the force penetrating a soil sample. At the same time, the
‘Standard Load’ denotes the resistance provided by a standard crushed aggregate sample
with a CBR of 100% against equivalent penetration. The CBR values are estimated at
2.5 mm and 5 mm penetrations, with the higher value used in the design [5].

Devised in the 1920s by the California State Highway Division, the CBR test was
widely adopted, even by the United States Corps of Engineers, for military airfields during
the 1940s [6]. Traditionally, CBR testing involves compacting soil samples to their maxi-
mum dry density in the lab and subjecting them to either a 2.5 or 5 mm penetration depth.
In situ, the CBR is indirectly measured using experimental methods, such as the Dynamic
Cone Penetration (DCP) test performed in an excavated test pit at the subgrade level [7].
Although laboratory CBR testing provides critical insights, it is time-consuming and sus-
ceptible to human errors and data collection issues, potentially invaliding test results. The
CBR value can also vary significantly depending on the soil type and properties [8,9].
Therefore, indirect methods to estimate CBR values swiftly and accurately are essential for
mitigating project delays and ensuring consistent construction quality [10]. The importance
of efficient CBR value predictions cannot be overstated, especially considering the environ-
mental implications of unsustainable construction practices. Innovative approaches are
necessary to improve the accuracy of CBR value predictions and, thus, the sustainability
of urban construction activities [11]. Fortunately, emerging technologies offer promising
solutions. In recent years, machine learning (ML) techniques and theoretical simulations
have proven effective in solving complex problems across various sectors [12]. Incorpo-
rating ML techniques into soil classification and characterization could provide a rapid,
cost-effective, and accurate means of estimating soil properties, such as the CBR value.
This prospect is essential for the sustainability of construction activities and constitutes an
opportunity to navigate the urban resource challenge by improving construction efficiency
and reducing waste [13]. Moreover, we can find a deep connection between urban resources
and ecosystems. As cities depend on imported external resources, they also benefit from
internal resources and ecosystem services [14]. For example, studying soil properties such
as CBR values plays a crucial role in urban planning and infrastructure development, thus
interlinking urban resources, the environment, and machine learning methodologies.

Recent developments have witnessed a growing adoption of predictive modeling
exercises employing a diverse range of machine learning techniques, such as artificial neural
networks (ANN), Ensemble Piecewise Regression (EPR) models, Multivariate Adaptive
Regression Splines, Random Forests, Gradient Boosting Machines, and Gene Expression
Programming (GEP), to infer California Bearing Ratio (CBR) values indirectly [15–19].
This emerging trend holds the promise of substantially reducing the time and resources
expended in traditional laboratory-based CBR testing, thus elevating the efficiency of urban
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resource management and planning, contributing to the advancement of more sustainable
cities. However, it is vital to consider the various ML techniques available and their
suitability for different applications [20]. For instance, the prediction of CBR values has
been attempted using techniques such as Support Vector Machines (SVM) and artificial
neural networks (ANN). While both techniques have shown promise, each has its strengths
and limitations, and their performance can be context-dependent [21].

As we continue to deepen our understanding of soil properties and their predictive
modeling, we also expand our toolkit for tackling the resource challenges that rapidly
urbanizing cities worldwide face. There needs to be more understanding regarding us-
ing ML techniques and theoretical simulations in predicting soil properties, particularly
CBR values. Additionally, the existing literature predominantly focuses on conventional
methods, which, while helpful, may be more resource-intensive and less accurate than
newer, more innovative approaches [22]. Table 1 summarizes the notable literature that has
developed models for predicting the CBR of fine-grained soils using various methodologies,
including regression analysis, artificial neural networks (ANN), and adaptive neuro-fuzzy
inference systems (ANFIS). While these studies have contributed to the field, most of them
were limited by small data sizes, limiting themselves to a particular type of soil and hin-
dering the generalizability and applicability of their models. In contrast, the present study
benefits from a substantial number of data points with various soil types, enhancing the
reliability and robustness of the developed models. Addressing these gaps in knowledge
and practice is critical for advancing toward sustainable cities, emphasizing the importance
of this study. This study, therefore, contributes to the literature by exploring the use of
machine learning techniques and theoretical simulations for CBR value prediction. The
primary objective is to determine whether these approaches can improve the accuracy
and efficiency of CBR value prediction, thus contributing to more sustainable construction
practices in urban environments. This investigation aligns with the Special Issue’s theme,
offering a novel perspective on urban resource management and the role of technology in
promoting sustainability [23].

Table 1. Summary of the notable literature to predict the CBR.

Methodology Used Input Parameters Considered No. of Samples R2 Ref.

GP OMC, MDD, S, G, LL, and PI 151 0.92 [24]

MLRA
ANN Sieve analysis, Atterberg limits, MDD, and OMC. 124 0.88

0.95 [25]

ANN OMC, MDD, L, and LS 51 0.84 [26]

GMDH Gravel content (GC), Sand content (SC), Fine content (FC), LL,
PI, OMC, and MDD 158 0.96 [27]

MLRA
ANN D60 and MDD 207 0.93

0.97 [28]

ANN Gradation, OMC, MDD, LL, PI, and percentages of SO3,
Soluble salt, Gypsum, and Organic materials. 358 0.78 [29]

ERF
ANFIS

Hydrated lime-activated rice husk ash, LL, PL, PI, OMC,
MDD, and Clay activity. 121 1.00

0.99 [30]

MLRA
ANN

ANFIS
LL, PL, PI, S, G, C/Si, MDD, and OMC 264

0.80
0.90
0.98

[31]

ELM-CSO Gravel %, Sand %, Fines %, LL, PL, OMC, and MDD. 149 0.90 [32]

This study’s significance lies in its potential to improve the accuracy of CBR value
prediction and its broader implications for urban resource management. By demonstrating
the feasibility and effectiveness of using machine learning techniques and theoretical
simulations in soil property prediction, this research may encourage their wider adoption
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in the construction sector, promoting more efficient resource use and contributing to the
sustainability of cities worldwide [33].

The study aims to develop MLR, ANN, and ANFIS models for predicting the soil CBR
based on the collected dataset. A comprehensive dataset of 2191 CBR test results from
subgrade soils representing a wide range of soil types were collected. The dataset includes
various soil parameters such as the plasticity index (PI), maximum dry density (MDD), and
particle size distribution. These parameters were selected based on their known influence
on CBR values and availability in standard soil testing protocols [34–36].

The developed models will be compared in terms of their predictive efficacy, as
assessed by metrics such as the root mean square error (RMSE) and the coefficient of
determination (R2). The ANFIS model, with its ability to handle complex relationships and
non-linear data, is expected to outperform the traditional MLR models and potentially rival
the predictive performance of ANN models. This study contributes to advancing sustain-
able urban resource management by utilizing machine learning techniques and theoretical
simulations. The findings will improve our understanding of the factors influencing CBR
values and provide valuable insights for decision-makers and engineers involved in urban
infrastructure development. Applying these predictive models can optimize the design
and construction of urban geotechnical infrastructure, leading to more sustainable and
efficient urban development practices.

2. Soil Database and Laboratory Testing

The current research examines soil properties in Andhra Pradesh state, specifically
focusing on samples collected from core and non-core road networks, as shown in Figure 1.
A comprehensive range of critical parameters was collected to generate robust and reliable
data models, such as particle size distribution, Atterberg limits, maximum dry density,
optimum moisture content (OMC), and CBR values. To mitigate the negative impacts of
multicollinearity on data quality, data preprocessing was conducted, involving the exercise
of a multicollinearity check to comprehend the interdependencies among independent
variables. In particular, the Karl Pearson Correlation was applied in conjunction with the
variance inflation factor (VIF) for each independent variable, where the VIF indicates how
much the variance of the estimated regression coefficient is inflated due to multicollinearity.
A VIF value exceeding five suggests the presence of multicollinearity. The soil type, PI, and
MDD parameters were selected for input into the data modeling phase, as they exhibited no
multicollinearity. Additionally, box plots were developed to eliminate any outliers for the
input and output parameters of interest. This led to the selection of 2191 samples for CBR
value modeling after removing outliers from the CBR results of 2469 subgrade samples
used in the study. The collected soil samples were of coarse- and fine-grained varieties
and were classified according to the Indian Standard Soil Classification System, falling into
eight distinct soil types (SW, SP, SM, SC, GP, GM, CL, CI), as illustrated in Figure 2. The
laboratory-based determination of CBR values for each sample was performed using a
soil compaction method by the ASTM D1883-16 Standard Test Procedure [34]. Statistically
descriptive analyses of the soil properties collected in the database are detailed in Table 2,
with accompanying frequency histograms presented in Figure 3.

Table 2. Descriptive statistics of the data.

Particulars Test Codes Mean Standard
Deviation

Sample
Variance Kurtosis Skewness Minimum Maximum

PI ASTM D4318-00 10.80 9.37 87.82 −0.68 0.44 0 39

MDD ASTM D698 1.91 0.16 0.02 −0.16 −0.30 1.5 2.31

CBR ASTM D1883-16 11.48 5.77 33.33 −0.68 0.44 2.11 27.4
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Upon examining Table 2 and Figure 3, it is evident that the skew values of 0.44 for
both PI and CBR signify a slight right skewness in the distribution. This implies that more
data points are located on the right side of the distribution, which leads to a positively
skewed distribution. Moreover, the kurtosis values of −0.68 for both PI and CBR indicate
that the distribution is platykurtic, which means it is flatter than a normal distribution. This
suggests that the data are less concentrated around the mean than a normal distribution,
with a more extensive and dispersed shape. Additionally, the MDD distribution has a
negative skew value of −0.30 and kurtosis of −0.16, signifying a slight left skewness and
flatter profile than a normal distribution, with fewer extreme values.

As the variable “Soil type” was represented in characters, it was necessary to encode
it as numerical values to analyze it using the MLR and ANFIS methods, which do not
consider string values. This encoding was completed using the Statistical Package for the
Social Sciences (SPSS) version 28. Table 3 presents the laboratory data from soil testing
utilized in this study.



Urban Sci. 2024, 8, 4 6 of 18

Urban Sci. 2023, 7, x FOR PEER REVIEW 6 of 19 
 

 

  
(a) (b) 

(c) 

Figure 3. Frequency histograms of (a) PI, (b) MDD, and (c) CBR. 

Upon examining Table 2 and Figure 3, it is evident that the skew values of 0.44 for 
both PI and CBR signify a slight right skewness in the distribution. This implies that more 
data points are located on the right side of the distribution, which leads to a positively 
skewed distribution. Moreover, the kurtosis values of −0.68 for both PI and CBR indicate 
that the distribution is platykurtic, which means it is flatter than a normal distribution. 
This suggests that the data are less concentrated around the mean than a normal distribu-
tion, with a more extensive and dispersed shape. Additionally, the MDD distribution has 
a negative skew value of −0.30 and kurtosis of −0.16, signifying a slight left skewness and 
flatter profile than a normal distribution, with fewer extreme values. 

As the variable “Soil type” was represented in characters, it was necessary to encode 
it as numerical values to analyze it using the MLR and ANFIS methods, which do not 
consider string values. This encoding was completed using the Statistical Package for the 
Social Sciences (SPSS) version 28. Table 3 presents the laboratory data from soil testing 
utilized in this study. 

Table 3. Sample laboratory test results. 

Sample  
No 

Soil  
Type 

Soil Description Encoded 
to 

PI 
(%) 

MDD  
(g/cc) 

CBR 
(%) 

1 CI Intermediate-Plasticity Clay 1 19.00 1.83 6.40 
2 CL Low-Plasticity Clay 2 10.60 1.68 6.50 
3 GM Silty Gravel 3 9.00 1.88 10.89 
4 GP Poorly Graded Gravel 4 10.00 1.95 7.11 
5 SC Clayey Sand 5 14.00 1.77 4.05 
6 SM Silty Sand 6 26.00 1.98 11.60 

Figure 3. Frequency histograms of (a) PI, (b) MDD, and (c) CBR.

Table 3. Sample laboratory test results.

Sample
No

Soil
Type Soil Description Encoded

to
PI

(%)
MDD
(g/cc)

CBR
(%)

1 CI Intermediate-Plasticity Clay 1 19.00 1.83 6.40
2 CL Low-Plasticity Clay 2 10.60 1.68 6.50
3 GM Silty Gravel 3 9.00 1.88 10.89
4 GP Poorly Graded Gravel 4 10.00 1.95 7.11
5 SC Clayey Sand 5 14.00 1.77 4.05
6 SM Silty Sand 6 26.00 1.98 11.60
7 SP Poorly Graded Sand 7 0 2.11 17.60
8 SW Well-Graded Sand 8 0 1.94 10.58

3. Data Analysis
3.1. MLR Analysis

Multivariate linear regression analysis (MLR) is a statistical method with broad ap-
plicability in various fields, such as engineering, economics, and the social sciences, to
investigate the relationship between multiple independent variables and a single depen-
dent variable. The main objective of MLR is to establish a connection between the predictor
or independent variable and a dependent variable to predict future outcomes accurately.
In this study, the observed CBR value was linked to three soil parameters: soil type, plas-
ticity index, and MDD, using MLR analysis in IBM SPSS version 28. The CBR test value
served as the dependent variable. At the same time, the soil type, plasticity index, and
MDD were independent factors in the study Equation (2). MLR analysis has several ad-
vantages, including its ability to identify the most significant independent variables that
influence the dependent variable. This is beneficial for understanding the relationships
between different variables and developing more accurate predictive models. However,
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MLR has some limitations, such as the assumption of linearity between the independent
and dependent variables, which may need to be validated in complex systems. Despite
these limitations, MLR is a valuable and widely used method for analyzing the relation-
ships between variables, and its results can provide valuable insights for decision-making
and forecasting.

Yi = α0 + α1 × xi1 + α2 × xi2 + . . . + αp × xip+ E (2)

Yi = The dependent variable
xi = Independent variables
α0 = intercept on the y-axis
αp = coefficients of slopes of independent variables
E = Error or Residual
The results of the correlation coefficient and t-test were examined to determine the

statistical significance of the model.

3.2. Artificial Neural Network

An artificial neural network (ANN) is a machine-learning algorithm that mimics the
structure and function of the human brain. It comprises layers of interconnected nodes, or
neurons, that process input data and generate output. During training, the weights of the
connections between neurons are adjusted using backpropagation to minimize error. ANNs
effectively handle complex and noisy data, as they can learn to extract features from raw
data and make accurate predictions. However, they can be computationally expensive and
require much-labeled training data to perform well. Additionally, the internal workings of
ANNs can be difficult to interpret, making it challenging to understand how they arrive at
their decisions.

ANN has been used to address technical challenges by researchers working on compli-
cated technical problems over the past decade. The ANN model may be built in a variety
of forms, all of which are based on the same fundamental structure. A collection of input
nodes, a single layer or layers of hidden nodes, and a collection of output nodes are all
included in this [37]. A multilayer network with multiple transfer functions was used to
determine the best ANN model to predict the CBR. The model’s accuracy in predicting the
output is governed by the training function, transfer function, number of hidden layers,
and number of neurons inside the hidden layers. A Multi-Layered Perception (MLP) Feed-
Forward Back-Propagation mechanism, a log-sig (log-sigmoid) activation function, and a
Levenberg–Marquardt (trainlm) learning function were incorporated to develop a suitable
ANN model for predicting the CBR of the soil. Different combinations of the number of
hidden layers and the corresponding number of neurons were tried to obtain a model
with a higher R2 value and lower RMS error. One hidden layer with five neurons offered
the optimum network structure for the inputs such as soil type, PI, MDD, and CBR as an
output (3-5-1). Of the total data points, 70% were used to train the model, 15% were used
to test the model, and the remaining 15% were validated using MATLAB r2022a software.
The suggested ANN model architecture is shown in Figure 3.

3.3. Adaptive Neuro-Fuzzy Inference System (ANFIS)

An adaptive neuro-fuzzy inference system (ANFIS) is a machine learning model that
combines the strengths of artificial neural networks (ANN) and fuzzy logic. It uses a hybrid
learning algorithm to build a system to learn and make decisions based on input data.
ANFIS models consist of fuzzy rules that can be adjusted using neural network techniques,
making them highly adaptable to different data types. In 1965, Lofti Zahed invented
fuzzy set theory, a method for dealing with imprecision in decision-making using a set of
fuzzy linguistic rules. ANFIS models are used in various applications, including pattern
recognition, time-series prediction, and control. The model comprises a set of fuzzy rules
extracted from the input data by fuzzy clustering and a set of neural networks trained using
backpropagation. The fuzzy rules and neural networks work together to make accurate
predictions based on input data. An ANFIS can handle complex data and learn from large
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datasets, making it suitable for various applications. ANFIS models are more accurate
than ANN models in some cases due to the incorporation of fuzzy logic, which allows
for more human-like decision-making. This is particularly advantageous when dealing
with complex, ill-defined problems where traditional rule-based systems may need to be
improved. An ANFIS can be more robust to noisy data, as the fuzzy logic components
can help to smooth out the effects of outliers and other anomalies. ANFIS models also can
explain their decision-making process, making them more transparent than ANN models.
Additionally, ANFIS models require less training data than ANN models, which can save
time and resources.

One of the key components of an ANFIS is the membership function, which represents
the degree of membership of an input to a particular fuzzy set. The membership function
determines how much influence an input has on a specific output. The shape of the mem-
bership function can be adjusted to fit the data, and different types of membership functions
can be used, such as Gaussian, triangular, and trapezoidal. ANFIS membership functions
are typically characterized by a set of parameters that are optimized during the learning
process. These parameters determine the membership function’s shape, spread, and center.
The parameters can be tuned using gradient descent or other optimization algorithms to
minimize errors between the system’s predictions and output. ANFIS membership func-
tions are powerful because they can model complex and non-linear relationships between
input and output variables, making them useful for various applications.

The membership functions are named after the curve’s geometry, such as triangular,
bell-shaped, trapezoidal, and Gaussian membership functions [Equation (3)]. The devel-
oped ANFIS model was evaluated with all membership functions, and the trapezoidal
membership function (trapmf) was found to give the best results with the lowest RMSE
value and was therefore used in the research. With four scalar parameters to define its
curve: a, b for feet and c, d for shoulders, trapmf forms the shape of a truncated triangle, as
shown in Figure 4.

Urban Sci. 2023, 7, x FOR PEER REVIEW 9 of 19 
 

 
Figure 4. The architecture of the proposed ANN model (3-5-1). 

It is mathematically represented by ƒ ሺx;  a, b, c, dሻ ൌ 𝑚𝑎𝑥 ൬𝑚𝑖𝑛 ൬𝑋 െ 𝑎𝑏 െ 𝑎 , 1, 𝑑 െ 𝑥𝑑 െ 𝑐൰ , 0൰ (3)

A five-layer architecture usually depicts a typical ANFIS network, as represented in 
Figure 5. In references such as Jang [38], extensive documentation for ANFIS is available 
(1993). The adaptive neuro-fuzzy inference system considers three inputs, soil type, PI, 
and MDD, and an output, CBR. Below is a brief description of each layer’s functions in 
the ANFIS. 

 
Figure 5. Trapezoidal MF. 

Layer 1 is an adaptive node fuzzy layer with three trapezoidal membership functions 
for each input variable. Soil type, PI, and MDD are inputs to the system. T1,i is the target 
output of the nth node of layer l. A square node represents the adaptive nodes. 

Figure 4. The architecture of the proposed ANN model (3-5-1).

It is mathematically represented by

ê(x; a, b, c, d) = max
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A five-layer architecture usually depicts a typical ANFIS network, as represented in
Figure 5. In references such as Jang [38], extensive documentation for ANFIS is available
(1993). The adaptive neuro-fuzzy inference system considers three inputs, soil type, PI,
and MDD, and an output, CBR. Below is a brief description of each layer’s functions in
the ANFIS.

Urban Sci. 2023, 7, x FOR PEER REVIEW 9 of 19 
 

 
Figure 4. The architecture of the proposed ANN model (3-5-1). 

It is mathematically represented by ƒ ሺx;  a, b, c, dሻ ൌ 𝑚𝑎𝑥 ൬𝑚𝑖𝑛 ൬𝑋 െ 𝑎𝑏 െ 𝑎 , 1, 𝑑 െ 𝑥𝑑 െ 𝑐൰ , 0൰ (3)

A five-layer architecture usually depicts a typical ANFIS network, as represented in 
Figure 5. In references such as Jang [38], extensive documentation for ANFIS is available 
(1993). The adaptive neuro-fuzzy inference system considers three inputs, soil type, PI, 
and MDD, and an output, CBR. Below is a brief description of each layer’s functions in 
the ANFIS. 

 
Figure 5. Trapezoidal MF. 

Layer 1 is an adaptive node fuzzy layer with three trapezoidal membership functions 
for each input variable. Soil type, PI, and MDD are inputs to the system. T1,i is the target 
output of the nth node of layer l. A square node represents the adaptive nodes. 

Figure 5. Trapezoidal MF.

Layer 1 is an adaptive node fuzzy layer with three trapezoidal membership functions
for each input variable. Soil type, PI, and MDD are inputs to the system. T1,i is the target
output of the nth node of layer l. A square node represents the adaptive nodes.

The adaptive functions can be mathematically expressed as

T1,n = µAn (Soil Type) for n = 1, 2, 3 (4)

T1,n = µBn−3 (PI) for n = 4, 5, 6 (5)

T1,n = µCn−6 (MDD) for n = 7, 8, 9 (6)

where µAn, µBn−3, and µCn−6 represent the trapezoidal membership functions.
Layer 2 has fixed nodes and performs the ‘AND’ function, multiplying outputs from

layer 1 to give the Firing strength (wn).

T2,n = wn = µAn(Soil Type) × µBn(PI) × µCn(MDD) for n = 1, 2, 3. (7)

Layer 3 also has fixed nodes. This layer normalizes the firing strength of all rules by
computing the ratio of the nth rule’s firing strength to the sum of all rules’ firing strength.

T3 =
−
w =

wn

w1 + w2 + w3
, for n = 1, 2 (8)

Layer 4 has adaptive nodes, and they perform the function of defuzzification.

T4,n =
−
wnf n =

−
wn (pn(soil type) + qn(PI) + rn(MDD) + sn) (9)

The parameters in this layer (pn, qn, rn, and sn) are adjustable parameters called
consequent parameters.

Layer 5 has a single fixed node. The output is given by the addition of all signals
received.
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Overall output = CBR = T5,n . . . = Σ
−
wn fn =

Σnwnfn

Σnwn
(10)

For the ANFIS analysis, the trapezoidal membership function (Trapmf) was used with
the different number of epochs to obtain a model with the least RMSE value. A Takagi-
Sugeno-type ANFIS model was used in the study (Figures 6 and 7). The grid partitioning
technique was used to generate the FIS. Further, the generated FIS was trained using a
hybrid learning algorithm with 70% of the data. The model was tested on 15% of the data
and was validated on the remaining 15% of the data using MATLAB r2022a.
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3.4. Performance Criteria

The potential of the MLR, ANN, and ANFIS models was assessed statistically by
computing the RMSE and R2 values. These criteria are defined by the equations below.

RMSE =

√
∑n

j=1(E − A)2

n
(11)

R2= 1 − ∑(Ai − Ei)
2

∑
(
Ai − A

)2 f (12)
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E = Predicted Value
A = Observed Value
−
A = Average of A values
n = Number of Observations

4. Results and Discussion
4.1. MLRA Results

The obtained model for the CBR from multivariate linear regression analysis is as follows:

CBR = 2.13 + 1.24 × (Soil Type) − 0.25 × (PI) − 2.67 × (MDD) (13)

Tables 4 and 5 below summarize the results of the regression analysis.

Table 4. Model Performance Metrics.

Regression Statistics

Multiple R 0.67
R Square 0.45

Adjusted R Square 0.45
RMSE 4.270

Observations 2191

Table 5. Coefficients and Significance Test.

Coefficients Standard Error T Stat p-Value

Intercept 2.13 1.14 1.86 <0.05
Soil Type 1.24 0.05 26.16 <0.05

PI −0.25 0.01 −25.39 <0.05
MDD 2.67 0.63 4.24 <0.05

A statistical analysis was conducted to assess the suitability of the suggested model.
The hypotheses considered are

H0 = CBR is not related to Soil Type, PI, and MDD,
H1 = CBR is related to Soil Type, PI, and MDD.
Based on the statistical results, a significance level (p-value) of less than 0.05 was used

as the threshold to determine statistical significance. Consequently, the null hypothesis
(H0) was rejected, indicating a favorable relationship between the CBR and the variables
soil type, PI, and MDD.

4.2. ANN Results

The following passage discusses the development and validation of an artificial neural
network (ANN) model for predicting the California Bearing Ratio (CBR) based on three
inputs: soil type, plasticity index (PI), and maximum dry density (MDD). The model
consisted of a single hidden layer with five neurons, and the log-sig transfer function
was used for this layer. The model’s performance was evaluated by determining the
R2 (coefficient of determination) and RMSE (root mean square error) values for the training,
testing, and validation data sets. The data was split into three sets to validate the accuracy
of the ANN model for predicting the CBR: training, testing, and validation. The model
was trained on 70 percent of the data, and the R2 value obtained for this training data set
was 0.67, indicating that the model explains 67% of the variation in the CBR (Figure 8).
The RMSE value was 2.63, indicating the average difference between the predicted and
actual CBR values. Similarly, the R2 and RMSE values were calculated for the testing
and validation data sets. For the testing data set, the R2 value was 0.65, and the RMSE
value was 2.70. The R2 and RMSE values for the validation data set were 0.66 and 2.64,
respectively. The results of the ANN model were compared to those obtained from a
Multiple Linear Regression Analysis (MLRA), which is a traditional statistical method used
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for predicting the CBR. The results showed that the ANN model outperformed the MLRA
analysis in predicting the CBR value [25,28,31]. The success of the ANN model can be
attributed to its ability to process complex networks and establish the connection between
input and output parameters, resulting in more accurate results. The scatterplot in Figure 9
compares the predicted CBR values by the ANN model and the actual CBR values.
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4.3. ANFIS Results

An adaptive neuro-fuzzy inference system (ANFIS) analysis using the trapmf method,
which involved three membership functions for each input variable, was developed. The
ANFIS model was used to indirectly predict soil California Bearing Ratio (CBR) values. To
evaluate the accuracy of the ANFIS model, the predicted CBR values were compared with
the actual CBR values using scatterplots, and the correlation coefficient was determined.
Additionally, the mean square error was calculated for the ANFIS model. The results of
the ANFIS analysis were promising, with an R2 value of 0.81 and an RMSE of 2.26 for
the training data set, indicating that the model explains 81% of the variation in the CBR.
Similarly, for the testing data set, the R2 value was 0.82, and the RMSE value was 2.29. The
R2 and RMSE values for the validation data set were 0.82 and 2.23, respectively. These
results suggest that the ANFIS model could predict soil CBR values with high accuracy, as
evidenced by the high correlation coefficient and low mean square error.

In summary, the ANFIS analysis using the trapmf method with three membership
functions for each input variable showed promising results in predicting soil CBR values.
The high R2 values and low RMSE values obtained from the training, testing, and validation
data sets indicate the model’s high degree of accuracy [30,31]. The use of ANFIS models in
soil analysis can provide valuable insights into the behavior of soil properties, which can
be useful in designing geotechnical structures and infrastructure projects.

Figure 10a depicts that the predicted CBR value with a PI value between 0 and 10 is
highest for soil types SP and SW (7 and 8) and lowest for the soil types CI and CL (1 and 2)
with high PI values and a moderate CBR for GM, GP, SC and SM (3, 4, 5 and 6). A further
increase in the PI value reduces the CBR value significantly. From the Figure 10b it can be
observed that soil type SP and SW with higher MDD have the highest CBR value. Whereas
soil types CI and CL (1 and 2) and GM, GP, SC, and SM (3, 4, 5, and 6) provided the lowest
and moderate CBR values, respectively, the MDD value was reduced. The combined result
can be observed in Figure 10c, wherein the highest CBR value is obtained for a lesser PI
value and a higher MDD value. Figure 11 represents variation of the CBR with changes in
(a) soil type and PI, (b) soil type and MDD, and (c) PI and MDD.

The summary of the prediction metrics of the obtained model is compared in
Table 6. The previous works in the literature showcased R2 values ranging from 0.80
to 0.93 for MLRA, 0.78 to 0.97 for ANN, and 0.98 for ANFIS, respectively, for the CBR
prediction with smaller datasets comprising 124 to 264 samples [25,26,28–31]. In contrast,
our investigation employed a more extensive dataset consisting of 2191 samples, encom-
passing diverse soil types. Consequently, the variability in R2 values might be attributed
to the larger dataset. Nonetheless, our study aligns with the observed trend of higher
prediction efficacy achieved by the ANFIS model, followed by the ANN and MLRA models.
Table 7 compares the predicted CBR values from the developed model with the actual
laboratory data.

Table 6. Comparative analysis of the developed models.

Analysis
Performed

R2 Value Root Mean Square Error (RMSE)

Training Testing Validation Training Testing Validation

MLRA 0.45 4.6

ANN 0.67 0.65 0.66 2.63 2.70 2.64

ANFIS 0.81 0.82 0.82 2.26 2.29 2.23
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Table 7. Comparison of the predicted CBR obtained from different techniques.

Soil
Type

Encoded
To

PI,
%

MDD,
g/cc

Actual
CBR, %

Predicted CBR, %

MLRA
Output

ANN
Output

ANFIS
Output

SP 7.00 0.00 2.11 17.60 15.96 16.52 16.45

SC 5.00 11.70 1.47 10.43 11.40 8.59 9.75

SM 6.00 30.00 1.99 9.04 7.84 10.75 8.97

CL 2.00 10.60 1.68 6.50 7.15 6.04 5.67

GP 4.00 0.00 2.09 14.80 11.79 17.48 16.95

GM 3.00 28.00 2.11 7.09 3.92 7.93 6.51

SW 8.00 23.00 1.77 10.51 12.56 11.39 11.30

CI 1.00 19.00 1.83 6.40 3.60 2.47 5.99

SC 5.00 15.00 1.88 7.11 10.05 8.22 6.91

CI 1.00 16.00 1.75 4.13 4.41 3.56 5.17

SW 8.00 22.60 2.00 9.50 12.32 11.31 10.64

SW 8.00 12.15 1.93 11.40 14.83 11.31 12.85

CL 2.00 17.00 1.65 2.71 5.72 2.62 3.93

GP 4.00 0.00 1.96 15.50 11.98 17.77 16.95

SM 6.00 15.67 2.14 12.50 10.91 9.60 11.25

SM 6.00 19.22 2.02 10.48 10.27 9.89 10.50

GP 4.00 0.00 1.84 18.40 12.15 18.02 18.10

4.4. Sensitivity Analysis

Sensitivity analysis is a critical tool that can determine the most influential parameters
affecting the California Bearing Ratio (CBR) value. Its primary purpose is to investigate
the importance of imprecision or uncertainty in model inputs, thereby enabling decision-
makers and modelers to identify key variables that can substantially influence the values of
a particular output variable. By measuring the effect of changes in model input values on
model output values, sensitivity analysis can help to improve the accuracy and robustness
of CBR predictions. In practice, it is commonly observed that only a relatively small number
of input variables significantly affect the values of a particular output variable. As such,
sensitivity analysis techniques can be used to calculate a parameter known to be of input
importance. The input importance of each parameter can then be evaluated and ranked to
identify which variables are most significant. In this study, multivariate sensitivity analysis
was carried out based on Principal Component Analysis [39]. Figure 12 shows the input
importance of different parameters. The results of the analysis suggest that the PI changes
are a highly significant factor and play a major role in affecting the CBR, with a relative
importance of 46% [40]. Soil type is ranked second at 34%, while maximum dry density
(MDD) is ranked last with a relative importance of 20%. The low impact of MDD on the
CBR suggests that it is less influential than other parameters and should be given less
weight in CBR predictions [41].
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In conclusion, this study focused on investigating the impact of soil type, plasticity
index (PI), and maximum dry density (MDD) on the California Bearing Ratio (CBR) of
subgrade soils. The objective was to develop predictive CBR models using statistical and
soft computing techniques. A multivariate linear regression (MLR) analysis was initially
employed, but its limited capacity to accurately predict the CBR, as indicated by the low
R2 value of 0.45, prompted the exploration of advanced methods. The artificial neural
network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) models were devel-
oped and compared, with promising results. The ANN model improved predictive ability,
achieving R2 values of 0.67, 0.65, and 0.66 for training, testing, and validation, respectively.
The ANFIS model, outperforming the MLR model, yielded higher predictive accuracy
with R2 values of 0.81, 0.82, and 0.82 for training, testing, and validation data, respectively.
While the use of a larger dataset (2191 data points with a variety of soil types) resulted
in lower R2 values compared to the previous literature, which utilized smaller data sam-
ples. However, the trend of prediction efficiency remained consistent, showing the ANFIS
model outperforming both the ANN and MLRA models in estimating the CBR, which
aligns with previous studies. The results confirm the efficacy of soft computing techniques,
particularly the ANFIS model, in predicting the CBR based on soil type, PI, and MDD
values, providing more accurate and efficient CBR estimation. These models offer a viable
alternative to traditional statistical analysis methods and contribute to the sustainable
management of urban resources. Accurate CBR prediction is crucial for optimizing the
design and construction of urban infrastructure, promoting efficient resource utilization,
and ensuring the long-term sustainability of cities. The combination of machine learning
techniques and theoretical simulations demonstrated by the ANN and ANFIS models
offers a powerful approach to CBR prediction. The developed models provide valuable
insights into the factors influencing the CBR and can assist engineers and decision-makers
in making informed choices for urban infrastructure development. Further research can
explore incorporating additional soil parameters and examining the applicability of these
models in different geotechnical contexts.
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