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Abstract: This study is dedicated to solving the problem of how urban healthcare systems
function in crisis situations. Cases where crisis situations lead either to population migra-
tions or to a rapid increase in demand for medical services are the focus. There are often
cases of the overloading of medical staff within institutions or the entire healthcare system
in the city itself during new situations for which there are no clearly developed response
protocols, such as the COVID-19 epidemic or man-made disasters. These situations can lead
to the uneven access of resources for the population. This study develops a semi-automated
decision-making method combining Wald world analysis and fuzzy logic. The method
optimizes resource allocation and determines the priority of medical care, and, as a result,
reduces the burden on the healthcare system by integrating socio-demographic and medical
data. The results of experimental verification confirmed the ability of the method to adapt
to dynamic changes, increase the accuracy of decision-making, and reduce response time.
Importantly, the proposed method allows for a more equitable and efficient distribution of
resources in the context of urbanization and population density growth.

Keywords: urbanization; fuzzy logic; healthcare resilience; semi-automated decision-
making; resource optimization; crisis management; urban healthcare systems

1. Introduction
In the context of urbanization, urban health management systems play an important

role in resource allocation and ensuring equitable access to health services. During crises
like pandemics, natural disasters, or social unrest, the functioning of these systems faces
major challenges because increasing population density and mass movements of people
create additional obstacles to resource management and emergency response. This is due to
the fact that increasing population density and mass movements of people create additional
obstacles to resource management and emergency response. Recent events, such as the
COVID-19 pandemic [1,2], military operations in Ukraine [3–5], and other man-made and
climate disasters [6,7], clearly demonstrate this. Major crises in cities usually cause a sharp
increase in demand for health services among the population [3,5,8]. This leads to the
overloading of hospitals and medical staff, resource shortages, and reduced accessibility of
healthcare to the population. For example, the COVID-19 pandemic has exposed significant
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vulnerabilities in modern health systems. These include limited capacity to respond and
adapt to crises. In addition, high levels of urbanization increase the risk of infectious
diseases such as COVID-19 and tuberculosis. For example, the 2009 H1N1 influenza
pandemic tested the resilience of urban health systems. The World Health Organization
reports that more than 214 countries and territories have confirmed cases of the H1N1
virus, with an estimated 18,500 deaths [9]. This pandemic has exposed vulnerabilities in
the preparedness and response strategies of urban health systems. In turn, the COVID-19
pandemic has also had a significant impact on urban health systems around the world.
According to the United Nations, urban areas have become the epicenters of the pandemic,
accounting for approximately 90% of reported COVID-19 cases. This has placed significant
strain on urban health infrastructure and exposed existing inequalities and challenges in the
provision of adequate health services [10,11]. Thus, population density and unequal access
to resources are key factors affecting the ability of health systems to respond effectively
to crises in urban environments [12–14], and this increases the need for resilient and
adaptive health systems [15,16]. In this context, the challenge of ensuring the resilience of
urban health systems in the face of increasing challenges posed by population density and
resource constraints [13,15,17] is becoming increasingly important.

Developing and implementing effective decision-making tools to organize interactions
between medical personnel and medical services consumers can enhance the resilience
of urban health systems during periods of increased demand for these services. These
tools enable more efficient resource allocation, reduce patient wait times, and ensure the
availability of medical services even under challenging conditions [18,19].

The aim of this study is to develop a method of semi-automated decision-making to
ensure the increased efficiency of decision-making processes regarding the use of health
system resources in cities in crisis situations. The implementation of this method should
lead to a reduction in the burden on medical institutions by optimizing the process of
identifying patients who are most in need of medical care, taking into account medical
history and socio-demographic factors.

The main contribution of this paper can be summarized as follows:

- We developed a new semi-automated decision-making method to provide medical
services to the population during crisis situations, which reduces the burden on
medical personnel and excludes individuals who do not meet the criteria for receiving
specific medical services;

- We enhanced the fuzzy method of sequential analysis by improving Wald’s sequential
analysis method. The improvement was achieved through the application of fuzzy
set theory and the development of a modified approach for calculating cumulative
diagnostic coefficient values. This enables decisions about providing or withholding
medical services to be made with a certain degree of confidence;

- We evaluated the results of applying the fuzzy method of sequential analysis with
Wald’s sequential analysis method for the medical service “Early diagnosis and preg-
nancy monitoring” using the example of a healthcare facility in Uzhhorod (Ukraine).

The practical value of the developed tool lies in the automation of certain stages
of decision-making for selecting service recipients, which helps reduce the burden on
medical personnel during crisis situations. Additionally, it identifies recipients who require
medical services as a priority. This approach is particularly applicable in cases where the
criteria for receiving medical services are not yet clearly defined, and training datasets
are insufficient in size. Furthermore, the method is relatively simple to use, enabling its
application even without specialized software. For instance, it can be implemented through
designed questionnaires, eliminating the need for resource-intensive training of personnel
to use the tool.
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The structure of the paper is as follows. Section 2 presents the results of a review and
critical analysis of scientific studies on decision-making and statistical processing of small
datasets in healthcare. Section 3 provides an analysis of the problem of selecting recipients
of social services under conditions where demand significantly exceeds available resources.
It also introduces the verbal-mathematical formulation of the decision-making problem.
Section 4 contains the formalized algorithm of Wald’s sequential analysis method. Section 5
develops the fuzzy method of sequential analysis. Section 6 demonstrates and presents the
results of applying the developed semi-automated decision-making method. Discussion
and conclusions are provided in the final sections of the paper.

2. Literature Review
Automated decision support systems play an important role in modern healthcare

systems across various cities and institutions, particularly in crisis situations. As noted
in [20], computerized clinical decision support systems (CDSS) represent a paradigm shift
in modern healthcare systems. It has been demonstrated that CDSS helps healthcare
providers in decision-making and patient care tasks.

A significant number of published studies highlight the advantages and specific
applications of CDSS. For instance, Peiffer-Smadja et al. showed that machine learning
significantly improves the accuracy and speed of diagnosing infectious diseases, which is
especially critical during pandemics and other crises [21]. Similarly, Mohanty et al. demon-
strated how automated systems can enhance the efficiency and resilience of healthcare
facilities during emergencies [22].

The intellectual foundation of decision-making tools is their key role in effectiveness.
Depending on the nature of the input data and the tasks involved in decision-making,
methods such as artificial intelligence (AI), machine learning, and statistical data processing
are employed. For prediction tasks in healthcare, algorithms designed for large datasets
have proven highly successful [23–25]. These algorithms can achieve high predictive accu-
racy. However, in scenarios involving new disease patterns or changes in external factors
influencing the studied phenomenon, alternative prediction methods become necessary.

Many healthcare problems are essentially identification tasks, requiring the detection
of patterns, anomalies, or risks based on available data. This applies to disease diagnosis,
risk group identification, and medical resource allocation. Studies [26,27] emphasize
the efficiency of AI methods and provide an extensive review of the relevant literature.
In [26,28,29], the effectiveness of these methods is demonstrated in cases where large
datasets are available.

However, some statistical methods are effective for decision-making with small
datasets. For instance, ref. [30,31] note that traditional statistical approaches in health-
care are particularly valuable when the number of cases significantly exceeds the number of
variables under study, and prior knowledge of the subject is substantial. One such method
is Wald’s sequential analysis, widely used in statistical decision-making for scenarios
involving limited or incremental data.

In healthcare, Wald’s approach enables efficient interim evaluations during clinical
trials or real-time data-driven decision-making. A number of scientific studies confirm that
this method can be an effective tool for accelerating the process of obtaining decisions re-
garding the provision of medical services [32,33]. The efficacy of this method for predicting
various pathological conditions has been demonstrated in [34–36]. In [37], an algorithm
for forecasting the occurrence of pathological conditions in women was validated, taking
into account regional health impact factors. This algorithm facilitates effective workload
planning for medical personnel by screening out individuals who are not in risk groups,
thus optimizing resource allocation.
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The algorithm can be implemented as software or used by non-medical staff in health-
care institutions. During crisis situations, such as surges in requests for medical services,
this approach can relieve the burden on medical personnel and prioritize patients requiring
urgent care. However, further research revealed limitations: small training datasets often
prevent the algorithm from making decisions in a significant portion of cases.

This study presents a new semi-automated decision-making method based on a fuzzy
sequential analysis approach developed by the authors. This method allows decisions to
be made with a certain degree of confidence.

The application of the semi-automated method reduces the workload on clinical
staff by involving competent experts only in cases that are not filtered out during the
decision-making process.

3. Materials and Methods
3.1. Problem Analysis and Verbal-Mathematical Problem Formulation

The problem under consideration focuses on decision-making in healthcare regarding
the provision of medical services to applicants. In crisis situations, such as the COVID-19
pandemic or the war in Ukraine, there is a significant surge in demand for medical services.
A particularly critical scenario arises when the volume and flow of requests far exceed the
capacity of regional healthcare workers and the system as a whole.

Excessive strain on the healthcare system can lead to its collapse, reducing efficiency
and ultimately lowering the overall health status of the population in the affected region.
For example, during the spring of 2020 in Italy, more than 60,000 COVID-19 cases were
reported, leading to a shortage of medical personnel [38]. Similarly, the migration crisis in
Poland, triggered by the war in Ukraine, posed significant challenges to their healthcare
system [39].

To alleviate the burden on the healthcare system during crises, reduce personnel
costs, and optimize the operation of healthcare facilities, it is advisable to develop and
implement semi-automated decision-making systems. These systems can utilize patient
medical histories and socio-demographic profiles to determine the necessity of medical
services. Such a sorting mechanism would reduce the strain on the healthcare system of a
specific area, optimize the workload of medical facilities, and prioritize applicants requiring
immediate medical attention.

However, in some cases, the available data are insufficient to make preliminary de-
cisions on whether to provide or withhold medical assistance. In these scenarios, a semi-
automated system should involve competent experts for further analysis of the situation,
ensuring informed and accurate decision-making.

It is evident that the system must be configured using retrospective data on indi-
viduals’ previous requests for medical services, as well as based on established clinical
protocols. However, crisis situations are often unprecedented, and clinical protocols for
certain medical conditions may not yet be developed. For instance, this was evident during
the initial stages of the COVID-19 pandemic. Consequently, decision-making in these cases
relies on small statistical samples, making the application of classical statistical processing
methods challenging.

In addition to quantitative indicators from individuals’ medical histories, decision-
making regarding the provision or denial of medical services requires supplementary
analysis of socio-demographic indicators and additional verbal assessments provided by
applicants. This highlights the appropriateness of employing fuzzy set theory, which is
well suited for handling uncertainties and integrating qualitative and quantitative data in
decision-making processes.
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Let us formalize the decision-making problem regarding the provision or denial of
medical services (MS) to applicants as a binary classification task.

Let us denote:

N is the number of individuals who have applied for a medical service;

P = {P1, P2, . . . , PN} is he set of individuals who submitted applications to receive the
medical service MS;

M is the number of characteristics of individuals used to make decisions regarding the
provision of the medical service MS;

C = {C1, C2, . . . , CM} is the set of characteristics based on which the decision is made
(components of the medical anamnesis and other socio-demographic indicators);

X = {xi = (xi1, xi2, . . . , xiM), i = 1, M} is he set of vectors containing the values of the
characteristics for individuals in the set P, where xij is the value of the characteristic Cj for
individual Pi, where j = 1, M.

The decision-making task consists of constructing a decision rule DR, based on which,
for each individual Pi from the set P one of the following decisions (DD1, DD2, DD3):

DD1: The individual Pi should be provided with the medical service MS;

DD2: The individual Pi should not be provided with the medical service MS;

DD3: An expert needs to be involved to make the decision.

We consider the case where for the medical service MS under consideration, an initial
dataset DS is available containing information about individuals for whom corresponding
decisions have already been made and verified. Let the training dataset have the following
structure: DS = {Vl = {vl1, vl2, . . . , vlM, dl}, l = 1, L}, where

L is the number of elements in the training dataset;

Vl is the l-th vector of characteristics;

vl j is the value of the characteristic Cj in the vector Vl ;

dl is the verified decision made for the individual characterized by the corresponding set of
feature values, where dl ∈ {DD1, DD2}.

In such a formulation, the problem can be solved using the Wald sequential anal-
ysis method. In studies [32,35], the Wald sequential analysis method (Sequential Prob-
ability Ratio Test, SRT) was detailed and adapted for tasks involving the prediction of
risks for certain medical conditions. This method is based on statistical nonparametric
criteria [40–42].

The method is a statistical procedure that allows you to make decisions in real time,
provided that the data are received gradually. The main idea of the method is to build a test
with two thresholds: upper and lower. When the upper threshold is reached, a decision
is made in favor of the hypothesis DD1, when the lower threshold is reached—DD2. If
none of the thresholds are reached, data collection continues. This reduces the number of
observations required compared to standard methods. SPRT is widely used in medical
research, risk analysis, and other areas where optimizing the decision-making process
is important.

We will consider Wald’s sequential analysis method to solve the formulated problem.
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3.2. Wald’s Sequential Analysis Method for Decision-Making Tasks

To make decisions, we set confidence levels corresponding to predefined error rates for
Type I and Type II (α and β) errors. Using these values, the thresholds for decision-making
can be calculated as:

Th DD1 = 10(lg(1 − α)− lgβ),

Th DD2 = 10(lgα − lg(1 − β)).

As shown in [42], the Type I error represents the incorrect acceptance of the decision
DD2 (rejecting a valid applicant), and the Type II error represents the incorrect acceptance
of the decision DD1 (approving an invalid applicant).

The primary principles of this method are outlined below.
We consider the set of characteristics C. Assume that the characteristics indexed from

1 to m (m ≤ M) take numerical values, while the characteristics indexed from m + 1 to M
take values from the set {0, 1}, where 1 indicates that the corresponding characteristic is
present, and 0 indicates otherwise.

For each numerical characteristic Cj, where j = 1, m, let us define a partition of its

range into intervals aj = x(j)
0 < x(j)

1 < . . . < x(j)
pj = bj, where pj is the number of intervals

into which the range of permissible values of Cj is divided. The corresponding intervals

are denoted as: X(j)
q = (x(j)

q−1, x(j)
q ], q = 1, pj. For characteristics indexed j = m + 1, M we

assume that pj = 2, X(j)
1 = {1}, X(j)

2 = {0}. Then, for each characteristic j = 1, M and each
interval q = 1, pj, perform the calculations defined by the following expressions (1) and (2):

P(X(j)
q /DD1) =

count(Vl : ∀ l = 1, L i f dl = DD1 and vl j ∈ X(j)
q )

count(Vl : ∀l = 1, L i f dl = DD1)
, (1)

P(X(j)
q /DD2) =

count(Vl : ∀ l = 1, L i f dl = DD2 and vl j ∈ X(j)
q )

count(Vl : ∀l = 1, L i f dl = DD2)
, (2)

where count(·) is the function calculates the number of elements that satisfy the specified
conditions.

To proceed, we compute diagnostic coefficients for the sets X(j)
q using Equation (3)

and the information coefficients using Equation (4):

DC(j)
q =

[
10
(

lgP(X(j)
q /DD1)− lgP(X(j)

q /DD2)
)]

, (3)

I(j)
q = DC(j)

q ·
P(X(j)

q /DD1)− P(X(j)
q /DD2)

2
. (4)

After performing computations as outlined in Equations (1)–(4), the informativeness
of a characteristic Cj is determined as the sum of its corresponding information coefficients

Ij across all intervals. This is calculated as: Ij =
pj

∑
q=1

I(j)
q , j = 1, M.

The next step in implementing the method involves ordering the set of characteristics C
in descending order based on their informativeness scores. Consequently, the components
of the vectors in the set X are reordered accordingly.

After this, the system of diagnostic functions is defined (5):

D f j(xj) = DC(j)
p0 , where p0 ∈ {1, 2, . . . , pj} : xj ∈ X(j)

p0 . (5)
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Next, the procedure for making decisions regarding elements Pi from the set P will
consist of a step-by-step evaluation of inequality (6):

ThDD2 < D f1(xi1) + D f2(xi2) + . . . + D fpj(xiM) < ThDD1. (6)

For each Pi the computation begins with the characteristic C1, followed by the sequen-
tial calculation of the sum of the values of the diagnostic functions (5). As soon as inequality
(6) ceases to hold, it becomes possible to make one of the final decisions. The algorithm for
this stage is presented in Figure 1:
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As shown in Figure 1, at each stage, the cumulative value of the diagnostic functions
(Sum) is calculated, and the possibility of making a decision is checked using one of the
following production rules (7):

i f Sum > ThDD1 then DD1,i f Sum < ThDD2 then DD2i f Sum ≤ ThDD1 and Sum ≥ ThDD2 and j = m then DD3. (7)

Sequential execution of the specified algorithm will filter out individuals from the set
P who do not require the given medical service as well as identify those who do need the
service. It is evident that for a certain subset of individuals from the set P, a final decision
may not be possible. In such cases, it is advisable to involve competent experts or request
additional information and reapply the algorithm.

3.3. Development of a Fuzzy Sequential Analysis Method for Decision-Making

Given that some characteristics in the set may take values within a specified interval,
a fuzzy sequential analysis procedure is proposed. Its application allows decisions to be
made with a certain degree of confidence for those characteristic values that lie on the
boundary between two intervals in the partition.
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The procedure is based on the fuzzy set apparatus, which allows taking into account
the uncertainty of the data, especially in cases where the values of the characteristics do not
clearly belong to one of the intervals [43]. Fuzzy logic is based on the use of membership
functions that determine the degree of correspondence of the value to a certain category
in the range from 0 to 1. For example, instead of the traditional “yes” or “no”, fuzzy logic
allows you to evaluate the value as “possible” or “with a certain probability”.

The use of fuzzy logic in the sequential analysis procedure allows you to process
data that are on the border between intervals, determine the degree of confidence for each
decision to increase the flexibility of the algorithm, etc.

This allows you to analyze quantitative (medical indicators) and qualitative (socio-
demographic) data to form more accurate decisions in complex situations. For example,
the use of fuzzy logic can be particularly useful in cases where patients’ medical indicators,
such as the level of risk of complications, do not fall into clearly defined categories or lie on
the border between two intervals.

Next, we will consider the application of fuzzy logic in sequential analysis to ensure
adaptive and accurate decision-making.

The initial steps of the fuzzy sequential analysis method for decision-making are
similar to the previous stage. The parameters of the method are set, and calculations (1)–(4)
are performed. Next, the informativeness of the characteristics Cj is determined in a similar
manner, and membership functions for the characteristic values are defined as follows:
for characteristics numbered from 1 to m, a system of membership functions is defined as
follows (8):

µ
(j)
q (xj) =



0, i f xj ≤ x(j)
qmin,

2

(
xj−x(j)

qmin

x(j)
q−1−x(j)

qmin

)2

, i f x(j)
qmin < xj ≤

x(j)
q−1+x(j)

qmin
2 ,

1 − 2

(
x(j)

q−1−xj

x(j)
q−1−x(j)

qmin

)2

, i f
x(j)

q−1+x(j)
qmin

2 < xj ≤ x(j)
q−1,

1, i f x(j)
q−1 < xj ≤ x(j)

q ,

1 − 2
(

xj−x(j)
q

x(j)
qmax−x(j)

q

)2

, i f x(j)
q < xj ≤

x(j)
qmax+x(j)

q
2 ,

2
(

xj−x(j)
qmax

x(j)
qmax−x(j)

q

)2

, i f
x(j)

qmax+x(j)
q

2 < xj ≤ x(j)
qmax,

0, i f xj > x(j)
qmax,

(8)

where j = 1, m, q = 1, pj; the parameters x(i)qmin, x(i)qmax are defined empirically.

A sketch of the graph of the function for x(i)qmin = 2, x(i)qmax = 8, x(i)q−1 = 4, x(i)q = 6 as
defined by (8), is presented in Figure 2:

In turn, for characteristics numbered from m + 1 to M, a system of membership
functions is defined as follows (9):

µ
(j)
1 (xj) = xj, µ

(j)
2 (xj) = 1 − xj, j = m + 1, M. (9)

Next, the set C is ordered in descending order of the informativeness of the charac-
teristics, and the corresponding reordering of the components of the vectors in the set X
is implemented.
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We set the threshold value of the membership function δ ∈ (0; 1] and for each element
Pi in the set P the method’s algorithm is executed. This involves analyzing the sums of
diagnostic functions, similar to (6). The algorithm is iterative, with the iterations proceeding
as follows:

1st iteration. The initial confidence values for the decisions are set: µDD1 := 0,
µDD2 := 0.

For the characteristic C1 we form the set S1 = {(Sum1q, µ1q)} according to rule (10):

∀q ∈ {1, 2, . . . , p1} : i f µ
(1)
q (xi1) ≥ δ then S1 := S1 ∪

{(
DC1

q , µ
(1)
q (xi1)

)}
. (10)

Next, we apply rule (11):

i f ∃q0 ∈ {1, 2, . . . , |S1|} : Sum1q0 > ThDD1 then µDD1 := max
q=1,|S1|:S1q>ThDD1

{µ1q},

i f ∃q0 ∈ {1, 2, . . . , |S1|} : S1q0 < ThDD2 then µDD2 := max
q=1,|S1|:S1q<ThDD2

{µ1q}.
(11)

We proceed to the next iteration.
j-th iteration. For the characteristic Cj, the set Sj = {(Sumjq, µjq)} is formed according

to rule (12):

∀q ∈ {1, 2, . . . , pj} : i f µ
(j)
q (xij) ≥ δ then ∀ t ∈

{
1, 2, . . . ,

∣∣∣Sj−1

∣∣∣} : Sj := Sj ∪
{(

Sumj−1t + DCj
q, min{µj−1t, µ

(j)
q (xij)

)}
. (12)

Next, rules (13) are applied:

i f ∃q0 ∈ {1, 2, . . . ,
∣∣Sj
∣∣} : Sumjq0 > ThDD1 then µDD1 := max

{
µDD1 , max

q=1,|Sj |:Sjq>ThDD1

{µjq}
}

,

i f ∃q0 ∈ {1, 2, . . . ,
∣∣Sj
∣∣} : Sumjq0 < ThDD2 then µDD2 := max

{
µDD2 , max

q=1,|Sj |:Sjq<ThDD2

{µjq}
}

.
(13)

After completing the final iteration, two numerical values µDD1 and µDD2 , will be obtained
for each element of the set P. These values represent the degrees of confidence in the
corresponding decisions.

3.4. Semi-Automated Decision-Making Method

The two methods described above form the foundation of the semi-automated decision-
making method for healthcare in crisis situations. The main idea of the method is to
automate the process of reviewing applications for medical services in cases where the
number of applications significantly exceeds the capacity of a medical institution and its



Urban Sci. 2025, 9, 15 10 of 21

personnel and where there are no clearly defined criteria that individuals must meet to
receive specific services.

Stages of the Method:

1. Determine the characteristics whose values influence decision-making (set C).
2. Gather information on individuals for whom decisions regarding the provision or

denial of services have already been made and verified (set DS).
3. Compile a set of applications for receiving the medical service (set P).
4. Use Wald’s method to perform an initial analysis of applications.
5. Apply the fuzzy method to refine decision-making, especially for ambiguous cases.
6. Engage experts to make decisions for cases where neither automated method can

produce a confident result.

The information processing workflow is presented in Figure 3:

Urban Sci. 2025, 9, x FOR PEER REVIEW 10 of 21 
 

After completing the final iteration, two numerical values 
1DDμ  and 

2DDμ , will be 

obtained for each element of the set P . These values represent the degrees of confidence 
in the corresponding decisions. 

3.4. Semi-Automated Decision-Making Method 

The two methods described above form the foundation of the semi-automated deci-
sion-making method for healthcare in crisis situations. The main idea of the method is to 
automate the process of reviewing applications for medical services in cases where the 
number of applications significantly exceeds the capacity of a medical institution and its 
personnel and where there are no clearly defined criteria that individuals must meet to 
receive specific services. 

Stages of the Method: 
1. Determine the characteristics whose values influence decision-making (set C ). 
2. Gather information on individuals for whom decisions regarding the provision or 

denial of services have already been made and verified (set DS ). 
3. Compile a set of applications for receiving the medical service (set P ). 
4. Use Wald’s method to perform an initial analysis of applications. 
5. Apply the fuzzy method to refine decision-making, especially for ambiguous cases. 
6. Engage experts to make decisions for cases where neither automated method can 

produce a confident result. 
The information processing workflow is presented in Figure 3: 

 

Figure 3. Information processing workflow for semi-automated decision-making. 

  

Figure 3. Information processing workflow for semi-automated decision-making.

4. Results
4.1. Collection of Data

During the COVID-19 pandemic, there was a need to reduce the frequency of patient
visits to healthcare facilities to minimize infection risks. Additionally, from 2022 to the
present, the region has experienced a rapid population increase due to internal migration.

As a result, the regional healthcare system, particularly medical institutions and
healthcare workers—whose numbers have remained unchanged—has faced increased
strain. This ongoing crisis has affected the efficiency of internal resource allocation and
patient access to medical services in urban areas.

The developed method was verified in a medical institution in the city of Uzhhorod
(Ukraine). The medical service under consideration was “Early Diagnosis and Monitoring
of Pregnancy”.
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The relocation of individuals to different climatic and endemic conditions can affect
the course of various conditions, including pregnancy [37]. The timely risk assessment for
pregnancy complications, such as miscarriage, and, when necessary, the monitoring of such
patients, is critical for preserving the health of both the mother and child while reducing
the risk of complications.

Effective monitoring enables earlier corrective measures, minimizing negative out-
comes and improving overall pregnancy success rates. Key elements include the timely
identification of risk factors and the adaptation of treatment strategies, which ensure a high
level of medical care and reduce the number of adverse pregnancy outcomes.

Such monitoring significantly increases the burden on the healthcare system and alters
the allocation of available resources. Therefore, it is crucial to make accurate decisions about
assigning individuals to risk groups to ensure optimal resource utilization and guarantee
assistance for those who need it most.

A preliminary examination was conducted on 77 pregnant residents of the Tran-
scarpathian region, an area endemic to iodine deficiency. Among them, 47 women who
experienced spontaneous miscarriage in the first trimester of pregnancy (main group) and
30 women with full-term deliveries (control group) were studied. The characteristics, their
values, and summarized data on the examined women are published in [37] and presented
in Table 1:

Table 1. Characteristics affecting access to the medical service, “Early Diagnosis and Monitoring
of Pregnancy”.

Characteristic Value Main Group
(n = 47)

Control Group
(n = 30) DC I

C1. Thrombophilia markers (e.g., genetic testing results) Yes 37 5 3.37
3.93No 10 25 −2.96

C2. Recurring episodes of pregnancy threat during
this pregnancy

Yes 31 3 4.10
3.47No 16 27 −2.11

C3. Progesterone (ng/mL) <1 22 1 5.74
3.06≥1 25 29 −1.30

C4. TSH (U/mL)
>2.5 23 2 4.33

2.38≤2.5 24 28 −1.31

C5. Anti-TPO antibodies (U/mL)
>50 28 4 3.25

2.27≤50 19 26 −1.66

C6. Hypothyroxinemia (fT4 in ng/dL) <0.93 25 3 3.63
2.18≥0.93 22 27 −1.42

C7. Ioduria (µg/L)
<49 14 2 3.25

1.3750–99 15 6 1.01
>100 18 22 −1.41

C8. Urogenital infection (presence of infection) Yes 20 4 2.52
1.01No 27 26 −0.89

C9. Chorionic gonadotropin (MOM) 0.5–1.5 27 8 1.67
0.88<0.5 20 22 −1.18

For numerical characteristics, membership functions were constructed. The member-
ship functions for the characteristic C3 are as follows:
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µ
(3)
1 (x) =



1, i f 0 < x ≤ 1,

1 − 2
(

x−1
1.5−1

)2
, i f 1 < x ≤ 1.5+1

2 ,

2
(

x−1.5
1.5−1

)2
, i f 1.5+1

2 < x ≤ 1.5,

0, i f x > 1.5,

µ
(3)
2 (x)=


0, i f x ≤ 0.5,

2
( x−0.5

1−0.5
)2

, i f 0.5 < x ≤ 1+0.5
2 ,

1 − 2
(

1−x
1−0.5

)2
, i f 1+0.5

2 < x ≤ 1,

1, i f 1 < x,

For characteristics numbered 4, 5, 6, 7, and 9, membership functions were constructed
in a similar manner (Appendix A).

For testing the method, control samples were selected: 60 individuals—Group 1 (main
group) who require the medical service; 50 individuals—Group 2 (control group) who do
not require the service.

First, Wald’s sequential analysis method was applied, followed by the fuzzy sequential
analysis method. For the experiment, threshold values Th DD2 = −6.4 фтв Th DD1 = 6.4
were established.

4.2. Results of Applying the Decision-Making Method

The results of applying Wald’s sequential analysis method for the main and control
groups are presented in Figure 4:
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Figure 4. Decision-making results using Wald’s sequential analysis method: (a) Main group of
individuals; (b) Control group of individuals.

After applying Wald’s sequential analysis method, 21 individuals (19%) remained for
whom no decision was made regarding the provision or denial of the medical service. For
these cases, the fuzzy sequential analysis method was applied with a membership function
threshold value of δ = 0.5. The data on characteristics and the results of applying the
method are presented in Table 2.
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Table 2. Data on individuals and results of applying the fuzzy sequential analysis method.

Group C1 C2 C3 C4 C5 C6 C7 C8 C9 Decision
(Confidence)

Main group (Group 1)

Yes No 1.62 1.64 39.0 1.47 109.65 Yes 0.16 DD3
No No 1.36 4.62 37.56 1.47 96.39 No 0.26 DD3
No Yes 1.77 2.32 96.03 1.09 149.12 Yes 1.34 DD1 (0.76)
No Yes 1.05 2.4 41.29 0.82 85.95 No 1.25 DD1 (0.98)
No Yes 1.46 0.72 39.0 1.47 145.56 Yes 1.36 DD3

Control group (Group 2)

No No 0.3 1.1 42.75 0.36 112.33 No 1.18 DD3
No No 0.5 0.61 32.22 0.54 121.36 Yes 0.19 DD3
No No 0.89 2.13 36.79 1.28 98.46 No 0.46 DD2 (0.9)
No No 1.77 5.0 62.75 1.17 110.51 Yes 0.39 DD3
No No 0.51 2.0 95.34 1.02 76.98 No 0.13 DD1(0.93)
No No 0.21 1.3 51.35 1.49 129.6 No 0.31 DD2 (0.85)
Yes No 1.41 4.97 49.51 1.27 111.37 No 0.11 DD1 (0.98)
No No 1.31 2.63 34.49 0.78 131.61 No 0.23 DD2 (0.86)
Yes No 1.73 1.3 49.46 0.76 139.35 No 0.33 DD2 (0.69)
No No 0.8 2.0 33.0 0.36 109 No 0.31 DD2 (0.68)
Yes No 1.64 0.69 58.71 1.13 132.08 No 0.19 DD3
No No 0.49 2.0 57.15 0.98 111.37 Yes 0.66 DD1 (0.98)
No No 0.89 2.6 42.41 1.17 134.77 No 0.35 DD2 (0.9)
No No 1.9 3.42 89.46 1.49 131.61 No 0.39 DD3
Yes No 1.41 2.0 95.34 1.31 104.65 No 0.29 DD3
No No 0.95 2.2 57.75 1.28 104.91 No 1.39 DD2 (0.98)

Graphical representations of the decisions made are presented in Figure 5:
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Records for which no decision was made must be referred to a competent expert for
review.

5. Discussion
In the experimental part of the study, we demonstrated the application of the devel-

oped semi-automated decision-making method using the example of the medical service
“Early Diagnosis and Monitoring of Pregnancy,” provided by a medical institution in the



Urban Sci. 2025, 9, 15 14 of 21

city of Uzhhorod (Ukraine). The medical indicators and characteristics were obtained
from [37]. Two groups of individuals were considered: the main group, consisting of those
eligible for the medical service, and the control group, consisting of those not requiring
the service.

The method was applied in several stages. In the first stage, Wald’s sequential analysis
method was used. As a result, 92% of individuals in the main group received a correct
decision, while 7% remained without a decision. In the control group, 58% received a
correct decision, 10% were incorrectly assigned the service, and 32% remained without
a decision.

In the second stage, the fuzzy sequential analysis method was applied to cases without
prior decisions. As a result, in the main group, a correct decision to provide the service
was made for all individuals except three (5%), for whom no decision was made. In the
control group, an additional three individuals received a service they did not require, while
six individuals (12%) remained without a decision.

Overall, the sequential application of the two methods correctly identified 95% of
individuals requiring the service and 72% of those were not correctly identified. No
individuals who needed the service were excluded from consideration. Decisions were not
made for nine individuals during the automated review stage. Therefore, it is advisable to
involve competent experts to analyze their cases.

The results of this study highlight the significant potential for enhancing the resilience
of urban healthcare systems in crisis situations. The proposed approach, which combines
fuzzy logic methods and the analysis of socio-demographic data, demonstrates the ability
to optimize resource allocation and effectively prioritize patients. This reduces response
time, improves decision-making accuracy, and lessens the burden on healthcare facilities,
particularly during emergencies such as pandemics, natural disasters, or migration crises.

The results of this study are consistent with current trends in the use of adaptive
decision support systems, which are actively studied in the scientific literature. For example,
the use of fuzzy logic methods for working with incomplete data are confirmed in [44,45].
Our approach combines Wald’s sequential analysis and fuzzy logic, allowing for effective
decision-making under uncertainty that surpasses the results described in studies [35,40].

The proposed method can significantly improve the resilience of healthcare systems in
crisis situations. For example, in large cities, the method allows optimizing the allocation of
medical resources, reducing response times and improving the accuracy of decision-making.
This is especially important during pandemics, when the flow of patients significantly
exceeds the capacity of medical institutions [14,46].

In turn, in remote areas with limited access to resources, the method can contribute to
the equitable distribution of services, for example, for the prevention of chronic diseases or
pregnancy monitoring [7,37]. Also, the method can be used in non-crisis conditions for early
detection of risks and disease prevention, which is in line with recommendations [20,22].

The results of this study therefore highlight the key role of semi-automated decision-
making systems in increasing the resilience and efficiency of urban health systems. By
using fuzzy logic and integrating socio-demographic factors, such systems offer practical
solutions to overcome crisis challenges, ensuring timeliness and equity in the provision
of health services. However, their successful implementation requires the removal of
data-related limitations, infrastructure and implementation barriers, which requires a
comprehensive approach and cooperation of all stakeholders.

6. Conclusions
The results of the study indicate the importance of the developed semi-automated

decision-making method for ensuring the sustainability of urban healthcare systems in
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crisis situations. Its application allows to significantly reduce the burden on medical
personnel, improve resource allocation and increase the accuracy in identifying patients
who are most in need of medical care. An important aspect of the method is its ability to
operate with limited data and take into account the socio-demographic characteristics of
patients, which makes it universal for various crisis conditions.

The fuzzy logic component of the method demonstrates effectiveness in solving
identification and classification problems, which is confirmed by testing on the example of
the medical service “Early diagnosis and monitoring of pregnancy”. The method ensures
the adoption of informed decisions even under conditions of incomplete or uncertain data,
which is a typical challenge in crisis situations. For example, the results of the study showed
that 95% of individuals requiring medical services were correctly identified without the
involvement of experts.

Further research could be aimed at expanding the capabilities of the method, including
its adaptation to non-crisis settings, such as disease prevention or chronic disease manage-
ment. In addition, expanding the use of the method in resource-limited settings, such as
rural areas, could be an important direction for increasing the resilience of health systems
as a whole.

Thus, the results of the study demonstrate the significant potential of the proposed
method in increasing the efficiency of health systems during crises. Its implementation can
significantly contribute to ensuring equal access to health services, optimizing resources,
and reducing the negative impact of crises on the urban population.
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