Into the Rhythm: Evaluating Breathing Instruction Sound Experiences on the Run with Novice Female Runners †
Abstract
:1. Introduction
- RQ1:
- To what extent can runners follow auditory breathing instructions while running?
- RQ2:
- How does auditory information richness affect adherence to breathing guidance?
- RQ3:
- What is the impact of various auditory breathing instructions on runners’ user experience?
2. Related Work
2.1. Feedback Modalities and Sports
2.1.1. Visual Feedback
2.1.2. Haptic Feedback
2.1.3. Auditory Feedback
2.2. Types of Breathing Instruction Sounds
3. Study 1: Exploring the Effects of Sound Information Richness
3.1. Methods
3.1.1. Participants
- Participants must possess no prior familiarity with paced breathing methodologies during running.
- Participants should self-define their running proficiency as ranging from beginner to intermediate.
- Participants should have the capability to sustain uninterrupted running for a minimum of 20 min.
3.1.2. Sound Conditions
3.1.3. Procedure
3.1.4. Instruments
- Breathing while running can be easily adjusted to this sound specification (effectiveness).
- I consider the use of this sound during running to achieve regular breathing to be absolutely useful (efficiency).
- If I could, I would use this sound every day while running (intention to use).
- Running to this sound annoys me (negative emotion).
- Running to this sound exhilarates me (positive emotion).
- I find this sound attractively designed (aesthetics).
3.1.5. Data Analysis and Statistical Approach
3.2. Results of Study 1
3.2.1. Adherence, Study 1
3.2.2. User Experience, Study 1
4. Study 2: Adherence and User Experience of Sonically Enhanced Sounds
4.1. Methods
4.1.1. Participants
4.1.2. Sound Conditions
4.1.3. Setup
4.2. Results, Study 2
4.2.1. Adherence in Study 2
4.2.2. User Experience in Study 2
5. Discussion
5.1. Research Questions
5.1.1. RQ1: To What Extent Can Runners Follow Auditory Breathing Instructions While Running?
5.1.2. RQ2: How Does Auditory Information Richness Affect Adherence to Breathing Guidance?
5.2. RQ3: What Is the Impact of Various Auditory Breathing Instructions on Runners’ User Experience?
5.3. Limitations and Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BR | Breathing rate (bpm) |
BRV | Breathing rate variability (%) |
HCI | Human–computer interaction |
HR | Heart rate (bpm) |
HX | Hexoskin smart shirt |
LRC | Locomotor–respiratory coupling |
MAPE | Mean absolute percent error |
MRPE | Mean relative percent error |
tB | Breath cycle time (from inspiration to next inspiration) (s) |
tE | Exhale time (s) |
tI | Inhale time (s) |
Appendix A. Pre-Questionnaire Items (German)
- Sport biography
- Run experience
- Musical experience
- Breathing experience
Appendix A.1. Sport Biography
Appendix A.2. Run Experience
Appendix A.3. Musical Experience
Appendix A.4. Breathing Experience
Appendix B. Semi-Structured Interview Guide (English)
- Distraction from what was going on around?
- Speed breathing ok? Walking on the treadmill disturbing?
- Volume ok? Sound from outside?
- Enjoyable running with the sounds?
- Reasons not to adhere? Distracted, swallowing, towel, thoughts...
- Easy to do, also unfocused/multitasking possible, e.g., looking around, etc.?
- Please rank the sounds to your preference.
- Which sound was easiest to follow?
- Which hardest?
- Strategies to follow?
- Couple breath to steps?
- How did you try to time br on the sound?
- “sound nervt mich” question > how interpreted?
- Meaning of erschopft for you?
- Nutzlich?
- What normal running routines do you have?
- Do any special breathing while running usually?
- Music? Podcast?
- What are factors that make your run enjoyable?
- What makes your runs less enjoyable? (seitenstiche, etc.)
- Can you imagine using it during running for yourself >would it fit your personal routines?
References
- Hulteen, R.M.; Smith, J.J.; Morgan, P.J.; Barnett, L.M.; Hallal, P.C.; Colyvas, K.; Lubans, D.R. Global participation in sport and leisure-time physical activities: A systematic review and meta-analysis. Prev. Med. 2017, 95, 14–25. [Google Scholar] [CrossRef]
- Strava. Year in Sport 2020. Available online: https://blog.strava.com/press/yis2020/ (accessed on 1 February 2024).
- Hockey, J.; Allen-Collinson, J. Chapter Digging in: The sociological phenomenology of ‘doing endurance’ in distance-running. In Endurance Running: A Socio-Cultural Examination; Routledge: London, UK, 2016; pp. 227–242. [Google Scholar]
- Nicolò, A.; Massaroni, C.; Passfield, L. Respiratory Frequency during Exercise: The Neglected Physiological Measure. Front. Physiol. 2017, 8, 922. [Google Scholar] [CrossRef]
- Harbour, E.; Stöggl, T.; Schwameder, H.; Finkenzeller, T. Breath Tools: A Synthesis of Evidence-Based Breathing Strategies to Enhance Human Running. Front. Physiol. 2022, 13, 813243. [Google Scholar] [CrossRef]
- Matsumoto, T.; Matsunaga, A.; Hara, M.; Saitoh, M.; Yonezawa, R.; Ishii, A.; Kutsuna, T.; Yamamoto, K.; Masuda, T. Effects of the breathing mode characterized by prolonged expiration on respiratory and cardiovascular responses and autonomic nervous activity during the exercise. Jpn. J. Phys. Fit. Sport. Med. 2008, 315–326. [Google Scholar]
- Matsumoto, T.; Masuda, T.; Hotta, K.; Shimizu, R.; Ishii, A.; Kutsuna, T.; Yamamoto, K.; Hara, M.; Takahira, N.; Matsunaga, A. Effects of prolonged expiration breathing on cardiopulmonary responses during incremental exercise. Respir. Physiol. Neurobiol. 2011, 178, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Morton, D.; Callister, R. Exercise-related transient abdominal pain (ETAP). Sport. Med. 2015, 45, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Archiza, B.; Leahy, M.G.; Kipp, S.; Sheel, A.W. An integrative approach to the pulmonary physiology of exercise: When does biological sex matter? Eur. J. Appl. Physiol. 2021, 121, 2377–2391. [Google Scholar] [CrossRef]
- Menheere, D.; Janssen, M.; Funk, M.; van der Spek, E.; Lallemand, C.; Vos, S. Runner’s Perceptions of Reasons to Quit Running: Influence of Gender, Age and Running-Related Characteristics. Int. J. Environ. Res. Public Health 2020, 17, 6046. [Google Scholar] [CrossRef]
- Fokkema, T.; Hartgens, F.; Kluitenberg, B.; Verhagen, E.; Backx, F.J.; van der Worp, H.; Bierma-Zeinstra, S.M.; Koes, B.W.; van Middelkoop, M. Reasons and predictors of discontinuation of running after a running program for novice runners. J. Sci. Med. Sport 2019, 22, 106–111. [Google Scholar] [CrossRef]
- Godbout, A.; Boyd, J.E. Audio Visual Synchronization of Rhythm. In Proceedings of the 2015 International Conference on 3D Vision, Lyon, France, 19–22 October 2015; pp. 589–597. [Google Scholar]
- Van Rheden, V.; Harbour, E.; Finkenzeller, T.; Burr, L.A.; Meschtscherjakov, A.; Tscheligi, M. Run, Beep, Breathe: Exploring the Effects on Adherence and User Experience of 5 Breathing Instruction Sounds While Running. In Proceedings of the Audio Mostly 2021 (AM ’21), Virtual/Trento, Italy, 1–3 September 2021; pp. 16–23. [Google Scholar] [CrossRef]
- Jensen, M.M.; Mueller, F.F. Running with Technology: Where Are We Heading? In Proceedings of the 26th Australian Computer-Human Interaction Conference on Designing Futures: The Future of Design (OzCHI ’14), New York, NY, USA, 2–5 December 2014; pp. 527–530. [Google Scholar] [CrossRef]
- Elvitigala, D.; Karahanoğlu, A.; Matviienko, A.; Vidal, L.; Postma, D.; Jones, M.; Montoya, M.; Harrison, D.; Elbæk, L.; Daiber, F.; et al. Grand Challenges in SportsHCI. In Proceedings of the CHI Conference on Human Factors in Computing Systems (CHI’24), Boston, MA, USA, 24–28 April 1994; p. 20. [Google Scholar] [CrossRef]
- Max, E.J.; Samendinger, S.; Winn, B.; Kerr, N.L.; Pfeiffer, K.A.; Feltz, D.L. Enhancing aerobic exercise with a novel virtual exercise buddy based on the Köhler effect. Games Health J. 2016, 5, 252–257. [Google Scholar] [CrossRef]
- Michael, A.; Lutteroth, C. Race yourselves: A longitudinal exploration of self-competition between past, present, and future performances in a vr exergame. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020. [Google Scholar]
- Feltz, D.; Forlenza, S.; Winn, B.; Kerr, N. Cyber buddy is better than no buddy: A test of the Köhler motivation effect in exergames. Games Health J. 2014, 3, 98–105. [Google Scholar] [CrossRef]
- Forlenza, S.; Kerr, N.; Irwin, B.; Feltz, D. Is my exercise partner similar enough? Partner characteristics as a moderator of the Köhler effect in exergames. Games Health J. 2012, 1, 436–441. [Google Scholar] [CrossRef]
- Ioannou, C.; Archard, P.; O’neill, E.; Lutteroth, C. Virtual performance augmentation in an immersive jump & run exergame. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019. [Google Scholar]
- Nunes, M.; Nedel, L.; Roesler, V. Motivating people to perform better in exergames: Competition in virtual environments. In Proceedings of the 29th Annual ACM Symposium on Applied Computing, Chicago, IL, USA, 8–10 April 2024; pp. 970–975. [Google Scholar]
- Burr, L.; Betzlbacher, N.; Meschtscherjakov, A.; Tscheligi, M. Breathing Training on the Run: Exploring Users Perception on a Gamified Breathing Training Application During Treadmill Running. In Proceedings of the International Conference on Persuasive Technology, Doha, Qatar, 29–31 March 2022; pp. 58–74. [Google Scholar]
- Hamada, T.; Okada, M.; Kitazaki, M. Jogging with a virtual runner using a see-through HMD. In Proceedings of the 2017 IEEE Virtual Reality (VR), Los Angeles, CA, USA, 18–22 March 2017; pp. 445–446. [Google Scholar] [CrossRef]
- Tan, C.T.; Byrney, R.; Luiz, S.; Liux, W.; Mueller, F. JoggAR: A mixed-modality AR approach for technology-augmented jogging. In Proceedings of the SIGGRAPH Asia 2015 Mobile Graphics and Interactive Applications (SA 2015), Kobe, Japan, 2–6 November 2015. [Google Scholar]
- Zarin, R. Faster. Stronger. Better? Designing for Enhanced Engagement of Extreme Sports. Ph.D. Thesis, Umeå Universitet, Umeå, Sweden, 2017. [Google Scholar]
- Cooper, D. Recon Jet Review: Expensive Fitness Glasses With Potential to Be Better. Engadget. 2015. Available online: https://www.engadget.com/2015-07-17-recon-jet-review.html (accessed on 1 February 2024).
- Janssen, M.; Walravens, R.; Thibaut, E.; Scheerder, J.; Brombacher, A.; Vos, S. Understanding Different Types of Recreational Runners and How They Use Running-Related Technology. Int. J. Environ. Res. Public Health 2020, 17, 2276. [Google Scholar] [CrossRef]
- Mauriello, M.; Gubbels, M.; Froehlich, J. Social fabric fitness: The design and evaluation of wearable E-textile displays to support group running. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Toronto, ON, Canada, 26 April–1 May 2014; pp. 2833–2842. [Google Scholar]
- Colley, A.; Woźniak, P.; Kiss, F.; Häkkilä, J. Shoe Integrated Displays: A Prototype Sports Shoe Display and Design Space. In Proceedings of the 10th Nordic Conference on Human-Computer Interaction, Oslo, Norway, 29 September–3 October 2018; pp. 39–46. [Google Scholar] [CrossRef]
- Seuter, M.; Pfeiffer, M.; Bauer, G.; Zentgraf, K.; Kray, C. Running with technology: Evaluating the impact of interacting with wearable devices on running movement. In Proceedings of the ACM on Interactive, Mobile, Wearable And Ubiquitous Technologies, Maui, HI, USA, 11–15 September 2017. [Google Scholar]
- Nylander, S.; Jacobsson, M.; Tholander, J. Runright: Real-Time Visual and Audio Feedback on Running. In Proceedings of the CHI ’14 Extended Abstracts on Human Factors in Computing Systems, Toronto, ON, Canada, 26 April 2014; pp. 583–586. [Google Scholar] [CrossRef]
- Greinacher, R.; Kojić, T.; Meier, L.; Parameshappa, R.; Möller, S.; Voigt-Antons, J. Impact of tactile and visual feedback on breathing rhythm and user experience in VR exergaming. In Proceedings of the 2020 Twelfth International Conference on Quality of Multimedia Experience (QOMEX), Athlone, Ireland, 26–28 May 2020. [Google Scholar]
- Valsted, F.M.; Nielsen, C.V.H.; Jensen, J.Q.; Sonne, T.; Jensen, M.M. Strive: Exploring Assistive Haptic Feedback on the Run. In Proceedings of the 29th Australian Conference on Computer-Human Interaction, Brisbane, Australia, 28 November–1 December 2017; pp. 275–284. [Google Scholar] [CrossRef]
- Harbour, E.; Van Rheden, V.; Schwameder, H.; Finkenzeller, T. Step-adaptive sound guidance enhances locomotor-respiratory coupling in novice female runners: A proof-of-concept study. Front. Sport. Act. Living 2023, 5, 1112663. [Google Scholar] [CrossRef]
- Hassan, M.; Daiber, F.; Wiehr, F.; Kosmalla, F.; Krüger, A. FootStriker: An EMS-Based Foot Strike Assistant for Running. Proc. Acm Interact. Mob. Wearable Ubiquitous Technol. 2017, 1, 2. [Google Scholar] [CrossRef]
- Yu, B.; Feijs, L.; Funk, M.; Hu, J. Breathe with touch: A tactile interface for breathing assistance system. In Proceedings of the Human-Computer Interaction—INTERACT 2015: 15th IFIP TC 13 International Conference, Bamberg, Germany, 14–18 September 2015; pp. 45–52. [Google Scholar]
- Karpashevich, P.; Sanches, P.; Garrett, R.; Luft, Y.; Cotton, K.; Tsaknaki, V.; Höök, K. Touching Our Breathing through Shape-Change: Monster, Organic Other, or Twisted Mirror. ACM Trans. Comput.-Hum. Interact. 2022, 29, 22. [Google Scholar] [CrossRef]
- Van Rheden, V.; Grah, T.; Meschtscherjakov, A. Sonification Approaches in Sports in the Past Decade: A Literature Review. In Proceedings of the 15th International Conference on Audio Mostly (AM ’20), Graz, Austria, 15–17 September 2020; pp. 199–205. [Google Scholar] [CrossRef]
- Schaffert, N.; Janzen, T.B.; Mattes, K.; Thaut, M.H. A Review on the Relationship Between Sound and Movement in Sports and Rehabilitation. Front. Psychol. 2019, 10, 244. [Google Scholar] [CrossRef] [PubMed]
- Karageorghis, C.I.; Priest, D.L. Music in the exercise domain: A review and synthesis (Part I). Int. Rev. Sport Exerc. Psychol. 2012, 5, 44–66. [Google Scholar] [CrossRef]
- Zwinderman, M.; Zavialova, T.; Tetteroo, D.; Lehouck, P. Oh music, where art thou? In Proceedings of the 13th International Conference on Human Computer Interaction with Mobile Devices and Services, Stockholm, Sweden, 30 August–2 September 2011; pp. 533–538. [Google Scholar]
- Witkowski, E. Running from zombies. In Proceedings of the 9th Australasian Conference on Interactive Entertainment: Matters of Life and Death, Melbourne, VIC, Australia, 30 September–1 October 2013; pp. 1–8. [Google Scholar]
- Mueller, F.F.; Vetere, F.; Gibbs, M.R.; Edge, D.; Agamanolis, S.; Sheridan, J.G.; Heer, J. Balancing exertion experiences. In Proceedings of the Conference on Human Factors in Computing Systems, Austin, TX, USA, 5–10 May 2012; pp. 1853–1862. [Google Scholar]
- Grond, F.; Berger, J. Parameter mapping sonification. In The Sonification Handbook; Logos Publishing House: Berlin, Germany, 2011. [Google Scholar]
- Cesarini, D.; Ungerechts, B.E.; Hermann, T. Swimmers in the loop: Sensing moving water masses for an auditory biofeedback system. In Proceedings of the 2015 IEEE Sensors Applications Symposium (SAS), Zadar, Croatia, 13–15 April 2015; pp. 1–6. [Google Scholar]
- Dubus, G. Evaluation of four models for the sonification of elite rowing. J. Multimodal User Interfaces 2012, 5, 143–156. [Google Scholar] [CrossRef]
- Schaffert, N.; Mattes, K.; Effenberg, A.O. Examining effects of acoustic feedback on perception and modification of movement patterns in on-water rowing training. In Proceedings of the 6th Audio Mostly Conference: A Conference on Interaction with Sound, Coimbra, Portugal, 7–9 September 2011; pp. 122–129. [Google Scholar]
- Hermann, T.; Ungerechts, B.; Toussaint, H.; Grote, M. Sonification of pressure changes in swimming for analysis and optimization. In Proceedings of the 18th International Conference on Auditory Display, Atlanta, GA, USA, 18–21 June 2012. [Google Scholar]
- Yang, J.; Hunt, A. Real-time sonification of biceps curl exercise using muscular activity and kinematics. In Proceedings of the 21st International Conference on Auditory Display, Graz, Austria, 8–10 July 2015. [Google Scholar]
- Godbout, A.; Thornton, C.; Boyd, J.E. Mobile sonification for athletes: A case study in commercialization of sonification. In Proceedings of the 20th International Conference on Auditory Display (ICAD-2014), New York, NY, USA, 22–25 June 2014. [Google Scholar]
- Hoffmann, C.P.; Bardy, B.G. Dynamics of the locomotor–respiratory coupling at different frequencies. Exp. Brain Res. 2015, 233, 1551–1561. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.B.; Karageorghis, C.I.; Romer, L.M.; Bishop, D.T. Psychophysiological effects of synchronous versus asynchronous music during cycling. Am. Coll. Sport. Med. 2014, 46, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Nijs, A.; Roerdink, M.; Beek, P.J. Cadence Modulation in Walking and Running: Pacing Steps or Strides? Brain Sci. 2020, 10, 273. [Google Scholar] [CrossRef]
- Styns, F.; van Noorden, L.; Moelants, D.; Leman, M. Walking on music. Hum. Mov. Sci. 2007, 26, 769–785. [Google Scholar] [CrossRef]
- Buhmann, J.; Moens, B.; Lorenzoni, V.; Leman, M. Shifting the Musical Beat to Influence Running Cadence. In Proceedings of the 25th Anniversary Conference of the European Society for the Cognitive Sciences of Music (ESCOM 2017), Ghent, Belgium, 31 July–4 August 2017. [Google Scholar]
- Hockman, J.; Wanderley, M.M.; Fujinaga, I. Real-Time Phase Vocoder Manipulation by Runner’s Pace. In Proceedings of the 9th International Conference on New Interfaces for Musical Expression (NIME 2009), Pittsburgh, PA, USA, 3–6 June 2009; pp. 90–93. [Google Scholar]
- Van Dyck, E.; Buhmann, J.; Lorenzoni, V. Instructed versus spontaneous entrainment of running cadence to music tempo. Ann. N. Y. Acad. Sci. 2021, 1489, 91. [Google Scholar] [CrossRef]
- Fortmann, J.; Pielot, M.; Mittelsdorf, M.; Büscher, M.; Trienen, S.; Boll, S. PaceGuard: Improving running cadence by real-time auditory feedback. In Proceedings of the 14th International Conference on Human-Computer Interaction with Mobile Devices and Services Companion, San Francisco, CA, USA, 21–24 September 2012; pp. 5–10. [Google Scholar] [CrossRef]
- Oliver, N.; Flores-Mangas, F. MPTrain: A mobile, music and physiology-based personal trainer. In Proceedings of the 8th Conference on Human-Computer Interaction with Mobile Devices and Services, Helsinki, Finland, 12–15 September 2006; pp. 21–28. [Google Scholar] [CrossRef]
- Byblow, W.D.; Carson, R.G.; Goodman, D. Expressions of asymmetries and anchoring in bimanual coordination. Hum. Mov. Sci. 1994, 13, 3–28. [Google Scholar] [CrossRef]
- Fink, P.W.; Foo, P.; Jirsa, V.K.; Kelso, J.S. Local and global stabilization of coordination by sensory information. Exp. Brain Res. 2000, 134, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Haas, F.; Distenfeld, S.; Axen, K. Effects of perceived musical rhythm on respiratory pattern. J. Appl. Physiol. 1986, 61, 1185–1191. [Google Scholar] [CrossRef]
- Patibanda, R.; Mueller, F.; Leskovsek, M.; Duckworth, J. Life Tree. In Proceedings of the Annual Symposium on Computer-Human Interaction in Play, Amsterdam, The Netherlands, 15–18 October 2017. [Google Scholar] [CrossRef]
- Shamekhi, A.; Bickmore, T. Breathe Deep: A Breath-Sensitive Interactive Meditation Coach. In Proceedings of the 12th EAI International Conference on Pervasive Computing Technologies for Healthcare, New York, NY, USA, 21–24 May 2018; pp. 108–117. [Google Scholar] [CrossRef]
- Ghandeharioun, A.; Picard, R. BrightBeat: Effortlessly Influencing Breathing for Cultivating Calmness and Focus. In Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, Denver, CO, USA, 6–1 May 2017; pp. 1624–1631. [Google Scholar] [CrossRef]
- Morimoto, Y.; van Geer, B. Breathing space: Biofeedback sonification for meditation in autonomous vehicles. In Proceedings of the 25th International Conference on Auditory Display (ICAD 2019), Newcastle, UK, 23–27 June 2019. [Google Scholar]
- Zafar, M.A.; Ahmed, B.; Rihawi, R.A.; Gutierrez-Osuna, R. Gaming Away Stress: Using Biofeedback Games to Learn Paced Breathing. IEEE Trans. Affect. Comput. 2020, 11, 519–531. [Google Scholar] [CrossRef]
- Harris, J.; Vance, S.; Fernandes, O.; Parnandi, A.; Gutierrez-Osuna, R. Sonic respiration: Controlling respiration rate through auditory biofeedback. In Proceedings of the CHI’14 Extended Abstracts on Human Factors in Computing Systems, Toronton, ON, Canada, 26 April–1 May 2014; pp. 2383–2388. [Google Scholar] [CrossRef]
- Gavish, B. Device-guided breathing in the home setting: Technology, performance and clinical outcomes. Biol. Psychol. 2010, 84, 150–156. [Google Scholar] [CrossRef]
- Sharma, M.; Frishman, W.; Gandhi, K. RESPeRATE: Nonpharmacological treatment of hypertension. Cardiol. Rev. 2011, 19, 47–51. [Google Scholar] [CrossRef]
- Cernes, R.; Zimlichman, R. RESPeRATE: The role of paced breathing in hypertension treatment. J. Am. Soc. Hypertens. 2015, 9, 38–47. [Google Scholar] [CrossRef]
- Hoffmann, C.; Villard, S.; Bardy, B. Stabilizing the locomotor-respiratory coupling using a metronome to save energy. In Proceedings of the International Conference SKILLS 2011, Paris, France, 15–16 December 2011; p. 00036. [Google Scholar]
- Bardy, B.; Hoffmann, C.; Moens, B.; Leman, M.; Dalla, B.S. Sound-induced stabilization of breathing and moving. Ann. New York Acad. Sci. 2015, 1337, 94–100. [Google Scholar] [CrossRef]
- Hoffmann, C.P.; Torregrosa, G.; Bardy, B.G. Sound stabilizes locomotor-respiratory coupling and reduces energy cost. PLoS ONE 2012, 7, e45206. [Google Scholar] [CrossRef]
- Van Rheden, V.; Harbour, E.; Finkenzeller, T.; Meschtscherjakov, A. Breath Tools: Exploring the Effects on Adherence and User Experience of 4 Sounds Assisting Runners with Coupling Breath to Steps. In Proceedings of the CHI’23: CHI Conference on Human Factors in Computing Systems, Hamburg, Germany, 23–28 April 2023. [Google Scholar] [CrossRef]
- Salazar-Martínez, E.; de Matos, T.R.; Arrans, P.; Santalla, A.; Orellana, J.N. Ventilatory efficiency response is unaffected by fitness level, ergometer type, age or body mass index in male athletes. Biol. Sport 2018, 35, 393. [Google Scholar] [CrossRef]
- Borg, G. Borg’s Perceived Exertion and Pain Scales; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Woltmann, M.L.; Foster, C.; Porcari, J.P.; Camic, C.L.; Dodge, C.; Haible, S.; Mikat, R.P. Evidence that the talk test can be used to regulate exercise intensity. J. Strength Cond. Res. 2015, 29, 1248–1254. [Google Scholar] [CrossRef]
- Minge, M.; Riedel, L. meCUE-Ein modularer fragebogen zur erfassung des nutzungserlebens. In Mensch & Computer 2013: Interaktive Vielfalt; Oldenbourg: Berlin, Germany, 2013. [Google Scholar]
- Harbour, E.; Lasshofer, M.; Genitrini, M.; Schwameder, H. Enhanced breathing pattern detection during running using wearable sensors. Sensors 2021, 21, 5606. [Google Scholar] [CrossRef]
- Schaal, N.K.; Bauer, A.K.R.; Müllensiefen, D. Der Gold-MSI: Replikation und validierung eines fragebogeninstrumentes zur messung musikalischer erfahrenheit anhand einer deutschen stichprobe. Music. Sci. 2014, 18, 423–447. [Google Scholar] [CrossRef]
Participant Code | Age (Years) | Running Frequency | Run Duration (min) | Distance (km) | Breathing Technique While Running | Other Breathing Techniques | Music |
---|---|---|---|---|---|---|---|
S1P01 | 28 | >2 times/week | 45 | 7 | No | No | No |
S1P02 | 26 | <1 time/month | 45 | 8 | No | Slow breathing | No |
S1P03 | 32 | 1–2 times/week | 60 | 8–10 | No | Yoga | No |
S1P04 | 31 | 1–2 times/week | 45 | 6–10 | No | No | Yes |
S1P05 | 29 | 1–2 times/week | 35 | 7 | No | No | Yes |
S1P06 | 40 | 1–2 times/week | 45 | 7 | No | No | No |
S1P07 | 26 | 1–2 times/week | 45 | 8 | No | No | No |
S1P08 | 28 | 1–2 times/month | 30 | 5 | No | No | No |
S1P09 | 26 | 1–2 times/month | 40 | 5 | No | No | Yes |
S1P10 | 26 | 1–2 times/week | 60 | 10 | No | No | Yes |
S1P11 | 27 | 1–2 times/month | 45 | 5 | No | No | Yes |
Condition | Breathing Rate (bpm) | Breathing Rate Variability (%) | MAPE (%) | MRPE (%) | # Attach/ Participant | Percent Time Attached (%) | # Detach/ Participant | Percent Time Detached (%) |
---|---|---|---|---|---|---|---|---|
Inhalation Metr. | 27.26 ± 4.33 | 8.64 ± 2.81 | 1.38 ± 1.21 | 0.56 ± 1.79 | 3.64 ± 1.63 | 81.09 ± 11.66 | 0.55 ± 0.69 | 1.96 ± 2.56 |
Exhalation Metr. | 27.25 ± 4.24 | 8.08 ± 2.70 | 0.56 ± 0.38 | 0.55 ± 0.39 | 3.00 ± 1.73 | 86.53 ± 14.19 | 0.27 ± 0.90 | 1.15 ± 3.81 |
Full Breath Metr. | 27.33 ± 4.31 | 9.49 ± 2.55 | 1.51 ± 1.63 | 0.84 ± 2.09 | 2.36 ± 1.36 | 88.17 ± 7.41 | 0.91 ± 0.94 | 3.25 ± 3.15 |
Siren | 27.44 ± 4.13 | 9.03 ± 2.52 | 1.73 ± 1.66 | 1.33 ± 2.02 | 2.45 ± 1.44 | 89.69 ± 8.88 | 0.55 ± 0.69 | 1.84 ± 2.37 |
Accordion | 27.23 ± 4.23 | 8.77 ± 3.56 | 0.62 ± 0.38 | 0.51 ± 0.52 | 2.64 ± 1.12 | 88.58 ± 6.40 | 0.73 ± 1.10 | 2.80 ± 4.27 |
Sound Condition | Effectiveness | Efficiency | Intention to Use | Negative Emotion | Positive Emotion | Aesthetics |
---|---|---|---|---|---|---|
Inhalation Metronome | 5.36 ± 2.42 | 5.27 ± 1.85 | 2.18 ± 2.52 | 4.36 ± 2.84 | 3.73 ± 2.49 | 4.36 ± 2.38 |
Exhalation Metronome | 5.00 ± 2.72 | 6.00 ± 2.10 | 2.55 ± 3.27 | 4.55 ± 3.27 | 2.82 ± 2.18 | 4.18 ± 2.14 |
Full Breath Metronome | 7.09 ± 2.17 | 6.82 ± 1.72 | 3.09 ± 3.08 | 3.55 ± 2.58 | 4.18 ± 2.18 | 5.18 ± 2.18 |
Siren | 7.00 ± 2.28 | 6.55 ± 2.54 | 2.36 ± 2.38 | 4.82 ± 2.75 | 3.82 ± 1.94 | 3.91 ± 2.66 |
Accordion | 7.55 ± 1.86 | 6.91 ± 2.59 | 4.18 ± 2.96 | 3.91 ± 3.11 | 5.27 ± 2.72 | 5.91 ± 3.05 |
Participant Code | Age (Years) | Running Frequency | Run Duration (min) | Run Distance (km) | Breathing Technique While Running | Other Breathing Techniques | Music |
---|---|---|---|---|---|---|---|
S2P01 | 29 | 1–2/month | 35 | 6 | LRC | Yes | No |
S2P02 | 24 | >2/week | 30 | 5 | No | No | Yes |
S2P03 | 24 | 1–2/month | 35 | 5 | No | No | Yes |
S2P04 | 24 | 1–2/month | 40 | 7 | Deep breathing | Belly breathing | No |
S2P05 | 22 | <1/month | 30 | 4 | No | No | Yes |
S2P06 | 21 | <1/month | 25 | 4 | No | No | Yes |
S2P07 | 21 | 1–2/month | 30 | 5 | No | No | No |
S2P08 | 21 | <1/month | 50 | 7–8 | No | No | Yes |
S2P09 | 23 | 1–2/week | 35 | 5 | No | No | Yes |
S2P10 | 30 | 1–2/month | 40 | 5 | No | No | No |
S2P11 | 28 | 1–2/month | 40 | 5 | LRC | Belly breathing | No |
Sound Condition | Breathing Rate (bpm) | Breathing Rate Variability (%) | MAPE (%) | MRPE (%) | # Attach/ Participant | Percent Time Attached (%) | # Detach/ Participant | Percent Time Detached (%) |
---|---|---|---|---|---|---|---|---|
No Sound | 33.50 ± 6.98 | 16.51 ± 5.18 | ||||||
Full Breath Metronome | 32.22 ± 5.92 | 7.93 ± 2.85 | 1.36 ± 1.79 | 1.79 ± 0.28 | 2.30 ± 1.34 | 90.71 ± 4.77 | 0.90 ± 0.74 | 2.76 ± 2.26 |
Rock Sound | 32.17 ± 6.08 | 8.64 ± 3.91 | 0.85 ± 1.52 | 1.52 ± 0.57 | 3.00 ± 1.70 | 83.95 ± 10.61 | 1.70 ± 1.64 | 5.13 ± 4.47 |
Breath Sound | 32.16 ± 6.05 | 8.50 ± 3.20 | 1.12 ± 2.06 | 2.06 ± 0.57 | 1.90 ± 1.66 | 88.39 ± 9.07 | 0.80 ± 0.92 | 2.32 ± 2.88 |
Harp Sound | 32.10 ± 8.27 | 11.72 ± 6.18 | 1.50 ± 2.22 | 2.22 ± 1.00 | 2.45 ± 1.29 | 81.57 ± 22.18 | 1.64 ± 1.91 | 4.52 ± 4.04 |
Sound Condition | Effectiveness | Efficiency | Intention to Use | Negative Emotion | Positive Emotion | Aesthetics |
---|---|---|---|---|---|---|
Accordion | 7.18 ± 3.25 | 5.73 ± 3.61 | 2.82 ± 3.40 | 5.00 ± 3.69 | 2.82 ± 2.79 | 2.64 ± 2.62 |
Rock Sound | 7.91 ± 2.59 | 5.91 ± 3.24 | 2.73 ± 3.17 | 5.09 ± 3.81 | 3.73 ± 3.23 | 4.09 ± 3.39 |
Breath Sound | 8.91 ± 1.92 | 7.55 ± 2.21 | 3.45 ± 2.58 | 2.55 ± 1.51 | 3.73 ± 2.33 | 4.36 ± 2.06 |
Harp Sound | 6.82 ± 2.89 | 5.36 ± 4.08 | 3.00 ± 3.44 | 4.45 ± 3.78 | 3.64 ± 3.07 | 3.91 ± 2.88 |
Sound Condition | Effectiveness | Efficiency | Intention to Use | Negative Emotion | Positive Emotion | Aesthetics | |
---|---|---|---|---|---|---|---|
Study 1 | Accordion | 7.55 ± 1.86 | 6.91 ± 2.59 | 4.18 ± 2.96 | 3.91 ± 3.11 | 5.27 ± 2.72 | 5.91 ± 3.05 |
Study 2 | Accordion | 7.18 ± 3.25 | 5.73 ± 3.61 | 2.82 ± 3.40 | 5.00 ± 3.69 | 2.82 ± 2.79 | 2.64 ± 2.62 |
Rock Sound | 7.91 ± 2.59 | 5.91 ± 3.24 | 2.73 ± 3.17 | 5.09 ± 3.81 | 3.73 ± 3.23 | 4.09 ± 3.39 | |
Breath Sound | 8.91 ± 1.92 | 7.55 ± 2.21 | 3.45 ± 2.58 | 2.55 ± 1.51 | 3.73 ± 2.33 | 4.36 ± 2.06 | |
Harp Sound | 6.82 ± 2.89 | 5.36 ± 4.08 | 3.00 ± 3.44 | 4.45 ± 3.78 | 3.64 ± 3.07 | 3.91 ± 2.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Rheden, V.; Harbour, E.; Finkenzeller, T.; Meschtscherjakov, A. Into the Rhythm: Evaluating Breathing Instruction Sound Experiences on the Run with Novice Female Runners. Multimodal Technol. Interact. 2024, 8, 25. https://doi.org/10.3390/mti8040025
van Rheden V, Harbour E, Finkenzeller T, Meschtscherjakov A. Into the Rhythm: Evaluating Breathing Instruction Sound Experiences on the Run with Novice Female Runners. Multimodal Technologies and Interaction. 2024; 8(4):25. https://doi.org/10.3390/mti8040025
Chicago/Turabian Stylevan Rheden, Vincent, Eric Harbour, Thomas Finkenzeller, and Alexander Meschtscherjakov. 2024. "Into the Rhythm: Evaluating Breathing Instruction Sound Experiences on the Run with Novice Female Runners" Multimodal Technologies and Interaction 8, no. 4: 25. https://doi.org/10.3390/mti8040025
APA Stylevan Rheden, V., Harbour, E., Finkenzeller, T., & Meschtscherjakov, A. (2024). Into the Rhythm: Evaluating Breathing Instruction Sound Experiences on the Run with Novice Female Runners. Multimodal Technologies and Interaction, 8(4), 25. https://doi.org/10.3390/mti8040025