Association of Individual Factors with Simulator Sickness and Sense of Presence in Virtual Reality Mediated by Head-Mounted Displays (HMDs)
Abstract
:1. Introduction
1.1. The Present Study
1.2. Simulator Sickness
1.3. Sense of Presence
2. Methods
2.1. Participants
2.2. VR Scenario
2.3. Questionnaire Instruments
2.4. Experimental Procedure
2.5. Data Analysis and Statistics
3. Results
3.1. Descriptive Statistics
3.2. Individual Factors and VR Experience
3.3. Affections during the VR Experience
3.4. Sex Differences
3.5. Predictors of Presence and SS
4. Discussion
4.1. Users’ Sex
4.2. Gaming Experience
4.3. Emotional States
4.4. MS Susceptibility
4.5. Personality Traits
4.6. Spatial Abilities (MRT)
4.7. Association Between the Dependent Variables
4.8. Limitations
4.9. Practical Implications of the Present Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luciani, A.; Cadoz, C. Enaction and Enactive Interfaces: A Handbook of Terms; Enactive System Books: Montpellier, France, 2007. [Google Scholar]
- Cipresso, P.; Giglioli, I.A.C.; Raya, M.A.; Riva, G. The Past, Present, and Future of Virtual and Augmented Reality Research: A Network and Cluster Analysis of the Literature. Front. Psychol. 2018, 9, 2086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuchs, H.; Bishop, G. Research directions in virtual environments. 1992. Available online: https://dl.acm.org/doi/10.1145/142413.142416 (accessed on 21 February 2021).
- Gigante, M.A. Virtual Reality: Definitions, History and Applications. In Virtual Reality Systems; Elsevier BV: Amsterdam, The Netherlands, 1993; pp. 3–14. [Google Scholar]
- North, M.M.; North, S.M. A Comparative Study of Sense of Presence of Virtual Reality and Immersive Environments. Australas. J. Inf. Syst. 2016, 20. [Google Scholar] [CrossRef] [Green Version]
- Slater, M. A note on presence terminology. Presence Connect 2003, 3, 1–5. [Google Scholar]
- Luckerson, V. Facebook Buying Oculus Virtual-Reality Company for $2 Billion. Time. 25 March 2014. Available online: https://time.com/37842/facebook-oculus-rift/ (accessed on 19 February 2021).
- Korolov, M. The real risks of virtual reality. Risk Manag. 2014, 61, 20–24. [Google Scholar]
- Choi, S.; Jung, K.; Noh, S.D. Virtual reality applications in manufacturing industries: Past research, present findings, and future directions. Concurr. Eng. 2014, 23, 40–63. [Google Scholar] [CrossRef]
- Mazuryk, T.; Gervautz, M. Virtual Reality. History, Applications, Technology and Future. Technical Report—TR-186-2-96-06; Institute of Computer Graphics, Technical University of Vienna: Vienna, Austria, 1996; Available online: https://www.cg.tuwien.ac.at/research/publications/1996/mazuryk-1996-VRH/TR-186-2-96-06Paper.pdf (accessed on 5 March 2020).
- Sutherland, I.E. A head-mounted three dimensional display. In Proceedings of the AFIPS ’68—Fall Joint Computer Conference, Part I, Association for Computing Machinery (ACM), New York, NY, USA, 9–11 December 1968; pp. 757–764. [Google Scholar]
- Patle, D.S.; Manca, D.; Nazir, S.; Sharma, S. Operator training simulators in virtual reality environment for process operators: A review. Virtual Real. 2019, 23, 293–311. [Google Scholar] [CrossRef]
- Arns, L.L.; Cerney, M.M. The relationship between age and incidence of cybersickness among immersive environment users. In Proceedings of the IEEE Virtual Reality, Bonn, Germany, 12–16 March 2005; pp. 267–268. [Google Scholar]
- Riccio, G.E.; Stoffregen, T.A. An ecological Theory of Motion Sickness and Postural Instability. Ecol. Psychol. 1991, 3, 195–240. [Google Scholar] [CrossRef]
- Chardonnet, J.-R.; Mirzaei, M.A.; Mérienne, F. Features of the Postural Sway Signal as Indicators to Estimate and Predict Visually Induced Motion Sickness in Virtual Reality. Int. J. Hum. Comput. Interact. 2017, 33, 771–785. [Google Scholar] [CrossRef] [Green Version]
- Rebenitsch, L.; Owen, C.B. Review on cybersickness in applications and visual displays. Virtual Real. 2016, 20, 101–125. [Google Scholar] [CrossRef]
- Kennedy, R.S.; Berbaum, K.S.; Lilienthal, M.G.P.; Dunlap, W.P.; Mulligan, B.E. Guidelines for Alleviation of Simulator Sickness Symptomatology (No. NAVTRASYSCEN-TR-87-007); Naval Training Systems Center: Orlando, FL, USA, 1987. [Google Scholar]
- Kolasinski, E.M. Simulator Sickness in Virtual Environments; US Army Research Institute for the Behavioral and Social Sciences: Alexandria, VA, USA, 1995. [Google Scholar]
- Biocca, F. The cyborg’s dilemma: Progressive embodiment in virtual environments. J. Comput. Mediat. Commun. 1997, 3, 324. [Google Scholar] [CrossRef]
- Kennedy, R.S.; Frank, L.H. A Review of Motion Sickness with Special Reference to Simulator Sickness; Defense Technical Information Center (DTIC): Fort Belvoir, VA, USA, 1985.
- Park, G.D.; Allen, R.W.; Fiorentino, D.; Rosenthal, T.J.; Cook, M.L. Simulator sickness scores according to symptom susceptibility, age, and gender for an older driver assessment study. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, San Francisco, CA, USA, 16–20 October 2006; Volume 50, pp. 2702–2706. [Google Scholar] [CrossRef]
- Young, L.R.; Sienko, K.H.; Lyne, L.; Hecht, H.; Natapoff, A. Adaptation of the vestibulo-ocular reflex, subjective tilt, and motion sickness to head movements during short-radius centrifugation. J. Vestib. Res. 2003, 13, 65–77. [Google Scholar]
- Johnson, D.M. Introduction to and Review of Simulator Sickness Research; American Psychological Association (APA): Washington, DC, USA, 2005. [Google Scholar]
- Reason, J.T.; Brand, J.J. Motion Sickness; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Pausch, R.; Crea, T.; Conway, M. A Literature Survey for Virtual Environments: Military Flight Simulator Visual Systems and Simulator Sickness. Presence Teleoper. Virtual Environ. 1992, 1, 344–363. [Google Scholar] [CrossRef]
- Domeyer, J.E.; Cassavaugh, N.D.; Backs, R.W. The use of adaptation to reduce simulator sickness in driving assessment and research. Accid. Anal. Prev. 2013, 53, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Grassini, S.; Laumann, K. Are modern head-mounted displays sexist? A systematic review on gender differences in HMD-mediated virtual reality. Front. Psychol. 2020, 11, 1604. [Google Scholar] [CrossRef]
- Golding, J.F. Motion sickness susceptibility. Auton. Neurosci. 2006, 129, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Bertin, R.J.V.; Collet, C.; Espié, S.; Graf, W. Objective measurement of simulator sickness and the role of visual-vestibular conflict situations. In Proceedings of the Driving Simulation Conference North America, Orlando, FL, USA, 30 November–2 December 2005; pp. 280–293. [Google Scholar]
- Parker, D.E.; Harm, D.L. Mental Rotation: A Key to Mitigation of Motion Sickness in the Virtual Environment? Presence Teleoper. Virtual Environ. 1992, 1, 329–333. [Google Scholar] [CrossRef]
- Levine, M.E.; Stern, R.M. Spatial task performance, sex differences, and motion sickness susceptibility. Percept. Mot. Skills 2002, 95, 425–431. [Google Scholar] [CrossRef]
- Regan, C. An investigation into nausea and other side-effects of head-coupled immersive virtual reality. Virtual Real. 1995, 1, 17–31. [Google Scholar] [CrossRef]
- Stern, R.M.; Hu, S.; Leblanc, R.; Koch, K.L. Chinese hyper-susceptibility to vection-induced motion sickness. Aviat. Space Environ. Med. 1993, 64, 827–830. [Google Scholar]
- Stern, R.M.; Hu, S.; Uijtdehaage, S.H.; Muth, E.R.; Xu, L.H.; Koch, K.L. Asian hypersusceptibility to motion sick-ness. Hum. Hered. 1996, 46, 7–14. [Google Scholar] [CrossRef]
- Uliano, K.C.; Kennedy, R.S.; Lambert, E.Y. Asynchronous visual delays and the development of simulator sickness. Proc. Hum. Factors Soc. Annu. Meet. 1986, 30, 422–426. [Google Scholar] [CrossRef]
- Yuan, J.; Mansouri, B.; Pettey, J.H.; Ahmed, S.F.; Khaderi, S.K. The visual effects associated with head-mounted displays. Int. J. Ophthalmol. Clin. Res. 2018, 5. [Google Scholar] [CrossRef] [Green Version]
- Kolasinski, E.M.; Gilson, R.D. Simulator sickness and related findings in a virtual environment. HFES Annu. Meet. Proc. 1998, 42, 1511–1515. [Google Scholar] [CrossRef]
- Knight, M.M.; Arns, L.L. The relationship among age and other factors on incidence of cybersickness in immersive environment users. In Proceedings of the 3rd Symposium on Applied Perception in Graphics and Visualization Association for Computing Machinery, Boston, MA, USA, 28–29 July 2006; p. 162. [Google Scholar]
- Gamito, P.; Oliveira, J.; Santos, P.; Morais, D.; Saraiva, T.; Pombal, M.; Mota, B. Presence, immersion and cybersickness assessment through a test anxiety virtual environment. Annu. Rev. Cyber Ther. Telemed. 2008, 6, 83–90. [Google Scholar]
- Heeter, C. Being There: The Subjective Experience of Presence. Presence Teleoper. Virtual Environ. 1992, 1, 262–271. [Google Scholar] [CrossRef]
- Lee, K.M. Presence, explicated. Commun. Theory 2004, 14, 27–50. [Google Scholar] [CrossRef]
- Minsky, M. Telepresence; Omni: New York, NY, USA, 1980; pp. 45–51. [Google Scholar]
- Cummings, J.J.; Bailenson, J.N. How Immersive Is Enough? A Meta-Analysis of the Effect of Immersive Technology on User Presence. Media Psychol. 2016, 19, 272–309. [Google Scholar] [CrossRef]
- Lombard, M.; Ditton, T. At the Heart of It All: The Concept of Presence. J. Comput. Commun. 2006, 3, 321. [Google Scholar] [CrossRef]
- Steuer, J. Defining Virtual Reality: Dimensions Determining Telepresence. J. Commun. 1992, 42, 73–93. [Google Scholar] [CrossRef]
- Mai, C.; Khamis, M. Public HMDs: Modeling and understanding user behavior around public head-mounted displays. In Proceedings of the 7th ACM International Symposium on Pervasive Displays, Munich, Germany, 6–8 June 2018; pp. 1–9. [Google Scholar]
- Slater, M.; Usoh, M. Representations Systems, Perceptual Position, and Presence in Immersive Virtual Environments. Presence Teleoper. Virtual Environ. 1993, 2, 221–233. [Google Scholar] [CrossRef]
- Witmer, B.G.; Singer, M.J. Measuring Presence in Virtual Environments: A Presence Questionnaire. Presence Teleoper. Virtual Environ. 1998, 7, 225–240. [Google Scholar] [CrossRef]
- Bangay, S.; Preston, L. An investigation into factors influencing immersion in interactive virtual reality environments. Stud. Health Technol. Inform. 1998, 58, 43–51. [Google Scholar] [PubMed]
- Schuemie, M.J.; Abel, B.; van der Mast, C.A.P.G.; Krijn, M.; Emmelkamp, P.M.G. The effect of locomotion technique on presence, fear and usability in a virtual environment. In Euromedia; Al-Akaidi., M., Rothkrantz, L., Eds.; Citeseer: Toulouse, France, 2005; pp. 129–135. [Google Scholar]
- Felnhofer, A.; Kothgassner, O.D.; Beutl, L.; Hlavacs, H.; Kryspin-Exner, I. Is virtual reality made for men only? Exploring gender differences in the sense of presence. In Proceedings of the International Society on Presence Research, Philadelphia, PA, USA, 24 October 2012; pp. 103–112. [Google Scholar]
- Slater, M.; Usoh, M.; Steed, A. Depth of Presence in Virtual Environments. Presence Teleoper. Virtual Environ. 1994, 3, 130–144. [Google Scholar] [CrossRef]
- Lachlan, K.; Krcmar, M. Experiencing Presence in Video Games: The Role of Presence Tendencies, Game Experience, Gender, and Time Spent in Play. Commun. Res. Rep. 2011, 28, 27–31. [Google Scholar] [CrossRef]
- Khashe, S.; Becerik-Gerber, B.; Lucas, G.; Gratch, J. Persuasive effects of immersion in virtual environments for measuring pro-environmental behaviors. In Proceedings of the International Symposium on Automation and Robotics in Construction (ISARC), Berlin, Germany, 20–25 July 2018; pp. 1205–1211. [Google Scholar]
- De Leo, G.; Diggs, L.A.; Radici, E.; Mastaglio, T.W. Measuring Sense of Presence and User Characteristics to Predict Effective Training in an Online Simulated Virtual Environment. Simul. Healthc. 2014, 9, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Alsina-Jurnet, I.; Gutiérrez-Maldonado, J. Influence of personality and individual abilities on the sense of presence experienced in anxiety triggering virtual environments. Int. J. Hum. Comput. Stud. 2010, 68, 788–801. [Google Scholar] [CrossRef]
- Kober, S.E.; Neuper, C. Personality and Presence in Virtual Reality: Does Their Relationship Depend on the Used Presence Measure? Int. J. Hum. Comput. Interact. 2013, 29, 13–25. [Google Scholar] [CrossRef]
- Sacau, A.; Laarni, J.; Hartmann, T. Influence of individual factors on presence. Comput. Hum. Behav. 2008, 24, 2255–2273. [Google Scholar] [CrossRef]
- Weibel, D.; Wissmath, B.; Stricker, D. The influence of neuroticism on spatial presence and enjoyment in films. Pers. Individ. Differ. 2011, 51, 866–869. [Google Scholar] [CrossRef]
- Laarni, J.; Ravaja, N.; Saari, T.; Hartmann, T. Personality-related differences in subjective presence. In Proceedings of the 7th Annual International Workshop Presence, Valencia, Spain, 13–15 October 2004; pp. 88–95. [Google Scholar]
- Murray, C.D.; Fox, J.; Pettifer, S. Absorption, dissociation, locus of control and presence in virtual reality. Comput. Hum. Behav. 2007, 23, 1347–1354. [Google Scholar] [CrossRef]
- Wallach, H.S.; Safir, M.P.; Samana, R. Personality variables and presence. Virtual Real. 2009, 14, 3–13. [Google Scholar] [CrossRef]
- Weech, S.; Kenny, S.; Barnett-Cowan, M. Presence and cybersickness in virtual reality are negatively related: A review. Front. Psychol. 2019, 10, 158. [Google Scholar] [CrossRef] [Green Version]
- Coxon, M.; Kelly, N.; Page, S. Individual differences in virtual reality: Are spatial presence and spatial ability linked? Virtual Real. 2016, 20, 203–212. [Google Scholar] [CrossRef]
- Baumgartner, T.; Valko, L.; Esslen, M.; Jäncke, L. Neural Correlate of Spatial Presence in an Arousing and Noninteractive Virtual Reality: An EEG and Psychophysiology Study. Cyber Psychol. Behav. 2006, 9, 30–45. [Google Scholar] [CrossRef] [Green Version]
- Martinsen, Ø.; Nordvik, H.; Østbø, L. Norwegian versions of NEO PI-R and NEO FFI. Tidsskr. Nor. Psykologforening 2005, 42, 421–423. [Google Scholar]
- Kuhn, S.; Gallinat, J. Amount of lifetime video gaming is positively associated with entorhinal, hippocampal and occipital volume. Mol. Psychiatry 2013, 19, 842–847. [Google Scholar] [CrossRef] [Green Version]
- Watson, D.; Clark, L.A.; Tellegen, A. Development and validation of brief measures of positive and negative affect: The PANAS scales. J. Personal. Soc. Psychol. 1988, 54, 1063–1070. [Google Scholar] [CrossRef]
- Golding, J.F. Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness. Brain Res. Bull. 1998, 47, 507–516. [Google Scholar] [CrossRef]
- Peters, M.; Lehmann, W.; Takahira, S.; Takeuchi, Y.; Jordan, K. Mental Rotation Test Performance in Four Cross-Cultural Samples (N = 3367): Overall Sex Differences and the Role of Academic Program in Performance. Cortex 2006, 42, 1005–1014. [Google Scholar] [CrossRef]
- McCrae, R.R.; Costa, J.P.T. A contemplated revision of the NEO Five-Factor Inventory. Personal. Individ. Differ. 2004, 36, 587–596. [Google Scholar] [CrossRef]
- Costa, P.T.; Mac Crae, R.R. Neo Personality Inventory-Revised (NEO PI-R); Psychological Assessment Resources: Odessa, FL, USA, 1992. [Google Scholar]
- Grassini, S.; Laumann, K. Questionnaire measures and physiological correlates of presence: A systematic review. Front. Psychol. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balk, S.A.; Bertola, M.A.; Inman, V.W. Simulator sickness questionnaire: Twenty years later. 2013. Available online: https://trid.trb.org/view/1263840 (accessed on 21 February 2021).
- Kennedy, R.S.; Lane, N.E.; Berbaum, K.S.; Lilienthal, M.G. Simulator Sickness Questionnaire: An Enhanced Method for Quantifying Simulator Sickness. Int. J. Aviat. Psychol. 1993, 3, 203–220. [Google Scholar] [CrossRef]
- Kim, H.K.; Park, J.; Choi, Y.; Choe, M. Virtual reality sickness questionnaire (VRSQ): Motion sickness measurement index in a virtual reality environment. Appl. Ergon. 2018, 69, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Usoh, M.; Catena, E.; Arman, S.; Slater, M. Using Presence Questionnaires in Reality. Presence Teleoper. Virtual Environ. 2000, 9, 497–503. [Google Scholar] [CrossRef]
- Al Zayer, M.; Adhanom, I.B.; MacNeilage, P.; Folmer, E. The Effect of Field-of-View Restriction on Sex Bias in VR Sickness and Spatial Navigation Performance. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Association for Computing Machinery (ACM), Glasgow, UK, 4–9 May 2019; p. 354. [Google Scholar]
- Melo, M.; Vasconcelos-Raposo, J.; Bessa, M. Presence and cybersickness in immersive content: Effects of content type, exposure time and gender. Comput. Graph. 2018, 71, 159–165. [Google Scholar] [CrossRef]
- Wilson, M.L.; Kinsela, A.J. Absence of Gender Differences in Actual Induced HMD Motion Sickness vs. Pretrial Susceptibility Ratings. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2017, 61, 1313–1316. [Google Scholar] [CrossRef]
- Bracken, C.C. Presence and Image Quality: The Case of High-Definition Television. Media Psychol. 2005, 7, 191–205. [Google Scholar] [CrossRef] [Green Version]
- Robillard, G.; Bouchard, S.; Renaud, P.; Cournoyer, L.G. Validation canadienne-française de deux mesures importantes en réalité virtuelle: L’Immersive Tendencies Questionnaire et le Presence Questionnaire. Presented at the 25e Congrès Annuel de la Société Québécoise pour la Recherche en Psychologie (SQRP), Trois-Rivières, QC, Canada, 1–3 November 2002. [Google Scholar]
- Baños, R.M.; Botella, C.; Rubió, I.; Quero, S.; García-Palacios, A.; Alcañiz, M. Presence and Emotions in Virtual Environments: The Influence of Stereoscopy. Cyberpsychol. Behav. 2008, 11, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Rupp, M.A.; Odette, K.L.; Kozachuk, J.; Michaelis, J.R.; Smither, J.A.; McConnell, D.S. Investigating learning outcomes and subjective experiences in 360-degree videos. Comput. Educ. 2019, 128, 256–268. [Google Scholar] [CrossRef]
- Kennedy, R.S.; Fowlkes, J.; Berbaum, K.S.; Lilienthal, M.G. Use of a motion sickness history questionnaire for prediction of simulator sickness. Aviat Space Environ. Med. 1992, 63, 588–593. [Google Scholar]
- Charles, S.T.; Gatz, M.; Kato, K.; Pedersen, N.L. Physical health 25 years later: The predictive ability of neuroticism. Health Psychol. 2008, 27, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Lahey, B.B. Public health significance of neuroticism. Am. Psychol. 2009, 64, 241–256. [Google Scholar] [CrossRef] [Green Version]
- Suls, J. Affect, Stress, and Personality. Handbook of Affect and Social Cognition; Forgas, J.P., Ed.; Lawrence Erlbaum: Mahwah, NJ, USA, 2001; pp. 392–409. [Google Scholar]
- Schneider, T.R. The role of neuroticism on psychological and physiological stress responses. J. Exp. Soc. Psychol. 2004, 40, 795–804. [Google Scholar] [CrossRef]
- Newby, J.; Pitura, V.A.; Penney, A.M.; Klein, R.G.; Flett, G.L.; Hewitt, P.L. Neuroticism and perfectionism as predictors of social anxiety. Personal. Individ. Differ. 2017, 106, 263–267. [Google Scholar] [CrossRef]
- Twenge, J.M. The age of anxiety? The birth cohort change in anxiety and neuroticism, 1952–1993. J. Personal. Soc. Psychol. 2000, 79, 1007–1021. [Google Scholar] [CrossRef]
- Balaban, C.D.; Jacob, R.G. Background and history of the interface between anxiety and vertigo. J. Anxiety Disord. 2001, 15, 27–51. [Google Scholar] [CrossRef]
- Riccelli, R.; Indovina, I.; Staab, J.P.; Nigro, S.; Augimeri, A.; Lacquaniti, F.; Passamonti, L. Neuroticism modulates brain visuo-vestibular and anxiety systems during a virtual rollercoaster task. Hum. Brain Mapp. 2016, 38, 715–726. [Google Scholar] [CrossRef] [Green Version]
- Carmona, J.E.; Holland, A.K.; Harrison, D.W. Extending the functional cerebral systems theory of emotion to the vestibular modality: A systematic and integrative approach. Psychol. Bull. 2009, 135, 286–302. [Google Scholar] [CrossRef] [Green Version]
- Lepicard, E.M.; Venault, P.; Perez-Diaz, F.; Joubert, C.; Berthoz, A.; Chapouthier, G. Balance control and posture differences in the anxious BALB/cByJ mice compared to the non anxious C57BL/6J mice. Behav. Brain Res. 2000, 117, 185–195. [Google Scholar] [CrossRef]
- Rudrauf, D.; Venault, P.; Cohen-Salmon, C.; Berthoz, A.; Jouvent, R.; Chapouthier, G. A new method for the assessment of spatial orientation and spatial anxiety in mice. Brain Res. Protoc. 2004, 13, 159–165. [Google Scholar] [CrossRef]
- Viaud-Delmon, I.; Venault, P.; Chapouthier, G. Behavioral models for anxiety and multisensory integration in animals and humans. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2011, 35, 1391–1399. [Google Scholar] [CrossRef]
- Staab, J.P.; Balaban, C.D.; Furman, J.M. Threat assessment and locomotion: Clinical applications of an integrated model of anxiety and postural control. Semin. Neurol. 2013, 33, 297–306. [Google Scholar]
- Cousins, S.; Cutfield, N.J.; Kaski, D.; Palla, A.; Seemungal, B.M.; Golding, J.F.; Staab, J.P.; Bronstein, A.M. Visual Dependency and Dizziness after Vestibular Neuritis. PLoS ONE 2014, 9, e105426. [Google Scholar] [CrossRef] [Green Version]
- Best, C.; Eckhardt-Henn, A.; Tschan, R.; Dieterich, M. Psychiatric morbidity and comorbidity in different vestibular vertigo syndromes. J. Neurol. 2009, 256, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Celestino, D.; Rosini, E.; Carucci, M.L.; Marconi, P.L.; Vercillo, E. Ménière’s disease and anxiety disorders. Acta Otorhinolaryngol. Ital. 2003, 23, 421–427. [Google Scholar] [PubMed]
- Staab, J.P.; Rohe, D.E.; Eggers, S.D.; Shepard, N.T. Anxious, introverted personality traits in patients with chronic subjective dizziness. J. Psychosom. Res. 2014, 76, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Bles, W.; Bos, J.E.; De Graaf, B.; Groen, E.; Wertheim, A.H. Motion sickness: Only one provocative conflict? Brain Res. Bull. 1998, 47, 481–487. [Google Scholar] [CrossRef]
- Duh, H.B.-L.; Parker, D.E.; Philips, J.O.; Furness, T.A. “Conflicting” Motion Cues to the Visual and Vestibular Self-Motion Systems Around 0.06 Hz Evoke Simulator Sickness. Hum. Factors J. Hum. Factors Ergon. Soc. 2004, 46, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.G.; Wiebe, D.J. Individual differences in self-assessed health: Gender, neuroticism and physical symptom reports. Personal. Individ. Differ. 2000, 28, 823–835. [Google Scholar] [CrossRef]
- Nicovich, S.G.; Boller, G.W.; Cornwell, T.B. Experienced presence within computer-mediated communications: Initial explorations on the effects of gender with respect to empathy and immersion. J. Comput. Mediat. Commun. 2005, 10, JCMC1023. [Google Scholar] [CrossRef]
- Sacau, A.; Laarni, J.; Ravaja, N.; Hartmann, T. The impact of personality factors on the experience of spatial presence. In Proceedings of the 8th International Workshop on Presence, London, UK, 21–23 September 2005; pp. 143–151. [Google Scholar]
- Hofer, M.; Wirth, W.; Kuehne, R.; Schramm, H.; Sacau, A. Structural Equation Modeling of Spatial Presence: The Influence of Cognitive Processes and Traits. Media Psychol. 2012, 15, 373–395. [Google Scholar] [CrossRef]
- Wirth, W.; Hartmann, T.; Böcking, S.; Vorderer, P.; Klimmt, C.; Schramm, H.; Saari, T.; Laarni, J.; Ravaja, N.; Gouveia, F.R.; et al. A Process Model of the Formation of Spatial Presence Experiences. Media Psychol. 2007, 9, 493–525. [Google Scholar] [CrossRef]
- Ling, Y.; Nefs, H.T.; Brinkman, W.-P.; Qu, C.; Heynderickx, I. The relationship between individual characteristics and experienced presence. Comput. Hum. Behav. 2013, 29, 1519–1530. [Google Scholar] [CrossRef]
- Wilson, J.R.; Nichols, S.; Haldane, C. Presence and side effects: Complementary or contradictory? Adv. Hum. Factors Ergon. 1997, 21, 889–892. [Google Scholar]
- Ryan, V.; Griffin, R. An investigation into anxiety in virtual reality following a self-compassion induction. Annu. Rev. Cyber Ther. Telemed. 2016, 14, 109–114. [Google Scholar]
- Stanney, K.M.; Hash, P. Locus of User-Initiated Control in Virtual Environments: Influences on Cybersickness. Presence Teleoper. Virtual Environ. 1998, 7, 447–459. [Google Scholar] [CrossRef]
- Saredakis, D.; Szpak, A.; Birckhead, B.; Keage, H.A.D.; Rizzo, A.; Loetscher, T. Factors Associated with Virtual Reality Sickness in Head-Mounted Displays: A Systematic Review and Meta-Analysis. Front. Hum. Neurosci. 2020, 14, 96. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H. Head-mounted display-based intuitive virtual reality training system for the mining industry. Int. J. Min. Sci. Technol. 2017, 27, 717–722. [Google Scholar] [CrossRef]
- Grassini, S.; Laumann, K. Evaluating the use of virtual reality in work safety: A literature review. In Proceedings of the 30th European Safety and Reliability Conference and the 15th Probabilistic Safety Assessment and Management Conference, Venice, Italy, 1–5 November 2021; pp. 1–6. [Google Scholar]
- Huber, T.; Paschold, M.; Hansen, C.; Wunderling, T.; Lang, H.; Kneist, W. New dimensions in surgical training: Immersive virtual reality laparoscopic simulation exhilarates surgical staff. Surg. Endosc. 2017, 31, 4472–4477. [Google Scholar] [CrossRef] [PubMed]
- Grassini, S.; Laumann, K.; Skogstad, M.R. The use of virtual reality alone does not promote training performance (but sense of presence does). Front. Psychol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
Variable | M | SD | |
---|---|---|---|
Joystick years (gaming) | 1876.81 | 3585.22 | |
PRE-PANAS | Positive affects | 30.42 | 5.24 |
Negative affects | 15.28 | 4.13 | |
Motion sickness susceptibility | 17.59 | 5.13 | |
Neo FFI | Neuroticism | 2.02 | 0.81 |
Extroversion | 2.55 | 0.69 | |
Openness | 2.64 | 0.55 | |
Agreeableness | 2.50 | 0.56 | |
Conscientiousness | 2.60 | 0.74 | |
Mental rotation ability | 5.44 | 2.62 | |
Presence (SUS) | 4.44 | 1.35 | |
SSQ | Nausea subscale | 60.77 | 36.09 |
Oculomotor subscale | 41.83 | 32.15 | |
Disorientation subscale | 105.43 | 68.49 | |
Total simulator sickness | 72.79 | 44.44 | |
POST-PANAS | Positive affects | 32.28 | 7.15 |
Negative affects | 17.72 | 5.99 |
Presence | Simulator Sickness Questionnaire | |||||
---|---|---|---|---|---|---|
SUS | Nausea Subscale | Oculomotor Subscale | Disorientation Subscale | Total Simulator Sickness | ||
Age | 0.075 | −0.080 | −0.165 | 0.000 | −0.080 | |
Joystick years (gaming) | −0.059 | −0.232 | −0.244 | −0.267 | −0.263 | |
PRE-PANAS | Positive affects | 0.179 | −0.079 | −0.029 | −0.158 | −0.101 |
Negative affects | 0.20 | 0.265 | 0.268 | 0.196 | 0.267 | |
Motion sickness susceptibility | 0.046 | 0.404 ** | 0.208 | 0.331 * | 0.339 * | |
Neo FFI | Neuroticism | 0.077 | 0.300 * | 0.138 | 0.121 | 0.191 |
Extroversion | 0.200 | −0.077 | −0.084 | −0.101 | −0.100 | |
Openness | 0.093 | −0.113 | 0.055 | 0.109 | 0.033 | |
Agreeableness | 0.006 | −0.040 | 0.0060 | 0.121 | 0.026 | |
Conscientiousness | −0.140 | −0.039 | 0.052 | 0.083 | 0.026 | |
Mental rotation ability | −0.190 | 0.83 | 0.121 | 0.209 | 0.170 |
Presence | Simulator Sickness Questionnaire | |||||
---|---|---|---|---|---|---|
SUS | Nausea Subscale | Oculomotor Subscale | Disorientation Subscale | Total Simulator Sickness | ||
POST-PANAS | Positive affects | 0.319 * | −0.337 * | −0.141 | −0.299 * | −0.266 |
Negative affects | 0.294 * | 0.594 *** | 0.320 * | 0.436 ** | 0.489 *** |
R | R2 | Predictor | b | SE b | Standardized b | |
---|---|---|---|---|---|---|
Presence (SUS) | 0.323 | 0.104 | Constant Sex | 4.788 −0.883 | 0.224 0.359 | 0.323 |
Nausea (SSQ) | 0.492 | 0.242 | Constant MS | −0.33 3.456 | 15.546 0.849 | 0.492 |
Oculomotor (SSQ) | 0.394 | 0.155 | Constant MS | −1.544 2.466 | 14.619 0.798 | 0.394 |
Disorientation (SSQ) | 0.452 | 0.205 | Constant MS | −0.731 6.034 | 30.216 1.650 | 0.452 |
Total (SSQ) | 0.484 | 0.235 | Constant MS | −0.971 4.193 | 19.228 1.050 | 0.484 |
Dependent Variable | R | R2 | Predictor | b | SE b | Standardized b |
---|---|---|---|---|---|---|
Nausea (SSQ) | 0.299 | 0.089 | Constant Neuroticism (NEO-FFI) | 34.02 1.11 | 12.758 0.490 | 0.299 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grassini, S.; Laumann, K.; Luzi, A.K. Association of Individual Factors with Simulator Sickness and Sense of Presence in Virtual Reality Mediated by Head-Mounted Displays (HMDs). Multimodal Technol. Interact. 2021, 5, 7. https://doi.org/10.3390/mti5030007
Grassini S, Laumann K, Luzi AK. Association of Individual Factors with Simulator Sickness and Sense of Presence in Virtual Reality Mediated by Head-Mounted Displays (HMDs). Multimodal Technologies and Interaction. 2021; 5(3):7. https://doi.org/10.3390/mti5030007
Chicago/Turabian StyleGrassini, Simone, Karin Laumann, and Ann Kristin Luzi. 2021. "Association of Individual Factors with Simulator Sickness and Sense of Presence in Virtual Reality Mediated by Head-Mounted Displays (HMDs)" Multimodal Technologies and Interaction 5, no. 3: 7. https://doi.org/10.3390/mti5030007
APA StyleGrassini, S., Laumann, K., & Luzi, A. K. (2021). Association of Individual Factors with Simulator Sickness and Sense of Presence in Virtual Reality Mediated by Head-Mounted Displays (HMDs). Multimodal Technologies and Interaction, 5(3), 7. https://doi.org/10.3390/mti5030007