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Abstract: Understanding the relationship between urban crime and the built environment is crucial
for developing effective crime prevention strategies, particularly in the context of rapid urban
development and city planning. As cities grow, urbanization leads to environments that either
promote or inhibit criminal activity, making it essential to explore the interactions between urban
design and crime. This study investigates the impact of micro built environment (MBE) elements and
place perceptions on crime occurrences in Toronto using street view imagery (SVI) data and machine
learning models. We used logistic regression models and an XGBoost (Version 1.7.5) classifier to assess
the significance of MBE and perception variables in classifying crime and non-crime intersections.
Our findings reveal that intersections with criminal activity tend to be related to more mobility-related
features, such as roads and vehicles, and fewer natural elements, such as vegetation. The “beautiful”
and “depressing” perceptions emerged as the most significant variables in explaining crime events,
surpassing the commonly studied “safety” perception. The XGBoost model achieved 86% accuracy,
indicating that MBE and perception variables are strong predictors of crime risk. These findings
suggest that enhancing vegetation and improving street aesthetics could serve as effective crime
prevention measures in urban environments. However, limitations include the general nature of the
perception model and the reliance on aggregated crime data. Future research should incorporate
local perceptions and fine-scale crime data to provide more tailored insights for urban planning and
crime prevention

Keywords: micro built environment; environment perception; street view imagery; urban crime

1. Introduction

Crime poses a worldwide challenge, fostering social unrest and hindering urban
development. It disrupts the day-to-day life of individuals and, meanwhile, presents
a major barrier to achieving long-term city growth and stability. As cities expand and
evolve, they face the complex interplay between urbanization, infrastructural development,
and rising crime rates. Rapid urban development, when poorly planned or inadequately
managed, can create environments where crime thrives, exacerbating social inequalities
and straining public resources. This connection between crime and urban development
underscores the need for more nuanced analyses of the built environment’s role in shaping
criminal activity.

As per the police-reported crime statistics in Canada, there has been a rising trend
in the crime severity index since 2014 [1]. Research has confirmed that crime negatively
affects urban public safety and welfare, with significant short- and long-term impacts on
economic growth and public health [2–4]. Understanding the spatial and temporal patterns
of crime is crucial for developing effective prevention strategies and mitigating its potential
adverse effects on society.

Traditionally, studies have used built environment data, such as census information,
to explore the spatial patterns of crime and its relationship with socio-economic factors.
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However, this approach often fails to capture the finer details of the built environment
around crime hotspots, as it relies on aggregated data from broader geographic units like
census blocks. For example, a significant association between the percentage of households
having porches, the average number of building stories, and crime was reported in the
previous study [5]. The built environment data used in that research was at the census block
level, which does not provide detailed information, such as the micro built environment
(MBE), about the specific locations of crimes. MBE elements refer to components of human-
made urban environment in a fine-scale setting, particularly those found on streets and
encountered by people daily, such as trees, traffic lights, and vehicles. Unlike conventional
built environment data that represents an entire administrative area and assumes uniformity
in crime characteristics across that area, MBE elements provide detailed insights specific to
each crime location, acknowledging the unique features present at each site.

The MBE plays an important role when studying crime events as it shapes human
perception and impacts people’s decisions. The importance of studying the relationship
between MBE elements and crime is emphasized by the crime prevention through environ-
mental design (CPTED) theory [6]. CPTED suggests that certain MBE elements are more
influential in promoting or inhibiting crime. For example, a study in Portland found that
larger trees convey the impression of better maintenance and heightened risk for offenders,
thus reducing crime in the vicinity [7]. Other MBE elements, such as lighting, building
height, and vegetation, have also been linked to crime in multiple studies [8–11]. Although
many MBEs have been examined, few studies have focused on how human perceptions of
MBEs relate to crime.

Perceptions were, arguably, closely linked to the built environment. In Jane Jacobs’s
theory, urban designs that encourage active street life and natural surveillance, such as
features like mixed-use buildings, short blocks, and pedestrian-friendly layouts, enable
residents and passersby to keep “eyes on the street,” thereby deterring crime [12]. Similarly,
Oscar Newman’s theory relates safety perception with the built environment by promoting
design elements like territorial boundaries, natural surveillance, and controlled access,
which foster residents’ sense of ownership and control over their spaces, thereby discour-
aging criminal activity and enhancing feelings of safety [13]. Both scholars emphasized the
importance of street environment and street layout, which can be substantially proxied via
street environment derived from SVI, such as MBEs. Additionally, previous urban studies
have found associations between perceived characteristics derived from SVI and MBEs,
such as safety, liveliness, and wealth, with outcomes like housing prices and restaurant
reviews [14–16]. Researchers have also established connections between perceived safety
and crime; for example, neighborhood disorders, such as broken windows, are associated
with reduced perceptions of safety and higher crime rates [17,18].

Despite attempts to investigate associations among MBE elements, perceptions, and
crime events, many existing studies are limited by small sample sizes and a lack of diversity
in neighborhood characteristics [19]. Neighborhoods with different characteristics, such as
population density and ethnic diversity, were found to have different crime patterns [20].
Such lack of diversity was due to the high cost of manually collecting and quantifying MBEs
and perceptions in the city, as there can be tens of thousands of unique crime locations
in a city. Such limitation may lead to inconsistent associations between perceived safety
and crime events [5,19,21]. The perceptions were found to be largely impacted by the
environmental design; specifically, proper streetscape design was suggested as one of
the key methods to reduce the incidence of crime, according to CPTED principles [22].
Perceived safety has been largely explored in previous research, but other perceptions, such
as perceived beauty, may also be associated with crime events as perceptions shape one’s
behavior. Studying how various perceptions are linked to crime incidence can deepen our
understanding of the influence of environmental design on crime as suggested by CPTED.
This involves examining how perception, shaped by a combination of factors including
the MBE, impacts crime rates. To fill the research gap, this study implements a city-wide



Urban Sci. 2024, 8, 247 3 of 15

analysis that captures the MBE and perception characteristics on streets across the city of
Toronto to further investigate the associations among MBEs, perception, and crime events.

To capture the characteristics of the street environment within a city, crowdsourced
data that covers the street environment with high resolution and stable data quality is
needed to make the large-scale analysis possible. Street view imagery (SVI) is crowdsourced
data with high-resolution street appearance images similar to what pedestrians see while
walking on the street and has been utilized extensively in recent urban studies. With SVI,
researchers can evaluate walkability and quantify physical objects, such as trees and noise
barriers, in urban areas [23,24]. Researchers found that SVI can identify physical MBE
elements as a percentage of SVI objects on the street [25]. SVI provides opportunities
for studies to quantify MBEs and perceptions across the city with the high quality and
consistency of SVI [26,27]. Being able to quantify MBE elements and perceptions with
well-trained models could minimize the bias and cost compared to manually labeled MBEs
and perceptions, enabling big-data crime analysis on a larger scale.

This study employs deep learning models to extract MBE factors and estimate human
perceptions from SVI around reported crime intersections in Toronto. Binomial logistic
regression models were used to investigate the associations among different MBE and
perception variables and crime events. The findings reveal that street environmental
characteristics, including MBE elements and perceptions, are significantly associated with
crime events. These insights can guide efforts to improve urban built environments, helping
to mitigate rising crime trends and promote a more sustainable urban environment.

2. Materials and Methods

This study investigates street-level crime events and their association with the sur-
rounding urban built environment in the city of Toronto. The analysis workflow is illus-
trated in Figure 1. Crime data from 2018, containing street addresses of reported incidents,
were obtained from the Toronto Police Open Data [28]. To protect privacy, these addresses
were aggregated to the nearest road intersection. The SVI for each road intersection was
collected via online street view providers and further used to quantify MBE elements and
perceptions by machine learning models. MBEs were extracted from the SVI into 19 types
of commonly seen street elements, such as trees, roads, and cars, using the PSPNet model
trained on the Cityscape dataset [29,30]. Perceptions were quantified on a scale from 0
to 1, utilizing a machine learning model trained on the Place Pulse 2.0 dataset [31,32].
Meanwhile, census variables at the dissemination area (DA) level, were collected as the
control variables. The DA is the smallest census area in Canada, where each DA contains
400 to 700 residences. The average DA size is 0.18 square kilometers in Toronto. The control
variables were selected based on suggestions from previous empirical studies [33,34]. To
analyze the relationship between crime, SVI-derived MBEs, and perceptions, three analyti-
cal models were employed. First, a regression model was used to examine the associations
among MBEs, perceptions, and crime events. Second, an XGBoost classifier was deployed
to predict the likelihood of crime at all intersections in Toronto.

2.1. Data Collection

The crime data from Major Crime Indicators were obtained from the Toronto Police
Open Data, containing 242,879 records of reported crimes from 2014 to 2022 [28]. For
this study, crime data from 2018 were selected as the sampling data, as they provide a
representative snapshot for analysis. This dataset includes information on premises type,
offense type, and the geolocations where the crimes occurred. To protect the privacy of the
individuals involved, the geolocations were adjusted to the nearest street intersections as
provided in the official open data.

SVI was collected at all three and four-way intersections in Toronto (N = 20,040) to
investigate the MBEs close to the crime scenes. For each intersection, SVI was captured
from four angles (0, 90, 180, and 270 degrees relative to true north) to obtain a comprehen-
sive 360-degree view and cover the surrounding MBEs. Since this study focuses on the
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relationship between MBEs and perceptions derived from SVI, and street crime, only crime
events with a premises type classified as “outside” (indicating street-level occurrences)
were included. After filtering, 2854 intersections with reported crimes were identified. To
address potential data imbalance issues during model training, an equal number (2854)
of non-crime intersections were randomly selected from all intersections in Toronto. The
distribution of these intersections is illustrated in Figure 2.
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Previous studies have found that street crime can be associated with factors such
as social disadvantage, ethnic group composition, economic activity, and race [35–37].
Thus, in addition to street-view data, population, income, low-income percentage, and
ethnic diversity were extracted from the most recent census data, the Toronto Census Data
2016 [38] at the DA level and used as control variables. The control variables were mapped
to every intersection in the DA.

2.2. Micro Built Environment Extraction

MBEs were extracted from SVI using a deep-learning model, specifically, the Pyramid
Scene Parsing Network (PSPNet). PSPNet is a deep convolutional neural network that
employs convolutional blocks of sizes 1, 2, 3, and 6 to capture high-level details at different
scales in the images, combining these details to segment MBEs [30].

The network was pre-trained on the Cityscapes dataset, which contains 25,000 anno-
tated images focusing on urban street scenes [29]. This pre-trained PSPNet model was
obtained from GluonCV [39], which provides implementations of top-performing computer
vision models. The model’s performance was evaluated using pixel accuracy and mean
intersection over union (mIoU). Pixel accuracy measures the percentage of correctly classi-
fied pixels, while mIoU assesses the overlap between ground truth labels and prediction
labels. The PSPNet model achieved 96.4% pixel accuracy and a 79.9% mIoU.

The Cityscapes dataset includes 19 object classes within 7 categorical street classes.
Although another dataset, ADE20K offers 150 object classes (including both indoor and
street objects) [40], its best model achieves only a 57% mIoU, significantly lower than
Cityscapes. Since this study focuses solely on street MBEs, using ADE20K could introduce
noise by misclassifying street objects as indoor elements. Therefore, the Cityscapes dataset
was more suitable for this study’s requirements. By deploying the trained PSPNet model
with the Cityscapes dataset, 19 types of MBE are extracted from the SVIs. These 19 types
of MBEs represent physical built environment elements commonly observed on the street,
such as terrain, poles, and fences. A more detailed description and list of the MBE variables
are listed in Appendix B. The extracted MBEs are quantified with values ranging from 0
to 1, indicating the percentage of pixels corresponding to each MBE type within an SVI.
For example, a value of 0.1 for the “fence” MBE means that fences occupy 10 percent of the
pixels in the image.

2.3. Perception Score

The perception score (Q-score) was derived from the Place Pulse 2.0 dataset, which
contains 1,170,000 pairwise comparisons of SVI. Each comparison addressed questions such
as “Which place looks safer?” or “Which place looks more beautiful?” across six perception
variables: safety, beauty, liveliness, boredom, depression, and wealth [31]. Participants
selected the image that best matched their perception without receiving predefined defini-
tions of these variables. The pairwise comparisons were then transformed into a score scale
ranging from 0 to 1 using the strength-of-schedule algorithm. For example, a safety score of
0 indicates that a street view feels very unsafe, while a score of 1 suggests that it feels very
safe. The strength-of-schedule algorithm, often used in sporting competitions to evaluate
team strength based on their matchups, was employed to compute the transformed Q-score.
Detailed equations for this transformation can be found in Appendix A.

2.4. Classifying Crime Intersections Using Statistical and Machine Learning Models

Using the data obtained, three logistic regression models were built to explore the
impact of MBE and place perception on street crime by classifying whether an intersection
had a crime record. Additionally, six logistic regression models were constructed to assess
the significance and performance of each perception variable in explaining crime events.
An XGBoost model was also developed using parameters developed in Appendix C to
classify crime and non-crime intersections using all variables, with its prediction accuracy
validated through five-fold cross-validation. The XGBoost model is a powerful and scal-
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able machine learning model that builds ensembled decision trees to iteratively improve
accuracy. XGBoost is capable of identifying and modeling the non-linear relationships
between variables. To identify the factors most relevant for crime intersection classification,
feature importance was determined using data impurity-based metrics from the machine
learning model. This model was further employed to predict the probability of an inter-
section being a crime location, with this probability serving as the crime risk indicator for
each intersection.

The control variables included the neighborhood’s low-income population, young
population, unemployment rate, and ethnic origin. The low-income and young populations
were normalized as percentages relative to the total population in the DA. Ethnic diversity
was assessed using the Hirschman–Herfindahl Index in Equation (1), in which the higher
the diversity, the higher the index score. In the equation, A represents the percentage of
the Asian population, LA represents the percentage of the Latin American population,
AA represents the percentage of the African American population, NV represents the
percentage of non-visible minority populations, and O represents others [41]. The control
variables used in this study were found to be related to crime events [42–46].

Ethnic Diversity = 1 − A2 + LA2 + AA2 + NV2 + O2

(A + LA + AA + NV + O)2 (1)

All the variables used in this study are described in Appendix B. By combining the
control variables with MBE and place perception scores separately, this study compared
the impact of different variables on street crime activities. To train the model, we checked
the multicollinearity with variance inflation factors (VIF) and the correlation of different
variables. If the VIF exceeds 10, the model may have potential multicollinearity and
certain variables should be excluded from the model. Three models were constructed to
investigate the associations between different variables and crime events. Model 1 included
only control variables as a baseline, Model 2 incorporated both control variables and MBE
data, and Model 3 included control variables along with perception scores. Additionally,
six logistic regression models were built to evaluate the performance and significance of
each perception variable in combination with the control variables.

3. Results
3.1. Machine Learning Based Feature Importance

The percentage difference between intersections with and without criminal activity is
concluded in Figure 3, which indicates that intersections with criminal activity tend to have
more buildings and roads but significantly fewer natural elements, including vegetation
and terrain. The fitted XGBoost model achieved 86% accuracy when classifying crime
and non-crime intersections using five-fold cross-validation. This observation aligns with
the result obtained from the XGBoost model’s feature importance analysis. In particular,
the MBE variables exhibited high feature importance when classifying crime and non-
crime intersections, as demonstrated in Figure 4. For instance, traffic lights, buildings, and
vegetation rank as the second, fourth, and fifth most important variables.

3.2. Relationship Between MBEs and Street Crime Events

Logistic regression model results for control variables only (Model 1) and combining
control variables and MBE variables (Model 2) indicate that the MBE variables greatly
contribute to classifying crime and non-crime intersection. This is evidenced by Model 2
having a much lower AIC than Model 1, as shown in Table 1. Mobility-related variables,
such as roads, sidewalks, and vehicles, demonstrate a significant positive association with
intersections that experience crime events. The positive significance of buildings aligns
with the findings in Figure 2, where a higher concentration of buildings at intersections is
associated with an increase in the risk of nearby criminal activities. Although vegetation
and terrain are both natural elements on the street, the association with crime events came
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from different directions, as terrain was identified to be positively associated with crime,
and vegetation was identified to be negatively associated with crime.
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3.3. Relationship Between Perception and Street Crime Events

All perception-related variables exhibit significant associations, except for the variable
“lively”, as shown in Table 2. These findings indicate that individuals typically perceived
lower safety, wealth, beauty, and higher depressing and boring elements in the intersections
with crime records compared to other intersections. Overall, for models with perception
variables (Models 1–6), it is noteworthy that the model containing the beautiful perception
(Model 4) has the smallest AIC values, which means the beautiful perception contributes
the most to explaining crime events among all other perceptions in Toronto. Additionally,
“beautiful” also has the highest feature importance, compared to other perception variables,
according to Figure 4.
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Table 1. Logistic regression model results for control variables only (Model 1) and combining control
variables and MBE variables (Model 2).

Model 1 Model 2

(Intercept) −2.34 *** −5.86 ***
Unemployed −4.77 *** −1.94
Low Income 5.26 *** 3.71 ***

Racial Diversity 1.45 *** 0.95 ***
Age 15 to 29 3.37 *** 1.99 ***

With Bachelor Degree 1.12 *** 0.09
Pedestrian 19.49 **

Road 10.16 ***
Sidewalks 8.67 ***

Vehicle 10.29 ***
Building 3.52 ***

Fence 8.42 ***
Pole 49.29 ***

Terrain 2.49 *
Traffic Light 106.64
Traffic Sign −16.09
Vegetation −0.96 *

AIC 7249 6561.7
*** p < 0.001; ** p < 0.01; * p < 0.05.

Table 2. Logistic regression model results for safety perception (Model 1), wealthy perception (Model
2), depressing perception (Model 3), beautiful perception (Model 4), boring perception (Model 5),
and lively perception (Model 6). (The control variables are consistent across all models, so they are
omitted from the table to save space.)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

(Intercept) −0.64 *** −1.07 *** −3.31 *** −0.60 *** −3.07 *** −2.32 **
Control variables - - - - - -

Safety −2.37 ***
Wealthy −2.55 ***

Depressing 3.11 ***
Beautiful −2.32 ***

Boring 1.20 ***
Lively −0.07

AIC 6821 7018 6780 6739 7222 7251
*** p < 0.001; ** p < 0.01;

4. Discussion

The research findings indicate a significant negative association between safety percep-
tion and crime events, along with a significant positive association between MBE variables
and crime events, which aligns with prior research [47–49]. This study advances the field
by emphasizing that MBE variables offer a more effective explanation for crime events than
perception variables. By integrating fine-scale data on urban microenvironments, this study
offers compelling evidence that elements of the built environment play a crucial role in
shaping crime patterns, potentially even more than subjective perceptions of safety. Unlike
prior studies, which often focused on aggregated data, this research dives deeper into how
specific MBE factors at crime locations contribute to criminal activity. Furthermore, this
study not only examines how individual MBE elements, such as roads, vehicles, and fences,
are related to crime, but also explores how perceptions modeled by the MBE are associ-
ated with crime. Notably, perception variables, though less effective than the MBE, still
explain crime better than using control variables alone. Additionally, this study introduces
the novel finding that perceptions of beauty and depression provide a more compelling
explanation for crime events than the commonly examined safety perception. This finding
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provides insights for understanding how the aesthetic and emotional aspects of urban
design influence criminal activity, an area that previous studies have largely overlooked.

The positive significance observed in all mobility-related elements, including roads,
vehicles, sidewalks, and crime events, provides clear evidence that locations that provide
greater accessibility were more likely to experience crime events [50]. This highlights a
critical challenge in urban development: while mobility features are essential for ensuring
efficient access and movement within cities, they may also inadvertently create opportu-
nities for crime. However, the relationship between fences and poles and crime events
varies across studies, potentially due to regional and cultural differences [51]. In North
America, fences often serve as a physical barrier to safeguard residents’ privacy and secu-
rity for their properties. The fences can also serve as part of the architectural decorations
for buildings, especially for old buildings that are concentrated in Toronto’s downtown
area [52]. In this study, the fence and poles were positively associated with crime events.
This finding implies that elements such as roads, vehicles, sidewalks, fences, and poles
can play important roles in influencing crime events, suggesting that areas with higher
accessibility and mobility features might also be more susceptible to criminal activities.

These insights carry significant implications for urban planning and community safety.
Urban planners can balance accessibility with safety considerations when designing public
spaces. For instance, while ensuring efficient mobility through well-structured roads and
sidewalks, targeted interventions such as improved lighting, surveillance, and strategic
placement of fences can enhance safety. Moreover, fences and poles might be used more
thoughtfully, with attention to their placement and design to avoid creating hiding spots
or obstructing sightlines, which could help reduce crime opportunities. Incorporating
these considerations into urban design could promote safer neighborhoods while still
maintaining accessibility and aesthetic appeal.

Previous research suggests that more vegetation could mitigate crimes [4,53,54]. This
connection between vegetation and crime was also revealed in the study region. The
XGBoost model demonstrated that vegetation was one of the most important variables
among other MBE variables in classifying crime and non-crime locations. The significant
association between vegetation elements and crime events also appears in the logistic re-
gression model. Furthermore, the association between vegetation and crime events in street
intersections aligns with other studies, indicating that vegetation in street intersections is
similarly as connected to crime events as vegetation in the middle of street segments. The
result of this study suggests that improving vegetation near street intersections can also be
an effective way to promote crime prevention, as with the effect of natural elements in the
middle of street segments.

The statistically negative association of safety perception with crime events matches
previous findings that indicate the connection between safety perception and crime events.
In the context of Toronto’s crime events, this study suggests the beautiful and depressing
perception better explains crime. Due to limited data collection resources, previous research
concentrated more on the relationship with the safety perception and did not pay enough
attention to the other perceptions. Both safety and beautiful perception variables showed
significance in the regression model and exhibited the highest performance among the
perception regression models. Consequently, there is a need for more research to examine
the relationship between these perceptions and crime as it is unclear what accounts for the
better performance of beautiful and depressing.

Previous studies discussed how aesthetics related to crime incidence, where the exis-
tence of elements that represent neighborhood disorder, such as broken windows, leads to
a negative influence on people’s perception of safety, and further impacts street aesthet-
ics [55]. The findings of mobility-related features and perceptions of beauty and depression
are closely aligned with the safety perception theories introduced by Jane Jacobs and
Oscar Newman [12,13]. Both of their theories suggest that the built environment’s appear-
ance can strongly influence crime perception and security. Jacobs’s emphasis on vibrant,
mixed-use areas with continuous human activity relates to how visually appealing and
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well-maintained areas attract more “eyes on the street,” deterring crime. Similarly, New-
man’s Defensible Space Theory suggests that well-kept environments signal ownership and
territoriality, while neglected or visually depressing spaces may invite crime by signaling
vulnerability. Both theories, thus, support the idea that beauty and upkeep in the built
environment contribute to a lower crime perception, resonating with our study’s findings
on the role of visual aesthetics in crime modeling.

Street aesthetics, which is quantified as a beautiful perception in this study, can be
a more informative perception than safety. A safe place might also be beautiful, as such,
safety perception can be brought by the existence of specific elements instead of the overall
street environment. For instance, the presence of a police station can make people feel
safer than without the presence of a police officer, disregarding the orientation of elements
on the street. However, the presence of elements that relate to street aesthetics, such as
a modern building or art crafts, will not have as much impact as the police station on
safety perception. Similarly, depressing perception has similar attributes, which can be
more related to the overall environment design than the presence of a single element,
which aligns with CPTED theory [22]. Studies emphasized people’s avoidance behavior in
depressing places, where people try to avoid staying in disorderly places [56]. In contrast,
people tend to stay in beautiful places like parks [57].

There are some limitations in this study that could be addressed in a future study. The
findings may be limited by the data accuracy from the data collection stage. The crime
locations were offset to the nearest intersections, which affected the number of roads and
decreased natural elements in the SVI, potentially resulting in over- or underestimation of
crime risk in certain areas. In the meantime, the crime data used in this study contain all
types of crime that happen in outdoor conditions, such as robbery, theft, and assault. It is
worth noticing that the connection between crime and the built environment varies greatly
with different types of offenses. This study only focuses on the association between general
crime and the built environment in various scales without categorizing crime types. Future
studies may explore how the influence of factors found significant in this study, such as
beautiful perception, changes across different types of crime. Future studies could utilize
fine-scale crime data to mitigate such issues and validate the importance of perceived
beauty and depression in crime risk models. The predicted perception represents general
perceptions for people worldwide rather than just Toronto residents because the perception
prediction model was trained using data collected from participants across the globe. Locals
in the city have more knowledge about the characteristics of places, so their perceptions
may differ from those predicted. These perception differences could be influenced by
the different demographic backgrounds. For example, previous research indicated that
low-income populations usually exhibit a lower perception of safety than high-income
populations [58,59]. Future studies could investigate the connection between beautiful
and depressing perceptions and criminal events. The significant association found in the
study has only been tested in the City of Toronto, and the significance level might change if
transferred to another city. Additionally, since the definitions of the different perceptions
were not provided during the Place Pulse data collection, the participants responded to the
perception survey based on their own interpretations. For example, future research could
explore the connection between the beautiful/depressing perception and demographic or
geographical characteristics. Further studies could validate how perception varies across
people with different demographic and social backgrounds.

5. Conclusions

This study benefits urban sustainability by addressing the connection between social
unrest and urban environmental factors through a data-driven crime analysis. We inves-
tigate the association between MBE elements, place perceptions, and street crime events
using data that were extracted from SVI by machine learning models. From the SVI, we
confirmed the strong positive significant association between mobility-related elements and
crime events. For the perception variables, we found a negatively significant association
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between safety and crime events, which further provides evidence for existing research
regarding the connection between fear of crime and crime events. Among all perception
variables, we found that the beautiful and depressing perceptions, compared to the safety
perception, could better explain the crime events in the study region. The association
between perception variables and crime events suggests that perceptions beyond safety
may also be related to crime events, which have yet to be investigated. Comparing the
model with MBE elements and the model with perception variables, the model with MBE
elements has the lowest AIC value. This finding indicates that the MBE can better explain
crime events than the estimated place perception.

The findings of this study provide valuable insights regarding how the shaping of
the urban MBEs and place perceptions could potentially affect street crimes. Results
recommend that shaping the street environment to a more beautiful and safer sense could
potentially reduce crime nearby and promote more sustainable urban development in
the long term. The outcomes also provide practical interest to city policymakers who are
interested in improving public security and building a sustainable urban environment.
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Appendix A

The strength-of-schedule algorithm estimated the Q-score by the win rate and loss rate
for each image with the pairwise comparisons resulting from the following equations [60].
The equation transforms each image’s win rate, loss rate, and win rate and loss rate to
images that are compared with this image to provide a perception score for the image.

Award(v)i =
1

p(v)i

k1

∑
j=1

p(v)i

p(v)i + n(v)
i + e(v)i

(A1)

Penalty(v)i =
1

n(v)
i

k2

∑
j=1

n(v)
i

p(v)i + n(v)
i + e(v)i

(A2)

Q(v)
i =

10
3

(
p(v)i

p(v)i + n(v)
i + e(v)i

+ Award(v)i − Penalty(v)i + 1

)
(A3)

In the Equations (A1) to (A3), p(v)i , n(v)
i , and e(v)i represent the number of times image

i has been selected as the winner, loser, or equal, respectively, in the survey comparisons for
perception v; k1 and k2 represent the number of times image i wins and loses a comparison;
Award is the average win rate where the image i won the comparison; and Penalty is the
average loss rate where the image i lost the comparison. The final Q-score starts with the
win rate of image i, then adds the Award and subtracts the Penalty. By doing so, the final
Q-score is based on the win rate and loss rate of the image compared with image j.

The transformed Q-score is not perfect, and bias could exist in the Q-score. Further
reduction of the bias and noise in the Q-score is needed. As 1,169,078 survey results in
110,988 places formed the Q-score, there could be images that have only been compared
once, which could lead to a biased perception score. To avoid this issue, only images that

https://data.torontopolice.on.ca/pages/open-data


Urban Sci. 2024, 8, 247 12 of 15

have more than S(v)
i votes in total were used. Experiments showed that with the increase

of S(v)
i , the base model would have a more remarkable performance.
Furthermore, researchers also introduce reducing noise by classifying the data into

positive and negative examples with the following equations. The equation transforms the
perception score to positive and negative by removing the scores close to the mean value.
In Equation (A4), µ(v) is the mean Q-score and σ(v) is the standard deviation in perception
v. δ will be a tunable parameter to adjust how strictly we want to reduce the noise data.

y(v)i =

{
−1 i f Q(v)

i < µ(v) − δσ(v)

1 i f Q(v)
i > µ(v) + δσ(v)

(A4)

A Support Vector Classifier (SVC) was used with the classified data to classify positive
and negative perceptions. Equation (A5) demonstrates how SVC classifies data, where x
is the MBE element extracted from SVI, y ∈ {−1, 1}, which represents positive/negative
perceptions, and K is the kernel function. Training the SVC for every combination, we
found that S(v)

i = 8, δ = 1.8, K = RBF gave the highest accuracy, 79.44%, among all other
settings in safety perception. The model has a similar performance with other perceptions
as well.

f (x, y, K) = sgn

(
N

∑
i=0

yiK(x) + b

)
(A5)

Appendix B

Table A1. Description of all variables used in this study.

Variable Description Unit

Road Percentage of roads in SVI Percentage (%)
Sidewalk Percentage of sidewalks in SVI Percentage (%)
Building Percentage of buildings in SVI Percentage (%)

Wall Percentage of walls in SVI Percentage (%)
Fence Percentage of fences in SVI Percentage (%)
Pole Percentage of poles in SVI Percentage (%)

Traffic Light Percentage of traffic lights in SVI Percentage (%)
Traffic Sign Percentage of traffic signs in SVI Percentage (%)
Vegetation Percentage of vegetation (vertical greenness, e.g., trees and hedge) in SVI Percentage (%)

Terrain Percentage of terrain (horizontal greenness, e.g., grass) in SVI Percentage (%)
Sky Percentage of the sky in SVI Percentage (%)

Person Percentage of people in SVI Percentage (%)
Rider Percentage of riders in SVI Percentage (%)
Car Percentage of cars in SVI Percentage (%)

Truck Percentage of trucks in SVI Percentage (%)
Bus Percentage of buses in SVI Percentage (%)

Train Percentage of trains in SVI Percentage (%)
Motorcycle Percentage of motorcycles in SVI Percentage (%)

Bicycle Percentage of bicycles in SVI Percentage (%)
Safety Modeled safety perception score Index, 0–1

Wealthy Modeled wealthy perception score Index, 0–1
Depressing Modeled depressing perception score Index, 0–1
Beautiful Modeled beautiful perception score Index, 0–1

Boring Modeled boring perception score Index, 0–1
Lively Modeled lively perception score Index, 0–1

Unemployed Percentage of unemployed population in the 2016 census Percentage (%)
Low Income Percentage of low-income population in the 2016 census Percentage (%)

Racial Diversity The racial diversity index calculated with the Hirschman-Herfindahl Index Index, 0–1
Age 15 to 29 Percentage of the population between 15 to 29 years old in 2016 census Percentage (%)

With Bachelor Degree Percentage of the population with a bachelor degree or higher in the 2016 census Percentage (%)
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Appendix C

Table A2. Parameter chosen for XGBoost classifier.

Parameter Description Value

Learning Rate Controls the step size at each iteration while moving toward a minimum in the loss function. 0.3
N_Estimators The number of trees or boosting rounds the model will build. 100

Max Depth Limits the maximum depth of each individual tree in the ensemble. 6
Minimum Child

Weight Controls the minimum number of instances needed in a leaf node for a split to happen. 1

Gamma Specifies the minimum loss reduction needed for XGBoost to make a split in a tree. 0
Subsample The fraction of samples used to build each individual tree. 1
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