Unplugged Activities in Cross-Curricular Teaching: Effect on Sixth Graders’ Computational Thinking and Learning Outcomes
Abstract
:1. Introduction
1.1. Background
1.1.1. Computational Thinking
1.1.2. Computational Thinking through Unplugged Activities
1.2. Objectives
- Objective 1: To analyze eventual differences in sixth graders’ development of CT skills after an unplugged CT intervention integrated in the Social Sciences area, compared to regular Social Sciences lessons.
- Objective 2: To analyze eventual differences in the sixth graders’ Social Sciences academic achievement after an unplugged CT intervention integrated in the Social Sciences area, compared to regular Social Sciences lessons.
2. Materials and Method
2.1. Participants
2.2. Intervention
2.3. Assessment
2.4. Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shute, V.J.; Sun, C.; Asbell-Clarke, J. Demystifying computational thinking. Educ. Res. Rev. 2017, 22, 142–158. [Google Scholar] [CrossRef]
- Iversen, O.S.; Smith, R.C.; Dindler, C. From Computational Thinking to Computational Empowerment. In Proceedings of the 15th Participatory Design Conference, Hasselt and Genk, Belgium, 20–24 August 2018; ACM: New York, NY, USA, 2018; Volume 1, pp. 1–11. [Google Scholar]
- Swaid, S.I. Bringing Computational Thinking to STEM Education. Procedia Manuf. 2015, 3, 3657–3662. [Google Scholar] [CrossRef] [Green Version]
- Mishra, P.; Yadav, A.; Henriksen, D.; Kereluik, K.; Terry, L.; Fahnoe, C.; Terry, C. Rethinking Technology & Creativity in the 21st Century. TechTrends 2013, 57, 10–14. [Google Scholar] [CrossRef]
- Lye, S.Y.; Koh, J.H.L. Review on teaching and learning of computational thinking through programming: What is next for K-12? Comput. Hum. Behav. 2014, 41, 51–61. [Google Scholar] [CrossRef]
- Buitrago Flórez, F.; Casallas, R.; Hernández, M.; Reyes, A.; Restrepo, S.; Danies, G. Changing a Generation’s Way of Thinking: Teaching Computational Thinking Through Programming. Rev. Educ. Res. 2017, 87, 834–860. [Google Scholar] [CrossRef]
- Angeli, C.; Valanides, N. Developing young children’s computational thinking with educational robotics: An interaction effect between gender and scaffolding strategy. Comput. Hum. Behav. 2020, 105, 105954. [Google Scholar] [CrossRef]
- INTEF. Programación, Robótica y Pensamiento Computacional en el Aula; INTEF: Madrid, Spain, 2018. [Google Scholar]
- Manches, A.; Plowman, L. Computing education in children’s early years: A call for debate. Br. J. Educ. Technol. 2017, 48, 191–201. [Google Scholar] [CrossRef]
- Micheuz, P. Some findings on informatics education in Austrian academic secondary schools. Inform. Educ. 2008, 7, 221–236. [Google Scholar] [CrossRef]
- The Royal Society. Shut Down or Restart? The Way Forward for Computing in UK Schools; The Royal Academy of Engineering: London, UK, 2012. [Google Scholar]
- Angeli, C.; Voogt, J.; Fluck, A.; Webb, M.; Cox, M.; Malyn-Smith, J.; Zagami, J. A K-6 computational Thinking curriculum framework: Implications for teacher knowledge. J. Educ. Technol. Soc. 2016, 19, 47–57. [Google Scholar] [CrossRef]
- Balanskat, A.; Engelhardt, K. Computing Our Future. Computer Programming and Coding. Priorities, School Curricula and Initiatives across Europe; European Schoolnet: Brussels, Belgium, 2015. [Google Scholar]
- Bocconi, S.; Chioccariello, A.; Dettori, G.; Ferrari, A.; Engelhardt, K.; Kampylis, P.; Punie, Y. Developing Computational Thinking in Compulsory Education—Implications for Policy and Practice; European Commision: Brussels, Belgium, 2016. [Google Scholar]
- Brennan, K.; Resnick, M. New Frameworks for Studying and Assessing the Development of Computational Thinking. In Proceedings of the Annual American Educational Research Association Meeting, Vancouver, BC, Canada, 13–17 April 2012; pp. 1–25. [Google Scholar]
- Merino-Armero, J.M.; González-Calero, J.A.; Cózar-Gutiérrez, R. Computational thinking in K-12 education. An insight through meta-analysis. J. Res. Technol. Educ. 2021, 1–26. [Google Scholar] [CrossRef]
- Brackmann, C.P.; Román-González, M.; Robles, G.; Moreno-León, J.; Casali, A.; Barone, D. Development of Computational Thinking Skills through Unplugged Activities in Primary School. In Proceedings of the 12th Workshop on Primary and Secondary Computing Education—WiPSCE’17, Nijmegen, The Netherlands, 8–10 November 2017; ACM Press: New York, NY, USA, 2017; pp. 65–72. [Google Scholar]
- Bell, T.; Alexander, J.; Freeman, I.; Grimley, M. Computer Science Unplugged: School Students Doing Real Computing Without Computers. J. Appl. Comput. Inf. Technol. 2009, 13, 20–29. [Google Scholar]
- Sun, L.; Hu, L.; Zhou, D. Improving 7th-graders’ computational thinking skills through unplugged programming activities: A study on the influence of multiple factors. Think. Ski. Creat. 2021, 42, 100926. [Google Scholar] [CrossRef]
- Cutumisu, M.; Adams, C.; Lu, C. A Scoping Review of Empirical Research on Recent Computational Thinking Assessments. J. Sci. Educ. Technol. 2019, 28, 651–676. [Google Scholar] [CrossRef]
- Tang, X.; Yin, Y.; Lin, Q.; Hadad, R.; Zhai, X. Assessing computational thinking: A systematic review of empirical studies. Comput. Educ. 2020, 148, 103798. [Google Scholar] [CrossRef]
- Kite, V.; Park, S.; Wiebe, E. The Code-Centric Nature of Computational Thinking Education: A Review of Trends and Issues in Computational Thinking Education Research. SAGE Open 2021, 11, 215824402110164. [Google Scholar] [CrossRef]
- Huang, F.; Teo, T. Examining the role of technology-related policy and constructivist teaching belief on English teachers’ technology acceptance: A study in Chinese universities. Br. J. Educ. Technol. 2021, 52, 441–460. [Google Scholar] [CrossRef]
- Guzdial, M. Education: Paving the way for computational thinking. Commun. ACM 2008, 51, 25. [Google Scholar] [CrossRef]
- Papert, S. Mindstorms: Children, Computers and Powerful Ideas; Basic Books: New York, NY, USA, 1983; Volume 1, ISBN 0465046274. [Google Scholar]
- Wing, J.M. Computational thinking. Commun. ACM 2006, 49, 33. [Google Scholar] [CrossRef]
- Wing, J.M. Computational thinking’s influence on research and education for all Influenza del pensiero computazionale nella ricerca e nell’educazione per tutti. Ital. J. Educ. Technol. 2017, 25, 7–14. [Google Scholar] [CrossRef]
- Ministerio de Educación y Formación Profesional. La Escuela de Pensamiento Computacional y su Impacto; INTEF: Madrid, Spain, 2019. [Google Scholar]
- Grover, S.; Pea, R. Computational Thinking in K–12. Educ. Res. 2013, 42, 38–43. [Google Scholar] [CrossRef]
- Weintrop, D.; Beheshti, E.; Horn, M.; Orton, K.; Jona, K.; Trouille, L.; Wilensky, U. Defining Computational Thinking for Mathematics and Science Classrooms. J. Sci. Educ. Technol. 2016, 25, 127–147. [Google Scholar] [CrossRef]
- Moreno, J.; Robles, G.; Román, M.; Rodríguez, J.D. No es lo mismo: Un análisis de red de texto sobre definiciones de pensamiento computacional para estudiar su relación con la programación informática. Rev. Interuniv. Investig. Tecnol. Educ. 2019, 7, 1–10. [Google Scholar] [CrossRef]
- Balladares, J.A.; Avilés, M.R.; Pérez, H.O. Del pensamiento complejo al pensamiento computacional: Retos para la educación contemporánea. Sophia Colecc. Filos. Educ. 2016, 1, 143–159. [Google Scholar] [CrossRef] [Green Version]
- Valverde-Berrocoso, J.; Fernández-Sánchez, M.R.; Garrido-Arroyo, M.C. El pensamiento computacional y las nuevas ecologías del aprendizaje. Rev. Educ. Distancia 2015, 9, 1–18. [Google Scholar] [CrossRef]
- Henderson, P.B. Ubiquitous Computational Thinking. Computer 2009, 42, 100–102. [Google Scholar] [CrossRef]
- Bell, T.; Witten, I.H.; Fellows, M. Computer Science Unplugged. Off-Line Activities and Games for All Ages. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.114.7908&rep=rep1&type=pdf (accessed on 26 January 2022).
- Huang, W.; Looi, C.-K. A critical review of literature on “unplugged” pedagogies in K-12 computer science and computational thinking education. Comput. Sci. Educ. 2021, 31, 83–111. [Google Scholar] [CrossRef]
- Ribeiro Silva, L.; da Silva, A.P.; Toda, A.; Isotani, S. Impact of Teaching Approaches to Computational Thinking on High School Students: A Systematic Mapping. In Proceedings of the 18th IEEE International Conference on Advanced Learning Technologies, ICALT 2018, Bombay, India, 9–13 July 2018; pp. 285–289. [Google Scholar] [CrossRef]
- Bell, T.; Vahrenhold, J. CS Unplugged—How Is It Used, and Does It Work? In Adventures between Lower Bounds and Higher Altitudes; Lecture Notes in Computer Science; Böckenhauer, H.-J., Komm, D., Unger, W., Eds.; Springer: Cham, Switzerland, 2018; Volume 11011, pp. 497–521. [Google Scholar]
- Alamer, R.A.; Al-Doweesh, W.A.; Al-Khalifa, H.S.; Al-Razgan, M.S. Programming Unplugged: Bridging CS Unplugged Activities Gap for Learning Key Programming Concepts. In Proceedings of the Fifth International Conference on e-Learning (econf), Manama, Bahrain, 18–20 October 2015; pp. 97–103. [Google Scholar]
- Dorling, M.; White, D. Scratch: A Way to Logo and Python. In Proceedings of the 46th ACM Technical Symposium on Computer Science Education, Kansas City, MO, USA, 4–7 March 2015; pp. 191–196. [Google Scholar] [CrossRef]
- Faber, H.; Wierdsma, M.; Doornbos, R.P.; Van der Ven, J.S.; de Vette, K. Teaching computational thinking to primary school students via unplugged programming lessons. J. Eur. Teach. Educ. Netw. 2017, 12, 13–24. [Google Scholar]
- Gaio, A. Programming for 3rd Graders, Scratch-Based or Unplugged? In Proceedings of the CERME 10, Dublin, Ireland, 1–5 February 2017. [Google Scholar]
- Hermans, F.; Aivaloglou, E. To Scratch or Not to Scratch? A Controlled Experiment Comparing Plugged First and Unplugged First Programming Lessons. In Proceedings of the 12th Workshop on Primary and Secondary Computing Education, Nijmegen, The Netherlands, 8–10 November 2017; ACM: New York, NY, USA, 2017; pp. 49–56. [Google Scholar]
- Aggarwal, A.; Gardner-McCune, C.; Touretzky, D.S. Evaluating the Effect of Using Physical Manipulatives to Foster Computational Thinking in Elementary School. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education, Seattle, WA, USA, 8–11 March 2017; ACM: New York, NY, USA; pp. 9–14. [Google Scholar]
- Connor, R.; Cutts, Q.; Robertson, J. Keeping the machinery in computing education. Commun. ACM 2017, 60, 26–28. [Google Scholar] [CrossRef]
- Gunion, K.; Milford, T.; Stege, U. The Paradigm Recursion: Is It More Accessible When Introduced in Middle School? J. Probl. Solving 2009, 2, 8. [Google Scholar] [CrossRef]
- Lonati, V.; Malchiodi, D.; Monga, M.; Morpurgo, A. Is Coding the Way to Go? In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2015; Volume 9378, pp. 165–174. [Google Scholar]
- Schofield, E.; Erlinger, M.; Dodds, Z. MyCS: CS for Middle-Years Students and Their Teachers. In Proceedings of the 45th ACM Technical Symposium on Computer Science Education, Atlanta, Georgia, USA, 5–8 March 2014; pp. 337–342. [Google Scholar] [CrossRef]
- Caeli, E.N.; Yadav, A. Unplugged Approaches to Computational Thinking: A Historical Perspective. TechTrends 2020, 64, 29–36. [Google Scholar] [CrossRef]
- Montes-León, H.; Hijón- Neira, R.; Pérez-Marín, D.; Montes-León, S.R. Improving Computational Thinking in Secondary Students with Unplugged Tasks. Educ. Knowl. Soc. 2020, 21, 12. [Google Scholar] [CrossRef]
- Sun, L.; Hu, L.; Zhou, D. Which way of design programming activities is more effective to promote K-12 students’ computational thinking skills? A meta-analysis. J. Comput. Assist. Learn. 2021, 37, 1048–1062. [Google Scholar] [CrossRef]
- Wohl, B.; Porter, B.; Clinch, S. Teaching Computer Science to 5–7 Year-Olds. In Proceedings of the Workshop in Primary and Secondary Computing Education, Nijmegen, The Netherlands, 8–10 November 2017; ACM: New York, NY, USA, 2017; pp. 55–60. [Google Scholar]
- Gardeli, A.; Vosinakis, S. Creating the computer player: An engaging and collaborative approach to introduce computational thinking by combining ‘unplugged’ activities with visual programming. Ital. J. Educ. Technol. 2017, 25, 36–50. [Google Scholar] [CrossRef]
- Uchida, Y.; Matsuno, S.; Ito, T.; Sakamoto, M. A proposal for teaching programming through the Five-Step Method. J. Robot. Netw. Artif. Life 2015, 2, 153–156. [Google Scholar] [CrossRef] [Green Version]
- del Olmo-Muñoz, J.; Cózar-Gutiérrez, R.; González-Calero, J.A. Computational thinking through unplugged activities in early years of Primary Education. Comput. Educ. 2020, 150, 103832. [Google Scholar] [CrossRef]
- Frey, B.B. The SAGE Encyclopedia of Educational Research, Measurement, and Evaluation; SAGE Publications: Thousand Oaks, CA, USA, 2018. [Google Scholar]
- Bryman, A. Social Research Methods; Oxford University Press: Oxford, UK, 2012; ISBN 978-0-19-958805-3. [Google Scholar]
- Román-González, M. Códigoalfabetización y Pensamiento Computacional en Educación Primaria y Secundaria: Validación de un Instrumento y Evaluación de Programas, Programa de Doctorado en Educación. Ph.D. Thesis, Universidad Nacional de Educación a Distancia, Madrid, Spain, 2016. [Google Scholar]
- Román-González, M.; Pérez-González, J.-C.; Jiménez-Fernández, C. Which cognitive abilities underlie computational thinking? Criterion validity of the Computational Thinking Test. Comput. Hum. Behav. 2017, 72, 678–691. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: New York, NY, USA, 1988. [Google Scholar]
- Kraft, M.A. Interpreting Effect Sizes of Education Interventions. Educ. Res. 2020, 49, 241–253. [Google Scholar] [CrossRef]
- Grover, S.; Pea, R. Computational Thinking: A Competency Whose Time Has Come. In Computer Science Education; Bloomsbury Academic: New York, NY, USA, 2018. [Google Scholar]
- Sáez-López, J.-M.; Román-González, M.; Vázquez-Cano, E. Visual programming languages integrated across the curriculum in elementary school: A two year case study using “Scratch” in five schools. Comput. Educ. 2016, 97, 129–141. [Google Scholar] [CrossRef]
- Jenkins, C. Poem Generator: A comparative quantitative evaluation of a microworlds-based learning approach for teaching English. Int. J. Educ. Dev. Using Inf. Commun. Technol. 2015, 11, 153–167. [Google Scholar]
Week 1 to Week 3 | Week 4 to Week 6 | Week 7 | ||
---|---|---|---|---|
Teaching Unit 1 (TU1): The orographic relief of Spain | Academic achievement test of TU1 | Teaching Unit 2 (TU2): The orographic relief of Europe | Academic achievement test of TU2 | CTt |
Group | N | CT Scores | Academic Scores |
---|---|---|---|
Intervention | 14 | 15.14 (3.28) | 6.43 (2.39) |
Control | 31 | 10.94 (3.19) | 5.97 (2.43) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merino-Armero, J.M.; González-Calero, J.A.; Cózar-Gutiérrez, R.; del Olmo-Muñoz, J. Unplugged Activities in Cross-Curricular Teaching: Effect on Sixth Graders’ Computational Thinking and Learning Outcomes. Multimodal Technol. Interact. 2022, 6, 13. https://doi.org/10.3390/mti6020013
Merino-Armero JM, González-Calero JA, Cózar-Gutiérrez R, del Olmo-Muñoz J. Unplugged Activities in Cross-Curricular Teaching: Effect on Sixth Graders’ Computational Thinking and Learning Outcomes. Multimodal Technologies and Interaction. 2022; 6(2):13. https://doi.org/10.3390/mti6020013
Chicago/Turabian StyleMerino-Armero, José Miguel, José Antonio González-Calero, Ramón Cózar-Gutiérrez, and Javier del Olmo-Muñoz. 2022. "Unplugged Activities in Cross-Curricular Teaching: Effect on Sixth Graders’ Computational Thinking and Learning Outcomes" Multimodal Technologies and Interaction 6, no. 2: 13. https://doi.org/10.3390/mti6020013
APA StyleMerino-Armero, J. M., González-Calero, J. A., Cózar-Gutiérrez, R., & del Olmo-Muñoz, J. (2022). Unplugged Activities in Cross-Curricular Teaching: Effect on Sixth Graders’ Computational Thinking and Learning Outcomes. Multimodal Technologies and Interaction, 6(2), 13. https://doi.org/10.3390/mti6020013