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Abstract: This work examines swipe-based interactions on smart devices, like smartphones and
smartwatches, that detect vibration signals through defined swipe surfaces. We investigate how
these devices, held in users’ hands or worn on their wrists, process vibration signals from swipe
interactions and ambient noise using a support vector machine (SVM). The work details the signal
processing workflow involving filters, sliding windows, feature vectors, SVM kernels, and ambient
noise management. It includes how we separate the vibration signal from a potential swipe surface
and ambient noise. We explore both software and human factors influencing the signals: the former
includes the computational techniques mentioned, while the latter encompasses swipe orientation,
contact, and movement. Our findings show that the SVM classifies swipe surface signals with an
accuracy of 69.61% when both devices are used, 97.59% with only the smartphone, and 99.79%
with only the smartwatch. However, the classification accuracy drops to about 50% in field user
studies simulating real-world conditions such as phone calls, typing, walking, and other undirected
movements throughout the day. The decline in performance under these conditions suggests chal-
lenges in ambient noise discrimination, which this work discusses, along with potential strategies for
improvement in future research.

Keywords: mobile device; smartphone; smartwatch; vibration signal; design factors; support vector
machine (SVM); feature vector

1. Introduction

Today, interactions on screens are common on mobile devices such as smartphones
and smartwatches. Kratz et al. [1] observed a paradigm shift in mobile device research,
transitioning from on-screen interactions to more advanced forms of interaction. This
transition is facilitated by the integration of accelerometers, gyroscopes, and depth-camera
technologies in devices like smartphones and smartwatches, enabling novel interaction
possibilities beyond traditional hand–eye interactions [1].

An interaction challenge on mobile devices arises in scenarios such as cooking, where
touchscreen interaction is hindered by wet hands. Another example pertains to museum vis-
its, where users can gain additional information by swiping their fingers over surfaces, such
as a conch shell, to obtain insights about the object and its associated sea life Han et al. [2].
While accessibility tools like screen readers, Braille terminals, and talking browsers are
effective for text-based content, they have limitations when it comes to handling visual
content [3]. Moreover, Harrison et al. [4] discussed the use of Braille as a human-readable
tactile encoding that can be interpreted by mobile devices. Swiping the index finger across
the Braille can display the corresponding content on the screen of the mobile device. There-
fore, we want to take a closer look at such swipe gestures. See Appendix A for a discussion
of the term swipe gesture.

Swipe gestures are performed by users while holding their smartphones and swiping
across different swipe surfaces. Swipe gestures are used to execute an input command
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on mobile devices [2,4,5]. Swipe surfaces can be grooves, notches, natural textures, or
artificially created textures [2,4].

The underlying concept is analogous to a record player and a vinyl long play (LP).
The LP contains the encoded information and the needle picks up the information as the
LP rotates on the turntable. Therefore, Harrison et al. [4] and Han et al. [2] propose solid
surfaces with different bump patterns for capturing these vibration signals. During a swipe
gesture, the mobile device experiences slight vibrations. The built-in accelerometer in the
device detects these minute vibrations and translates them into digital signals, which serve
as input commands for the mobile device. The built-in accelerometer of mobile devices
generates samples. These samples are used for calculations. These calculations, along with
or without the raw samples, can be organized into a vector at regular intervals. Such a
vector is commonly referred to as a feature vector [6–9], vector [10], or features [2,11–14]. We
use in this work the term feature vector, represented as Υ⃗, composed of l⃗Υ feature elements{

Υ1, Υ2, . . . , Υl⃗Υ

}
. Then, the feature vector Υ⃗ is sent to a support vector machine (SVM)

that classifies the different swipe surfaces. An SVM is a widely used machine learning (ML)
algorithm that learns from examples to infer desired input-output behavior [15] without
requiring explicit programming. By classifying the feature vector Υ⃗, the SVM determines
the corresponding content to be displayed on the mobile device, such as sending a message
or performing touchscreen interactions. In this work, we want to expand on the findings
of Harrison et al. [4] and Han et al. [2] by utilizing SVM while also other ML approaches,
such as neural networks, would be possible for this work.

In this section, we explained how to use gestures as input on mobile devices using
different swipe surfaces. We described swipe surface detection on mobile devices using SVM
while users are wearing them and performing a swipe gesture over these solid surfaces with
bump patterns. With these insights, we detail the research questions in the next section.

2. Research Question

Based on the ideas proposed by Harrison et al. [4] and Han et al. [2], we formulate the
following research question for this work:

«What factors affect the efficiency of vibration-based input methods on mobile de-
vices when users swipe with their index finger under different swipe movement
behaviors over textured surfaces while wearing the devices?»

In this work, we investigate the behavior of the feature vector Υ⃗ when using SVMs
to detect swipe surfaces. The factors are divided into human-determined and software-
determined aspects [2]. The human-determined aspects relate to how users’ swipes access
different swipe surfaces. The software-determined aspects relate to how the feature vector
is constructed, how the SVM is trained, and how it can classify the different swipe surfaces.

Unlike Han et al. [2], who used a Bosch BNO055 vibration sensor, we used the built-in
accelerometers in smartphones and smartwatches. Alternatively, an acoustic sensor can
be employed to detect vibration signals. However, it is worth noting that acoustic sensors
pose certain limitations, as the vibration signal and ambient noise often occupy the same
frequency range [16]. Consequently, acoustic sensors may not be the optimal choice for
environments with high levels of ambient noise [2,14,17–19], such as instances where a
radio is playing [18].

The SVM classifies the sequentially streamed data from the built-in accelerometer
in mobile devices. Porzi et al. [20] defined a swipe gesture as a time series of accelera-
tion measurements. However, the data stream from the accelerometer does not have a
defined ending. We represent it as w = {s1, s2, . . . , s∞}. Each sample in this data stream
is associated with a correlated time stamp, denoted as {t1, t2, . . . , t∞}. The infinity data
stream is indicated by the sample s∞ with the linked timestamp t∞. We take a specific
subset of this time series, denoted as w = {S1, S2, . . . , Sl}, where l represents the number of
samples in this defined subset, and the corresponding time stamps are {t1, t2, . . . , tl}. From
this subset w, we extract the feature vector Υ⃗. The subset w can contain not only samples
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from the swipe surfaces but also ambient noise. The presence of ambient noise can have a
detrimental effect on the classification performance of SVMs [21]. Therefore, it is necessary
to use appropriate features for the feature vector that will allow the SVM to effectively filter
out the ambient noise while identifying the swipe surfaces.

The SVM must be trained before it can use a feature vector to classify different vibration
signals. In the training phase, the SVM needs a label and a feature vector. The label is the
name of the swipe surfaces. The feature vector Υ⃗ describes the swipe surfaces. In addition,
Spolaôr et al. [22] distinguish between multi-label and single-label learning. In multi-label
learning, a feature vector Υ⃗ is associated with multiple labels at the same time. In contrast,
single-label learning only associates each feature vector with one swipe surface label. In
this work, we focus on the single-label learning.

Among machine learning methods, supervised learning is the most commonly used
one [15]. Two other learning methods are unsupervised learning and reinforcement learn-
ing [15]. Unsupervised learning involves the analysis of unlabeled data based on as-
sumptions about the structural properties of the data, such as algebraic, combinatorial, or
probabilistic [15]. In reinforcement learning, the information available in the training data
is intermediate between supervised and unsupervised learning [15].

Finally, we discuss how gestures can be recognized with the accelerometer. Porzi et al. [20]
distinguish between user-dependent and user-independent gestures recognition. In user-
dependent gesture recognition, a user performs a few gestures before utilizing the recog-
nition system, while user-independent recognition accounts for variations in the same
gestures from different users without requiring a preliminary recording phase. User-
independent recognition typically relies on a pretrained SVM [20]. The classification of
different swipe surfaces will be user-independent. Users can use this interface without any
additional configuration or settings.

In this section, we explore the research question from both human-determined and
software-determined aspects. We outlined methods to train the SVM. In this work, we focus
on a supervised method to train the SVM with single-label swipe surfaces and implement
user-independent gesture recognition.

The remaining structure of the work is as follows: In Section 3, we discuss related
work on human-determined and software-determined aspects. In Section 4, we conduct
a user study to record and transform vibration signals into feature vectors. Then, in
Section 5, we train the SVM for both smartphone and smartwatch setups with best and
worst classification accuracy. In Section 6, we evaluate these setups with additional data
and discuss the results with the literature in Section 7. Finally, Section 9 summarizes the
findings and suggests further research.

In the next section, we review the existing literature on how mobile devices can
recognize different swipe surfaces while performing a swipe gesture is performed over
such swipe surfaces.

3. Related Work

The discussion of the literature focuses on human-determined and software-determined
aspects. Open questions in the literature are the starting point for the laboratory user study
in Section 4.

3.1. Human-Determined Aspects

Liu et al. [23] discovered that the behavior of a vibration signal closely resembles that
of a wireless signal. As the vibration signal travels through one’s hand, it experiences atten-
uation along the propagation path and exhibits reflection or diffraction when it encounters
the boundary between different media, such as the skin and bones [23]. Various behavioral
and physiological characteristics, such as touching force and contacting area, influence the
propagation of the vibration signal [23]. However, the significance of the mobile device’s
location is not the sole consideration. The specific gesture articulated while swiping across
the surface also plays a crucial role. Han et al. [2] observed that different swipe directions
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yield varying outcomes, and the manner in which users swipe, such as using the nail or
only the finger, also has an influence [2]. How users hold or wear mobile devices, as well
as the appropriate swipes across different surfaces, remain uncertain factors in achieving a
high classification accuracy of the surface using the SVM.

Another human-determined aspect is the location of the device used to detect vibration
signals. Kefer et al. [24] found no significant difference in vibration detection between
wrist-worn devices and vibration sensors positioned below the elbow. Han et al. [2] placed
the vibration sensor on both the finger and the wrist, revealing minor differences. In
the study conducted by Chen et al. [25], a vibration sensor was mounted on the wrist
while participants tapped with their finger on the opisthenar. Additionally, Kim et al. [26]
highlighted the rapid attenuation of vibrations within the body, limiting the detectable
range. Furthermore, Ikeda et al. [27] established a relationship between the ankle’s joint
angle and the propagation amplitude, indicating that changes in the mechanical properties
of the human body can impact frequency characteristics. Consequently, the feasibility of
detecting vibration signals using smartphones and smartwatches remains uncertain.

Lukowicz et al. [17] highlighted the challenge of precisely defining the start and end
points of a gesture. While previous work [2,24,28–30] focused on using accelerometer
data to train SVMs, they did not specifically address the extraction of vibration signals
from swipe gestures in a continuous time series. Even when considering a finite subset
of this time series, they did not distinguish between swipe gestures and ambient noise
occurring before and after the swipe gesture on the textured surface. Therefore, it remains
unclear how to extract swipe gestures on textured surfaces from ambient noise that does
not represent such gestures. Also, there is a lack of established methods for training SVMs
to distinguish swipe gestures from ambient noise that does not represent such gestures.

Now, we transition from aspects determined by humans to those specified by software.

3.2. Software-Determined Aspects

As mentioned in Section 2, a subset w must be extracted from an infinite data stream
s⃗ to allow the SVM is able to classify different textured surfaces. One possible approach is to
use a sliding window technique to extract subsets of an s⃗ [6,25,29–32], which is explored next.

3.2.1. Sliding Window

The process of moving the window along the time series allows us to capture sub-
sets of the data to construct the feature vector Υ⃗ with a specified overlap. Some studies
suggest a half overlap with the samples from the previous window [6,29,32,33]. However,
Chen et al. [25] used a sliding window size of 35 ms with a 5 ms overlap. One concern raised
by Han et al. [2] was that the accelerometer in mobile devices has a lower sampling rate
compared with acoustic sensors, resulting in less sensitivity in detecting vibration signals.
However, Lukowicz et al. [17] used a sampling rate of 100 Hz and successfully extracted
vibration signal patterns. Owusu et al. [34] also investigated various sampling rates and
found that 100 Hz is sufficient for detecting push vibration patterns with smartphones. This
sampling rate is commonly used in mobile devices [2,13]. DeVaul and Dunn [35] used a
sampling rate of 47 Hz to detect body motion using a microcontroller-based accelerometer
sensor wearable.

If the sliding window is too large but cannot be filled with samples because the
swipe gesture has already been completed, the Fast Fourier Transformation (FFT) cannot
be computed. On the other hand, if the sliding window is extremely small, the entire
window may be received, but it may not be sufficient to classify different swipe surfaces.
Therefore, we outline the possible number of samples in a sliding window for a sample
rate of about 100 Hz for classifying different swipe surfaces. Previous works have used
different numbers of samples in a window, such as 10 samples [20], using a smartwatch
with a low sample rate, 64 samples [2], 128 samples [36], 256 samples [33], and even
4096 samples [4], but using an acoustic sensor. However, when dealing with a low and
limited sample rate, there may be occasional loss of swipe gesture information [33]. There-
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fore, determining the appropriate number of samples to include in a sliding window for
accurate classification of different swipe surfaces at a sample rate of approximately 100 Hz
remains an open question.

3.2.2. Filter

Liu et al. [33] explain that random hand movements introduce high-frequency noise,
motivating the use of filters. A filter is an algorithm used to select or modify certain samples
from a vibration signal recorded by the accelerometer of a mobile device. It mathematically
processes the signal in either the time or frequency domain. The goal of filters is to help
identify swipe gestures on different surfaces while reducing the effect of ambient noise.
Therefore, we discuss what type of filter should be implemented and what cut-off frequency
ωc should be used.

Han et al. [2] applied a first-order Butterworth high-pass filter with a cut-off frequency
of 0.1 Hz to mitigate sensor drift and reduce accumulated errors. Chen et al. [25] utilized a
Butterworth high-pass filter with a cut-off frequency of 20 Hz to eliminate ambient noise
caused by human motion. In addition, they employed a Butterworth low-pass filter with
a cut-off frequency of 300 Hz to address a tapped vibration signal estimated at 200 Hz.
Similarly, Lukowicz et al. [17] employed a low-pass filter with a cut-off frequency of 50 Hz
to filter out frequencies beyond this threshold. Srivastava et al. [37] used a low-pass
Butterworth filter without specifying the cut-off frequency to remove ambient noise and
enhance the detection of abnormal heart frequencies. DeVaul and Dunn [35], McGrath
and Li [28], and Yurttadur and Karaçay [29] did not provide information about the cut-
off frequencies. The effect of a Butterworth high-pass filter with an appropriate cut-off
frequency ωc to distinguish between the swipe gesture and ambient noise remains unclear.

3.2.3. Feature Vector

Selecting an appropriate feature vector Υ⃗ is crucial for achieving high classification
accuracy for different swipe surfaces [29,38]. However, the selection of elements for the
feature vector remains an active research topic in supervised learning [22]. Saeys et al. [39]
explain the motivation for choosing the right feature elements for Υ⃗: (a) avoiding overfitting
and improving the model’s performance in supervised classification and clustering tasks,
(b) creating faster and more cost-effective models, and (c) gaining deeper insights into the
underlying data-generating processes. Overfitting occurs when an SVM model describes
ambient noise in the data rather than the textured surface, leading to excellent performance
on observed data but poor performance on unseen data [40]. A cost-effective model can
provide accurate results of textured surfaces even with a small dataset to train the SVM
and relatively low computational resources.

Now, take a closer look at the sliding window w = {S1, . . . , Si, . . . , Sl} to define its
properties. This sliding window is a subset of the infinity data stream {s1, s2, . . . , s∞}
from the accelerometer. The ith sample Si within w contains the acceleration sensor
readings in three different directions x, y, and z. Therefore, we can represent Si as{

S(x)
i , S(y)

i , S(z)
i

}T
[20]. We can interpret w as a matrix with dimensions 3 × l. Here,

3 represents the three acceleration directions, and l denotes the length of the sliding
window. Equation (1) [6,20,32] illustrates the structure of this matrix.

w =


S(x)

1,1 S(x)
1,2 S(x)

1,3 . . . . . . . . . S(x)
1,l

S(y)
2,1 S(y)

2,2 S(y)
2,3 . . . S(·)

i,j . . . S(y)
2,l

S(z)
3,1 S(z)

3,2 S(z)
3,3 . . . . . . . . . S(z)

3,l

 (1)

From Equation (1), we extract the feature vector Υ⃗. Inspired by literature [2,24,28,29,32,41],
Equations (2)–(4) represent a general formulation for possible feature elements of the
feature vector.
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Υ⃗ = {Ξ1, . . . , Ξn} (2)

Υ⃗ =
{

Ξ1, . . . , Ξn, S(x)
1,1 , . . . , S(x)

1,l , S(y)
2,1 , . . . , S(y)

2,l , S(z)
3,1 , . . . , S(z)

3,l

}
(3)

Υ⃗ =
{

Ξ̂1, . . . , Ξ̂n, Ŝ(x)
1,1 , . . . , Ŝ(x)

1,l , Ŝ(y)
2,1 , . . . , Ŝ(y)

2,l , Ŝ(z)
3,1 , . . . , Ŝ(z)

3,l

}
(4)

The index l in Equations (2)–(4) corresponds to the length of w in Equation (1). Nev-
ertheless, the length l of the sliding window w is not necessarily equal to the length l⃗Υ of
the feature vector Υ⃗. For instance, if the sliding window w contains l = 64 samples, the
resulting length l⃗Υ of Υ⃗ will comprise 3 acceleration directions · 64 samples = 192 elements
when considering only accelerometer samples for Υ⃗.

The feature vector Υ⃗ can have feature elements in time, frequency, or a combination
of both. To transform the matrix in Equation (1) from the time domain to the frequency
domain, we use the Fast Fourier Transform (FFT). The symbol Ξ represents elements in the
time domain, while Ξ̂ corresponds to the frequency domain. The symbol S represents raw
samples recorded by the accelerometer, which are in the time domain, while Ŝ represents
the converted samples in the frequency domain.

The symbol Ξ, for instance in Equation (2), is a general form that describes the vibration
signal, including calculations from statistics, physics, or human behavior. We can have n of
Ξ elements in Υ⃗.

Vibration signal descriptions based on statistics include metrics such as the mini-
mum [6,24,34,41], maximum [24,34,41], mean [2,24,28,34], standard deviation [2,6,24,28,41],
skewness [2,28], and kurtosis [2,28,29]. Han et al. [2] considered finger swiping directions,
forearm pointing direction, and finger pointing direction as part of the vibration signal
descriptions, which are based on human behaviors.

Physics-based descriptions involve concepts such as power spectral density
(PSD) [24,32,41,42], mel-frequency cepstral coefficients (MFCC) [23,25,37,38,43], crest
factor [29], or the presence of two negative peaks within one window [30] to describe
the vibration signal of a textured swipe surface.

Previously, the vibration signal was described separately for each acceleration di-
rection. However, Miluzzo et al. [32] and McGrath and Li [28] proposed incorporating
correlation characteristics between acceleration directions obtained from the accelerometer.
To facilitate this calculation, the sliding window is considered.

Equation (1) illustrates the matrix structure of w, which can be used, for instance,
to determine the norm ∥w∥. Miluzzo et al. [32] and McGrath and Li [28] introduced the
1-norm, Infinity norm, and Frobenius norm as measures to describe the vibration signal of
the swipe gesture over textured surfaces.

Various other combinations are also possible, such as combining the vibration signal
description in the frequency domain Ξ̂ with samples from the time domain S.

With the structure of the feature vector defined, our discussion now focuses on de-
termining the optimal number of elements within the feature vector Υ⃗. Additionally, we
discuss the process of selecting the elements for Υ⃗.

Zhang et al. [7] emphasized the importance of having a feature vector with a small
number of highly significant elements. John et al. [11] noted that removing certain samples
from Υ⃗ leads to a decrease in the probability of correctly classifying the textured surface,
indicating their higher significance. Miluzzo et al. [32] reported 273 elements in Υ⃗, while
Owusu et al. [34] described 46 Ξs, and Kefer et al. [24] reported over 50 different Ξs.
Mehrnezhad et al. [41] applied 36 Ξs in the time and frequency domains, resulting in a total
of 72 descriptive elements for textured swipe surfaces. However, Liu et al. [31] and Funato
and Takemura [44] suggested that the power spectral density (PSD) alone is sufficient to
achieve high classification accuracy. It is important to note that the methods mentioned
for describing the vibration signal were primarily used for push vibrations [25,28,31,42] or
stepping patterns [29,30], which are closely related to push patterns.

Han et al. [2] used 109 elements for Υ⃗, including 13 Ξ̂ elements and 96 Ŝ samples.
Comparing this feature vector length to that of Miluzzo et al. [32], Han et al.’s Υ⃗ [2] is
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approximately 60% smaller. The ratio is calculated as 109/273 ≈ 0.4. Subtracting this ratio
from 1 gives 0.6 or 60%. This suggests that it may be possible to reduce the feature vector
while maintaining a similar level of accuracy.

Cho et al. [13] used 24 elements for their feature vector, including vibration signal
descriptions in both the time and frequency domains. A potential advantage of reducing the
size of Υ⃗ is the lower computational effort required, especially when dealing with infinite
time series. Parera et al. [6] found that having seven elements in Υ⃗ resulted in the highest
classification accuracy within the range of zero to 30 elements. Beyond seven elements, the
correct classification rate decreased. However, it is currently unclear how many elements
are required in the feature vector to achieve high classification accuracy. Additionally,
Önem [45] suggested the need to identify the most relevant samples in Υ⃗. Based on these
considerations, it might be possible to use a smaller number of elements in the feature
vector by selecting the most informative ones. Önem [45] mentioned that an excessively
large feature vector is impractical, and in practical supervised learning algorithms, the
aim is to find a satisfactory Υ⃗ rather than an optimal one. Another argument for reducing
the number of elements in the feature vector is the computational effort required for each
element. Parera et al. [6] found that computing the standard deviation involved signifi-
cant processing time, but even without it, an acceptable classification rate was achieved
Parera et al. [6]. Therefore, the time and computational effort associated with each selected
feature vector element should also be taken into account. If the calculation of an element
takes too long, it may pose challenges in classifying each received w in a timely manner.

Finally, we consider the SVM kernel, which is also part of the software-determined aspect.

3.2.4. SVM Kernel

SVMs are well-known algorithms that utilize kernel substitution [46]. Selecting an
appropriate kernel and optimizing kernel parameters can lead to improved classification
rates for surfaces [38,47]. To develop a software application that uses SVM to classify differ-
ent textured surfaces with swipe gestures, the Java library libSVM [10] provides options to
configure different kernels, and we explore the use of such different kernels below.

The most common kernels are linear, polynomial, sigmoid, and radial basis function
(RBF) [48,49]. The RBF kernel is also known as the Gaussian kernel [48,49]. Parera et al. [6]
successfully classified daily activity vibrations using the RBF kernel. Qin et al. [50] em-
ployed acoustic sensors to detect and classify keystroke vibration signals, utilizing the
RBF kernel to handle ambient noise. McGrath and Li [28] and Liu et al. [14] applied linear
kernels for classifying push vibrations, while Han et al. [2] used a linear kernel to classify
swiping vibration patterns. Miluzzo et al. [32] used both linear and RBF kernels to classify
push vibrations. Cho et al. [13] employed the RBF kernel to detect different surfaces using
the built-in vibrator and accelerometer of a smartphone. It is worth noting that in their
approach, the smartphone emitted the vibration signals rather than measuring them. The
default kernel in libSVM is RBF [10]. However, it remains unclear if a specific kernel leads
to high classification accuracy for different textured surfaces.

To conclude this section, we have discussed both human-determined and software-
determined factors for classifying textured surfaces. Human-determined aspects include
how users perform swipe gestures on these surfaces. Software-determined factors include
creating a sliding window, applying a filter, generating the feature vector, and selecting
the SVM kernel. However, the existing literature lacks clear guidelines on how users
should execute these gestures, leading to uncertainties in achieving high classification
accuracy. To address this gap, we conducted a laboratory user study to better understand
the requirements for accurately classifying textured surfaces during swipe gestures. Details
of this study are provided in the following section.

4. Laboratory User Study

We explain the swipe surfaces, the human-determined aspects, and the software-
determined aspects in this laboratory user study that was conducted.



Multimodal Technol. Interact. 2024, 8, 76 8 of 46

4.1. Swipe Surfaces

We present a total of five different swipe surfaces. Two of the surfaces are intended for
on-body interfaces [51], while the other three are solid and separate from the human body.

According to Harrison et al. [51], on-body interfaces offer novel interactive possibilities,
transforming our hands into input/output devices. The rationale behind on-body systems
is as follows: (a) they are socially more acceptable than speech interfaces and ergonomically
superior to gestural interfaces; (b) the skin provides a larger interaction area compared
with mobile devices; (c) tactile feedback is delivered to users through their own body;
(d) they tap into muscle memory, hand-eye coordination, and familiarity with one’s own
body [52]; and (e) they facilitate eyes-free interaction [51,53].

The selection of the solid surfaces has been influenced, for example, by Han et al. [2],
the Scratch Input technique [54], Skinput [53], and Touché [55].

Figure 1a illustrates the considered on-body and solid surfaces.
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body [52]; and (e) they facilitate eyes-free interaction [51,53].

The selection of the solid surfaces has been influenced, for example, by Han et al. [2],
the Scratch Input technique [54], Skinput [53], and Touché [55].

Figure 1a illustrates the considered on-body and solid surfaces.
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Figure 1. Picture (a) shows the swipe path on the different surfaces in this work, whereas picture
(b) points out the relationship between bumps and spaces on these surfaces.

The key factor in our laboratory user studies is the relationship between the bumps
and the spaces on the swipe surfaces [2]. Figure 1b illustrates the location of space and
bump on surfaces in a schematic representation. When the bumps are close together and
small in size, we expect to observe a small measured acceleration value. An example of such
a condition can be seen in the image of the small comb provided in this figure. On the other
hand, when the bumps are large and the spaces between them are also large, the built-in
accelerometer records a larger value compared with the comb. Examples of swipe surfaces
with larger bumps and wider spaces include the breadbasket and the notebook. These
selected swipe surfaces should represent a wide range of swipe surfaces with different

Figure 1. Picture (a) shows the swipe path on the different surfaces in this work, whereas picture
(b) points out the relationship between bumps and spaces on these surfaces.

The key factor in our laboratory user studies is the relationship between the bumps
and the spaces on the swipe surfaces [2]. Figure 1b illustrates the location of space and
bump on surfaces in a schematic representation. When the bumps are close together and
small in size, we expect to observe a small measured acceleration value. An example of such
a condition can be seen in the image of the small comb provided in this figure. On the other
hand, when the bumps are large and the spaces between them are also large, the built-in
accelerometer records a larger value compared with the comb. Examples of swipe surfaces
with larger bumps and wider spaces include the breadbasket and the notebook. These
selected swipe surfaces should represent a wide range of swipe surfaces with different
configurations of the bump-space relationship. The chosen swipe surfaces do not have a
binary encoding scheme [4]. The binary encoding scheme uses notches on an acrylic plate
to represent the two symbols 0 and 1. The functionality of the notches is the same as a
bar code. The sketch in this schema portrays a hand holding a smartphone and wearing
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a smartwatch, illustrating the performance on bump-space surfaces. The details of these
gestures are discussed in Table 1 in the following section, where we also explore their behaviors.

Table 1. Definitions of different swipe movement behaviors.
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Additionally, Figure 1 depicts the correlated swipe gesture paths on each surface.
These paths illustrate the sequential arrangement of the bumps and spaces. The starting
point is marked by a circle, and the arrow indicates the direction of the swipe gestures.
Participants have the freedom to release their index finger at any point along the swipe
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path, signaling the end of the swipe motion over the respective surface. The depicted
starting point serves as an estimation, as the participants have the autonomy to decide the
exact starting point for their swipes.

Next, we explain how to perform swipes on these textured surfaces, focusing on
human-determined aspects.

4.2. Human-Determined Aspects

The swipe gesture over textured surfaces consists of three different swipe gesture
behaviors: swipe orientation, swipe contact, and swipe movement [2]. Table 1 emphasizes
the horizontal and vertical swipe orientations. In the case of a horizontal swipe, the finger
aligns with the bump in the same direction, or it slides sideways across the bumps [2]. The
top-view illustration in the table clarifies this concept. A horizontal swipe orientation is
defined when the finger forms a 90◦ angle with the bump or when the finger is moved
across the surface from a distant position towards the body [2]. The table also outlines the
different swipe contacts with the swipe surface, which can be established either with the
skin or the nail [2]. The skin-style contact involves swiping over the surface, while the
nail-style contact is more akin to scratching on the surface. Both swipe movement styles are
shown in Table 1. The swipe movement behavior encompasses swiping with the hand over
the surface or solely using the finger. Typically, when participants swipe with their hands,
the movement distances are longer compared with when they only use their fingers. When
the hand performs the swipe movement, the hand moves while the finger remains rigid,
whereas the opposite condition occurs when the finger executes the swipe movement.

Table 1 illustrates the propagation of the vibration signal from the contact with the
swipe surface to both mobile devices, namely the smartphone and the smartwatch. Upon
contact, the generated vibration is recognized and recorded by both devices. The circle in
the table indicates the contact point between the finger and the swipe surface. The snaked
line with an arrow represents the transmission of the vibration signal from the index finger
to the mobile devices. The vibration signal is transmitted through the skin to both devices.
The smartphone is held in the hand while the index finger swipes over the surface, while
the smartwatch is worn on the wrist. These two mobile devices serve as replacements for
the inertial measurement units (IMUs) used by Han et al. [2] and Shi et al. [56], where IMUs
were worn on the wrist and index fingers. In our setup, the smartphone is positioned near
the finger, while the smartwatch is worn on the wrist.

Having discussed the human-determined aspects, we now shift our focus to the
software-determined aspects in the following section.

4.3. Software-Determined Aspects

Figure 2 presents an overview of the data flow from the built-in acceleration sensor on
mobile devices to the classification of the textured swipe surfaces using an SVM. This figure
shows the software-defined aspects, including creating a sliding window wi, applying
a filter, using an FFT if necessary to transform the samples from the time domain to
the frequency domain, generating the feature vector Υ⃗, and selecting SVM kernels with
their parameters.
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Figure 2. The flow diagram illustrates the process of capturing the vibration signal and classifying it
into a feature vector using SVM. It also demonstrates the implementation of the Java library libSVM
and its corresponding software components. This diagram illustrates the software-determined aspects
of the process. In Section 5.1.1, we provide a detailed explanation of the stages shown in the flow
diagram. This section focuses on illustrating the process of creating the sliding window wi, as
depicted in Figure 3. The feature elements for Υ⃗ are listed in Table 3, while Table 4 presents the values
for ωc. Additionally, Table 2 displays the svm_parameter for the SVM, and the kernels applied for
the SVM are outlined in Table 4.

We begin by explaining how the vibration signal is generated when participants swipe
over different surfaces. This vibration signal is produced when their fingertip makes
contact with the surface and travels from the finger through the hand to the mobile device.
The accelerometer in both the mobile device and the smartwatch detects this vibration
signal almost simultaneously. When participants press the Start button on the smartphone
to record the vibration signal, the smartwatch also begins recording as the two devices
are connected via Bluetooth. Although the form of the vibration signals may differ, the
recording time on both devices is nearly identical.

In our Java Android software application, we utilize the SENSOR_DELAY_FASTEST mode
to register the accelerometer sensor listener Liu et al. [33]. This selection allows us to
efficiently access the accelerometer data.

The structure of the sliding window w was discussed in Equation (1). The timestamp
ti of each sample si is recorded in nanoseconds and corresponds to a unique timestamp
on the sliding window w. Additionally, we record the swipe surface and swipe behavior
alongside each sample and its corresponding measured acceleration in a CSV file.

Once the vibration recording process is completed, we transfer these CSV files from
the mobile devices to a desktop computer. The mobile devices are only used to record
the vibration signal. The process of training the SVM and predicting the swipe surface is
performed on the desktop computer. We chose this setup because of the higher computing
power of the desktop computer, which is beneficial for training the SVM under various
conditions and reduces computational time.
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We developed three Java applications on the desktop computer and one Java Android
software application on the mobile devices. The first desktop application handles the
sliding windows wq, the second application is responsible for training the SVM under
different conditions, and the last application classifies the different swipe surfaces. The
first Java application reads the stored CSV files, splits the recorded samples into sliding
windows w, and stores them in a database. The details of this process are explained in more
detail in Section 5.1.1.

All the sliding windows wq are stored in the database, which provides the data for
the Java application responsible for SVM training and prediction. The database also stores
the number of elements in each feature vector and the corresponding calculations for these
elements. The details of the number and computation of these elements are also explained
later in Section 5.1.1.

Once the sliding windows wq are retrieved from the database, the first step is to
process the samples within each window. We apply a Butterworth high-pass filter to the
sliding windows wq to prepare them for computing the elements of the feature vector Υ⃗.
The Butterworth high-pass filter [57], originally implemented in C++, was converted to
Java. We experiment with different cut-off frequencies ωc for this filter to examine its effect.

The next stage involves applying the FFT to process the samples within each sliding
window wi. However, not every feature vector requires a filtered or frequency-domain
representation of w. Hence, the stages involving the Butterworth high-pass filter and
FFT can be bypassed depending on the construction of the feature vector. Once the
feature vector Υ⃗ is computed, it is used by the SVM from the libSVM library for swipe
surface classification.

First, the SVM must be trained to classify different swipe surfaces. After this training
process, the SVM is able to classify the swipe surface. The training process of an SVM affects
the classification of swipe surfaces. Therefore, in the following discussion, we consider the
training process of an SVM and the classification process of swipe surfaces.

Our Java application implements the svm.svm_predict(model, Υ⃗) method from
this libSVM library to classify the swipe surface based on the trained model. Similar to
Qin et al. [50], our approach involves using two SVMs in a row. The first SVM, known as
the one-class SVM, determines whether Υ⃗ contains samples of swipe surface or ambient
noise. The one-class SVM approach [58] is commonly used for anomaly detection, including
intrusion detection, medical diagnosis, fraud detection, and surveillance [59]. In the training
phase of the one-class SVM, only a feature vector containing samples of swipe surfaces
is needed, and it identifies outliers among the samples of the swipe surfaces [60]. It is
easier to find appropriate feature vectors that contain only samples of swipe surfaces than
typical ambient noise [61]. If the one-class SVM identifies the feature vector as a potential
swipe surface, the multiclass SVM classifies the vector further. In addition to our proposed
solution, Lukowicz et al. [17] labeled a sliding window as ambient noise, which is unrelated
to a swipe surface. DeVaul and Dunn [35] and McGrath and Li [28] trained ambient noise
as a separate class in the SVM. They referred to ambient noise as the garbage class [35] or
negative samples [28]. In their approach, several hours of ambient data were recorded and
used to train the SVM. The drawback of such approaches is the need for proper ambient
noise to train the SVM initially. Our proposed approach, depicted in Figure 2, allows us
to focus on potential swipe gestures during the training phase. In the prediction phase,
the SVM can distinguish between a surface and ambient noise. However, to exclusively
train a swipe gesture using the SVM, it is necessary to ensure that only one swipe gesture
is trained. This process is discussed in more detail in Section 5.1.1.

After the SVM finishes classifying the swipe surface and ambient noise, the database
stores the classification results and the classified swipe surface. Later, we access this data in
the database for further analysis using the statistical software program R.

Returning to the Java source code of the SVM, the svm.svm_predict(model, Υ⃗)
method from the Java library libSVM requires both the model variable and the feature
vector Υ⃗. Since SVM models are difficult to interpret, we consider them as black box
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models [62]. At this stage, the swipe surfaces are already trained. So we already have the
variable model. To obtain the variable model for the method svm.svm_predict(model, Υ⃗),
we have to train the SVM first.

For SVM training, we utilize the svm.svm_train(Υ⃗, svm_parameter) method from
the libSVM library. This method provides us with the model variable required for the
svm.svm_predict(model, Υ⃗) method. During SVM training, we specify values for the
svm_parameter variable, which stores the SVM hyperparameters [40,63]. These hyperpa-
rameters enable us to configure the various kernels used by the SVM, as summarized in
Table 2.

Table 2. SVM hyperparameters used to train the SVM. The SVM hyperparameters are stored in the
variable svm_parameter and are denoted in typewriter font, enclosed in braces. These hyperparame-
ters are used for the svm.svm_train(Υ⃗, svm_parameter) method.

Kernel cache_size
in MB

degree
ν

(nu)
γ

(gamma)
C
(C)

ϵ
(eps)

Linear 300 — 10−3 — 100 0.5
RBF 300 — 10−3 10−6 1250 10−3

Polynomial 300 5 10−3 10−6 100 10−3

Sigmoid 300 — 10−3 10−6 100 10−3

The svm_parameter variable contains the hyperparameters cache_size, degree, ν, γ,
C, and ϵ. The corresponding subparameter names for these hyperparameters are listed in
the table. The cache_size variable determines the amount of memory allocated by the
SVM on the desktop computer. We set this variable to 300 MB for all used SVM kernels.
Setting the value too low may hinder SVM training, while setting it too high may exceed
the available memory. The degree column allows us to control the highest exponent of a
polynomial kernel function [40,64]. A high degree can result in overfitting, while a low
degree may lead to decreased accuracy [64]. The ν variable acts as an upper bound on the
fraction of training errors and a lower bound on the fraction of support vectors [10]. The
hyperparameter C represents the penalty weight of the error term and must be greater than
zero [49,65]. A higher value of C imposes a higher penalty on errors, while a low value
lightly penalizes misclassifications and may result in erroneous separation [65]. The ϵ value
denotes the tolerance level for the solution to approach zero before the solver stops the
iterations [64,66]. Furthermore, the table includes specific values that are only applicable to
certain kernels [40]. For instance, the degree subparameter is only valid for the polynomial
kernel, and γ does not apply to the linear kernel. If a subparameter does not impact the kernel,
we indicate it with a line (—) in the table. According to Sangeetha and Kalpana [47], there is no
definitive method for determining the appropriate SVM kernel and its hyperparameters.
We employed a combination of trial and error along with the suggested values provided by
Arbabshirani et al. [40] to determine the hyperparameters. By utilizing the values outlined
in Table 2, we were able to successfully classify different solid swipe surfaces.

The samples from the built-in accelerometer were stored on the mobile devices in
a CSV file. We download the CSV files from the devices using Android Studio Chipmunk
2021.2.1 Patch 2 integrated development environment (IDE). To process the downloaded
CSV files, we utilized a Java software application developed using the JSwing library on
the TravelMate 7740G laptop. The SVM training was performed using the libSVM library
(version 3.24) [10]. The recorded vibration signal data was stored in an SQL database using
SQLite. During the development of the software application, we observed that training
different SVMs required several days. To expedite this process, we employed the Odroid
N2+ single-board computer running the Linux Mate operating system. See Appendix B for
further technical details.
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Method

The laboratory user study proceeded as follows: Participants performed practice
swipes under the described swipe conditions, as described in Section 4. Once they felt
comfortable, the vibration signals recording began. Participants pressed the Start button on
the smartphone before swiping over the different surfaces. Both mobile devices recorded
the vibration signals, as the smartwatch was connected to the smartphone via Bluetooth.
Therefore, the vibration signals were recorded simultaneously on both devices while the
participants performed a single swipe. The smartphone displayed the required swipe
method, orientation, and surface. Participants pressed the Start button again once they
finished their swipe movement, after which the data recording process ceased on both
devices. The recorded data was stored in a CSV file located on each mobile device. Once
a swipe movement was completed, participants proceeded to the next task, with the
smartphone displaying the requested swipe surface. The recording process for the next
vibration signal began when the participant pressed the Start button on the smartphone
again. These steps were repeated until all swipe tasks were finished. The user study for
each participant concluded with demographic questions, as well as inquiries about their
preferred and dispreferred swipe movement behavior and swipe surfaces.

Subsequently, the next participant was included in the user study, covering all
possible combinations.

Mobile devices: We used the Samsung GALAXY Note 3 smartphone and the Sony
SmartWatch 3 smartwatch to capture the vibration signals with a built-in accelerometer. The
dimensions of the smartphone are 151.2 × 79.2 × 8.3 mm. The smartwatch has a size of
35.8 × 50.8 × 9.9 mm. Both devices operate on the Android operating system. We developed
the applications for these mobile devices using Android Java within the Android Studio IDE.

Participants: We recruited twelve participants primarily from our university. On
average, the participants were 29.00 years old (SD: 4.05), with six female participants. Ten
of the participants used their right hand for the swipe movement.

The user study for each participant had an approximate duration of 30 min.
We conducted a four-factor user study with a within-subjects design: 12 (participants)

× 5 (swipe surfaces, see Figure 1) × 2 (swipe orientations, see Table 1) × 2 (swipe contacts,
see Table 1) × 2 (swipe movements, see Table 1) × 2 (repetitions) × 2 (mobile devices)
= 1920 swipe movements.

Using the recorded vibration data from this user study, we evaluate the software-
determined aspects. The specific aspects considered are discussed in the next section.

5. SVM Training and Classification

Following the user study, accelerometer samples were collected from each mobile
device, primarily addressing human-determined aspects. Our focus now shifts to software-
determined aspects, specifically involving SVM training and classification of vibration
signals generated by participants during the user studies.

5.1. Screening Phase

In the screening phase, we aim to distinguish between factors that are relevant to
human-determined and software-determined aspects, and those that are not.

5.1.1. Training

We can train the SVM with the svm.svm_train(Υ⃗, svm_parameter) method from the
libSVM. Figure 3 shows how we obtained the sliding windows and how we built Υ⃗.
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Figure 3. Stages one to five illustrate 1 – 5 the process of performing a swipe gesture over a textured
surface. From this time series s⃗ sliding windows ws are extracted. Two ws from each swipe movement
are used to train the SVM on the swipe surface. One w is used to classify the swipe surface.

We created sliding windows, denoted as wq, from a time series s⃗. The length l of wi is
32, 64, or 128 samples, which is suitable for the FFT. The FFT results are then applied to
generate the feature vector Υ⃗. Han et al. [2] used a sliding window length of 64 samples, so
we selected additional 32 and 64 samples to explore the effects of smaller and larger sliding
windows. We created sliding windows by segmenting the remaining time series s⃗. We con-
structed the sliding windows using the overlap-add method. Thus, wi =

[
w(i−1)/2, wi/2

]
,

where w(i−1)/2 contains samples from the previous half window, and wi/2 is filled with
the next vibration signals to complete one sliding window. Following this approach, we
obtained q sliding windows denoted as w⃗ =

{
w1, w2, . . . , wi, . . . , wq

}
.

Now, we want to explain considered samples of a swipe movement. Liu et al. [33]
advised that participants keep their hands static at the beginning and end of the recording
to ensure optimal performance of the swipe gesture on these surfaces. This practice helps
to avoid the presence of unobservable acceleration signals, which could have a negative
impact on the SVM training process [65,67]. Pan et al. [16] explain that a swipe movement
can be divided into three parts: an impulse-like signal, a stick-and-slip part, and the
removal of fingers from the surface. This stick-and-slip phase represents the general form

of friction-induced vibrations. In Figure 3, the stick-and-slip part is illustrated in 3 and 4 .
Liu et al. [33] captured the stick-and-slip part while they recorded the vibration signal of the
swipe gestures. We want to exclude this effect in the data set to train the SVM. Therefore,
we focused on sliding windows that were close to the center of all generated windows
during a swipe movement on a given surface.

It is important to consider the presence of label and feature noise [8]. Label noise occurs
when a sliding window is assigned an incorrect label for the corresponding swipe surface.
On the other hand, feature noise occurs when participants perform swipe movements that
deviate from the requested behavior during the user study. Such feature noise occurs also
when we consider the impulse-like signal for the sliding window. Pelletier et al. [8] outlined
the impact of low levels of random label noise, up to 25% to 30%, on the classification
performance of different swipe surfaces is minimal. However, higher levels of label noise
can significantly reduce the classification performance.

Figure 4 illustrates the stages involved in the vibration signal recording process of the
smartphone and smartwatch separately. In this figure, the three acceleration directions x, y,
and z are depicted. These plots are aligned with the representation of the sliding window
w in a matrix structure, as described by Equation (1).
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Figure 4. Vibration signals when a participant swipes over the swipe surface while the hand is
moving. The first plot highlights again the five stages of a swipe gesture. The applied swipe contact
is the nail, and the swipe orientation is horizontal. These last two conditions are fixed during the
recorded time samples.

In Figure 4, the swipe contact used is consistently nail, and the swipe orientation
is specified as horizontal. Additionally, we can observe from this figure that each swipe
surface exhibits a different vibration signal amplitude. This figure highlights the varying
swipe behaviors that result in different vibration signal amplitudes. These distinct ampli-
tudes should contribute to different elements in the feature vector Υ⃗, thereby facilitating
the accurate classification of swipe surfaces.

Let us now discuss the detailed stages of a swipe movement. The stick-and-slip part

occurs between steps 3 and 4 in Figure 4, and this period corresponds to the sliding

window wi used for training the SVM. During stages 1 to 3 , the finger moves towards

the designated swipe object, which typically takes around one second. Between 4 and 5 ,

the index finger releases the swipe surface, and at 5 , the vibration signal recording stops.
We can extract the middle part of each recorded swipe movement since the vibration signal
exhibits approximate symmetry. In this middle part, we observe a repetitive pattern in the
vibration signal. We can imagine an imaginary straight line that closely aligns with this
vibration signal. For instance, when examining the y and z acceleration axes in the plots of
the smartphone with the swipe surface small comb, the vibration signal hovers around the
y-axis value of 0. We discuss further details of the vibration signal in Appendix C.
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We encountered at least 12 sliding windows per swipe movement. Therefore, we
consider three sliding windows created from the sliding window series w⃗, which are
considered samples nearly in the center of each swipe movement. We trained the SVM
with 2/3 of all created sliding windows w⃗, while the remaining 1/3 of w⃗ is used to predict
the swipe surfaces. This approach follows the train/test split method [60]. Two wi per
swipe movement raised concerns that we might not have enough sliding windows to train
the SVM. However, a train/test split with a low number of Υ⃗ gives results comparable to
1000 sliding windows [63]. We also used the train/test split for simplicity. The selection
of 2/3 of the sliding windows w⃗ for training the SVM was done randomly from the set
of all three sliding windows w created. The train/test split method was also used to find
proper hyperparameters, which was displayed in Table 2. Vabalas et al. [63] explain K-fold
cross-validation and nested cross-validation as additional approaches for validating the
model of the SVM, which were not applied in this work.

We used the train/test split method to find the suitable hyperparameters, shown
in Table 2. This method was used on the data, for instance, where participants swiped
horizontally on the surface, as seen in Table 1. After finding the hyperparameters for
the SVM in a few conditions where we saw a high classification accuracy, we used these
parameters for all conditions.

We constructed several feature vectors Υ⃗ based on a single wi, represented in Table 3.

Table 3. Training the SVM with different feature vectors Υ⃗. The index ξ denotes the different built-up
feature vectors.

ξ Structure Ψ {Ξ1, . . . , Ξn}

(1)
{

Ξ̂, Ŝ
}

18 mean, SD, skewness, kurtosis, index distance between min(wi) and
max(wi), and the index distance between two max(wi) values

(2) {Ξ, S} 18 mean, SD, skewness, kurtosis, index distance between min(w) and
max(w), and the index distance between two max(w) values

(3)
{

Ξ, Ξ̂
}

10 Ξ → ∑3
i=1 PSDi, ∥w∥1, ∥w∥∞, ∥w∥F, min(w), max(w)

Ξ̂ → ∑3
i=1 PSDi, ∥w∥1, ∥w∥∞, ∥w∥F

(4) {Ξ} 4 ∑3
i=1 PSDi, ∥w∥1, ∥w∥∞, ∥w∥F

(5) {Ξ} 6 ∑m=3
i=1 PSDi, ∥w∥1, ∥w∥∞, ∥w∥F, min(w), max(w)

(6)
{

Ξ̂
}

3 · l melsx, melsy, and melsz
(7)

{
Ŝ
}

3 · l Ŝx, Ŝy, Ŝz

The structure column in Table 3 illustrates the elements considered in Υ⃗ and indicates
the domain in which each element is created, denoted by ∈ {time, frequency, both}. The
notation follows Equations (2)–(4). For example, Ŝ3,l can be represented as

{
Ŝ(x)

1,1 , . . . , Ŝ(z)
3,l

}
,

where the index i ∈ {1, 2, 3} corresponds to the three acceleration directions x, y, and z,
and l indicates the number of samples in a sliding window wi, which can be 32, 64, or
128 samples. The Ψ column in the table represents the sum of evaluated characteristics in
Υ⃗. Ψ does not represent l⃗Υ.

Feature vectors with indices three to six consist only of computed characteristics. The
table’s column {Ξ1, . . . , Ξn} lists the applied characteristics that describe the vibration
signal of a surface. The other remaining indices include samples from a single wi. Indices
one and seven have Ŝ in the frequency domain, while index two has S in the time domain.

To describe the vibration signal of a textured surface, Miluzzo et al. [32] proposed
the 1-norm, infinity norm, and Frobenius norm of w. These norms capture the vibration
signal behavior for all three acceleration directions within a single element of Υ⃗. For other
characteristic calculation approaches, the computation is performed separately for each
direction. The 1-norm is denoted as ∥w∥1, the infinity norm as ∥w∥∞, and the Frobenius
norm as ∥w∥F. We utilize a 3 × l matrix w from Equation (1) to calculate these norms using
Equations (5)–(7).
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∥w∥1 = max
1≤j≤l

l

∑
i=1

∣∣Si,j
∣∣ (5)

∥w∥∞ = max
1≤i≤3

l

∑
j=1

∣∣Si,j
∣∣ (6)

∥w∥F =

√√√√ 3

∑
i=1

l

∑
j=1

∣∣Si,j
∣∣2 (7)

The norm can be computed in both the time domain and the frequency domain. In the
time domain, a single element in wi is denoted as Si,j. If we replace Si,j with Ŝi,j, the norm
is computed in the frequency domain. This same definition also applies to the calculation
of skewness, kurtosis, and PSD, as shown in Equations (8)–(10). Equation (10) [68] is also
named as mean square amplitude.

Skewnessi=(xyz) =
1
l ∑l

j=1
(
Si,j − S̄i,j

)3[
1

l−1 ∑l
j=1
(
Si,j − S̄i,j

)2
]3/2 (8)

Kurtosisi=(xyz) =
1
l ∑l

j=1
(
Si,j − S̄i,j

)4[
1
l ∑l

j=1
(
Si,j − S̄i,j

)2
]2 − 3 (9)

PSDi=(xyz) =
1
l

l

∑
j=1

∣∣Si,j
∣∣2 (10)

Melsi=(xyz) = 2595 · log10

(
1 +

Ŝi,j

700

)
(11)

The index i in Equations (8)–(11) represents the three acceleration directions: x, y, and
z. When computing the previously defined 1-norm using Equation (5), the feature vector Υ⃗
consists of only one element, resulting in a length l of one for Υ⃗. However, the situation is
different when applying Equations (8)–(11). For example, when computing the skewness
using Equation (8), the feature vector has a length of three. This is because the calculation
is performed for each acceleration direction (x, y, and z), yielding separate results for each
direction. Equation (11) describes the calculation of mels, which are part of the mel scale
used in MFCC computation. We specifically selected mels with low computational effort
for the feature vector. We did not require frequency information over time. To compute
mels, we first transformed the samples within wi to the frequency domain, denoted by
the symbol Ŝ in Equation (11). After this transformation, Equation (11) was applied. As
mentioned before, Ψ represents the number of characteristics within one Υ⃗. Since mels are
calculated for the entire sliding window wi, Ψ equals the size of wi. Therefore, the value of
l in the Ψ column of the table is 32, 64, or 128 samples.

The length l⃗Υ of Υ⃗ depends on the computed characteristics Ξ and the added samples
Ŝ1,1, . . . , Ŝ3,l from wi. For example, if we consider Υ⃗ξ=1 and the number of samples within
a sliding window is 32 samples, the feature vector has a length of 114 elements It is
because Ξ̂ has 18 elements, and Ŝ1,1, . . . , Ŝ3,l is 3 · l = 3 acceleration directions · 32 samples
= 96 elements = l⃗Υ. Therefore, the length of the feature vector l⃗Υ can be compared with the
reported length of Υ⃗ by Han et al. [2], who used 109 elements for the feature vector. The
lengths are nearly the same in both cases.

In Table 3, we used 3 · l to indicate that we used the three recorded acceleration
directions from the sensor. Based on the aforementioned considerations, the selected
feature vectors have lengths ranging from 4 to 402 elements in Table 3.
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Table 4 summarizes the necessary independent factors and their associated labels for
the complete experimental design. The response or dependent variable was the correct
classification of different swipe surfaces.

We used the same kernel, RBF, for both the one-class SVM and the multiclass SVM.
Inspiration from Le et al. [9] and Qin et al. [50] led us to apply the RBF kernel for separating
the vibration signal from the ambient noise. Since participants had difficulty performing
the different requested swipe contacts and swipe movements and the swipe movement
behavior showed minimal differences, we treated the swipe contacts and swipe movements
as one unit. Although Harrison et al. [4] and Han et al. [2] discussed swipe contacts with
the term nail, they did not address the input issue with fingernails. Other reasons for this
were that the smartphone, as shown in Table 1 could not be held particularly well with
small hands. Based on this consideration, we labeled these two swipe movement behaviors
as both in the table and make no distinction between these two swipe contacts as in Table 1
described. If we label another factor’s level as both, it means we included all recorded data
from that factor.

Table 4. Applied factors and levels in the screening phase.

Factor Levels

V l in samples: 32, 64, 128
ωc in Hz: 0, 0.1, 5, 20

Υ⃗: seven different feature vectors; see Table 3
One-class kernel: same as multiclass kernel or RBF

Multiclass kernel: linear, RBF, polynomial, sigmoid
Mobile device: smartphone, smartwatch, both

V Swipe contact: both
Swipe orientation: horizontal, vertical, both; see Table 1
Swipe movement: both V

So
ft
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e
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um
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For these experiments, we consider the following factors: 3 (samples) × 4 (ωc) × 7 (⃗Υ)
× 2 (one-class kernels) × 4 (multiclass kernels) × 3 (mobile devices) × 1 (swipe contacts)
× 2 (swipe orientations) × 1 (swipe movement) = 4032 experiments.

However, conducting all 4032 experiments can be impractical due to their large number
and the associated time and cost [69]. To address this issue, we employed a D-optimal
design, which allows us to reduce the number of experiments while still obtaining reliable
results in a shorter time frame. Optimal designs offer a solution by allowing us to maintain
comparable or even superior statistical power in detecting the effects of interest while
reducing the number of experimental runs required [69,70]. Despite their benefits, optimal
designs are currently underutilized in screening experiments and have received limited
attention in the field of software testing [71]. However, they have been successfully applied
in diverse research domains, including pharmacy [72,73], mechanical engineering [74,75],
and psychology [70].

After obtaining the 300 experiments from the D-optimal design, see the calculation
details of D-optimal design in Appendix D, we proceeded to train the SVM, which took
approximately one day. Following the training phase, we utilized the trained SVM to
classify the various swipe surfaces, a process that was completed within a few hours. With
the experiments now concluded, we proceed to the classification of the swipe surfaces.

5.1.2. Classification

With the svm.svm_predict(model, Υ⃗) method from the Java library libSVM we are
able to classify the swipe surfaces explained in Figure 1. Because we ran 300 experiments,
we obtained 300 models in the training phase of the SVM.

If the one-class SVM classifies Υ⃗ as ambient noise, it is not taken into account when
determining the classification accuracy. Currently, we assume that ambient noise is always
classified correctly. In Section 6.3, we evaluate the one-class SVM.
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Our objective is to identify conditions where the SVM detects nearly 100% of the
swipe surfaces. We focus on software aspects that suggest a potential for high classification
accuracy across all swipe surfaces. We exclusively utilize 64 and 128 samples within each
sliding window, as the 32 samples in wi do not yield a high classification accuracy. Also,
we consider only the swipe orientations horizontal and vertical. We train the SVM using all
recorded data for the swipe contact and swipe movement. With these considerations, we
proceed to the detailed phase.

5.2. Detail Phase

In this phase, our primary focus is on factors that offer a classification accuracy of 90%
or higher for the swipe surfaces, as discussed in the previous section.

5.2.1. Training

In the detailed phase, we used the acceleration sensor data recorded during the
laboratory user study to train the SVM, keeping the human-determined aspects. However,
the software-determined aspects were adjusted, focusing on conditions expected to yield
high classification accuracy for textured surfaces. The software application and procedures
remained consistent with those employed in the screening phase.

5.2.2. Classification

Table 5 presents the selected candidates along with the corresponding conditions that
resulted in the highest and lowest classification accuracy for the different swipe surfaces.
If the one-class SVM classifies a feature vector as ambient noise, it is not included in the
computation of correct classification in the table.

Table 5. The selected conditions for the SVM for the evaluation. The short form cont. indicates
the swipe contact on the different swipe surfaces. The abbreviation orient. represents the swipe
orientation. Acc. indicates the correct classification of the different swipe surfaces. In the software-
determined section in this table, Υ⃗ link to the index ξ in Table 3. We use these six different conditions
for further evaluation in this work.

Factor Both Devices Smartphone Smartwatch
Best Worst Best Worst Best Worst

V l in samples: 128 128 128 64 128 128
1-class: RBF Sigmoid RBF RBF RBF RBF

m-class: RBF Sigmoid RBF RBF RBF RBF
ωc in Hz: 20 0.1 0.1 20 20 0.1

Υ⃗: (6) (6) (6) (3) (7) (4)
l⃗Υ: 384 384 384 10 384 4

V Contact: both both both both both both
Orient.: horizontal vertical vertical horizontal horizontal horizontal

V Move.: both both both both both both

Correct wi: 104 0 94 58 95 0
Wrong wi: 69 190 0 1 0 35
Noise wi: 17 0 2 37 0 61

Acc. in %: 69.61 15.78 97.59 42.03 99.79 20.00

So
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This table shows that the best condition achieves nearly 100% classification accuracy for
each mobile device separately. When using data from both the smartphone and smartwatch
together to train the SVM, the classification accuracy is still 69.61%, as indicated in the both
devices column of the table. The worst condition exhibits a lower classification accuracy, but
it is never below 15%. The accuracy of the best selected conditions is in the same range as
reported by Harrison et al. [4] and Han et al. [2]. To the best of our knowledge, we did not
find the worst-selected conditions reported in the literature.
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In the following section, we evaluate how the classification accuracy changes when us-
ing data from the entire swipe movements or when participants perform swipe movements
slightly differently from those in the laboratory user study.

6. Evaluation

We obtained six different SVM models, detailed in Table 5. These classification ac-
curacies were obtained under laboratory conditions. During the laboratory user studies,
participants were instructed on how to swipe over the different surfaces. However, in
real-world scenarios, users may swipe differently without any guidance, which could po-
tentially affect the classification accuracy. To explore these variations and identify potential
usability issues outside of controlled laboratory conditions, we conducted additional user
studies in the field. In the following, we discuss the differences between these two types of
user studies and the motivation behind conducting them.

Kjeldskov and Stage [76] state that field-based evaluations are often considered essen-
tial for assessing the usability of a mobile system. Baillie and Schatz [77] further emphasized
that conducting user studies solely in the laboratory or field is insufficient, as both settings
are necessary to uncover crucial usability issues. While some studies have questioned
the validity of laboratory evaluations compared with field evaluations [78], it is widely
accepted that laboratory environments and field studies complement each other [78]. Labo-
ratory studies are valuable for evaluating the application, while field studies are necessary
to validate the results [78].

To ensure usability issues are not overlooked, de Sá and Carriço [79] recommended
conducting user studies in realistic settings with specific details, as relying solely on
laboratory or field tests may lead to missing important insights. Duh et al. [80] highlighted
that laboratory and field user studies often uncover different issues and usability problems.
While laboratory studies offer advantages such as reduced difficulties in data collection,
they cannot address the factors and issues that arise in real-world field settings [80].

However, evaluating usability in the field is not without challenges, as pointed out
by Kjeldskov and Stage [76]. Establishing realistic studies that capture key use-context
situations, applying established evaluation techniques like observation and think-aloud,
and collecting data can be complex in field evaluations due to the multitude of unknown
variables and limited control over the environment [76]. In contrast, these difficulties are
significantly reduced in laboratory settings [76].

After discussing these two user study types, let us clarify the whole swipe condition for
evaluating the SVM, representing a real-world scenario.

6.1. Whole Swipe

We used the middle part of a recorded swipe movement to train the SVM using the
train/test split approach that was described in Section 5.1.1. This means that we applied
the vibration signal data set from the laboratory user study. In the current scenario, the
SVM is expected to classify the entire recorded swipe movement, which includes the stages
1 through 5 shown in Figure 4. Now, wi could contain a potential swipe surface or

ambient noise. The one-class SVM should filter out those wi that do not correspond to
swipe surfaces.

From the complete swipe over a surface, we collected data for l = 64 samples, resulting
in n(w⃗) = {9079}, and for l = 128 samples, the values were n(w⃗) = {4252, 6725.80, 9519}.
The symbol n(w⃗) represents the number of sliding windows w⃗ extracted from the recorded
vibration signals. This symbol is also known as the cardinality in mathematics, indicat-
ing the number of w in the set w⃗. The first value in the braces denotes the minimum
count of recorded w⃗, the second value represents the mean count of w⃗, and the last value
indicates the maximum count of sliding windows extracted from all recorded swipe
movements. We summarize the aforementioned description of n(w⃗) in the representa-
tion {min(n(w⃗)), n̄(w⃗), max(n(w⃗))}, where min(n(w⃗)) , max(n(w⃗)) ∈ N and the average
sliding window count n̄(w⃗) ∈ R.
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A sample size of l = 64 was utilized to record vibration signals from the smartphone,
giving rise to a single value for this particular condition. Consequently, the minimum and
maximum counts of w⃗ were eliminated. The value of l for this condition is presented in
Table 5. For conditions such as both devices in the best and worst scenarios, or smartwatch in
the best and worst conditions, a sliding window w of l = 128 samples was utilized. These l
values are also indicated in Table 5. Since there are five conditions with l = 128 samples
in this table, we were able to determine min(n(w⃗)), n̄(w⃗), and max(n(w⃗)). However, it is
not feasible to use this notation for l = 64 samples since we have only one condition for
this scenario.

In the condition both devices in Table 5, where vibration signals from both the smart-
phone and the smartwatch were combined, the maximum count value for l = 128 is
typically higher than for l = 64. When sliding windows are obtained from both devices,
approximately double the minimum value.

With this definition provided, we now move on to the in-field user study.

6.2. In-Field User Study

Under the typical usage of vibration as an input technique, the human- and software-
determined aspects are not known in advance. While we have control over the software
aspects, the human-determined aspects are influenced by individual preferences and
behaviors. To account for this variability, we allowed the participants to freely swipe
over the different surfaces without providing specific instructions on how to perform the
swipes. They had the flexibility to choose the swipe orientation, swipe contact, and swipe
movement, as shown in Figure 1. We provided the participants with the mobile device and
the swipe surface, and they performed the swipes in both a sitting and standing position.
The standing position was chosen to simulate scenarios such as using a light switch. The
concept is depicted in Figure 5.

Swipe movement

Sm
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(a) Swipe movement during sitting

Swipe movement

Smartwatch

Smartphone

(b) Swipe movement during standing

Figure 5. Swiping with different movement behaviors on the surface.

If the placement of the swipe surface is changed, as illustrated in Figure 5b, the SVM
will encounter untrained feature vectors. In this study, we aimed to investigate the impact
of swipe surface classification accuracy under such conditions. Figure 5a shows the same
swipe surface placement as in the laboratory user study.

Next, we explain the swipe movements represented in these figures. Figure 5a il-
lustrates the vertical swipe orientation, while Figure 5b depicts the horizontal swipe
orientation. Both images demonstrate the hand movements corresponding to Table 1.

During the recording of vibration signals in laboratory user studies, we used both
mobile devices. However, when participants used only the smartwatch, their hand posture
changed. Table 6 illustrates this alteration in hand posture.
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Table 6. Variations in hand pose when employing both mobile devices or relying solely on the
smartwatch for detecting vibration signals.

Both Mobile Devices Smartwatch

V

Swipe

Swipe surface

Vibration
detection

Swipe

Swipe surface

Vibration
detection
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Swipe surface

Vibration
detection

Swipe surface

Vibration
detection
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Under this condition, the swipe contact on the swipe surfaces is always made with
the finger, regardless of the swipe direction. In all images shown in the table, the swipe
direction is always vertical. The difference is in the number of vibration detections. The left
column of the table shows the hold of the two mobile devices used in the laboratory user
study. The right column shows the condition when only the smartwatch is used to detect
the different swipe surfaces. The difference between these two conditions is the change in
hand posture. In the right column of the table, the hand posture looks like writing with the
finger [81] or swipe over different swipe surfaces [2,4].

Method

For the in-field user study, each participant could choose between the smartphones
Samsung GALAXY Note 3 and LG P700 and was assigned the smartwatch Sony SmartWatch
3. We want to figure out which smartphone size the participants prefer in this user study.
To compare preferences, we have selected the Samsung GALAXY Note 3 and the LG P700
smartphone. The Samsung GALAXY Note 3 is larger than the LG P700. As we are only
interested in smartphone size, we have provided all participants with the same smartwatch
for the study.

Before recording the vibration signals, the participants were asked to demonstrate
how they would swipe over the surfaces. They had the opportunity to practice and choose
a swipe behavior they felt comfortable with. The examiner then stored the selected swipe
movement behavior on the mobile device, including swipe orientation, swipe contact, and
swipe movement. Once the selection was made, participants were required to stick with
their chosen swipe movement behavior throughout the study. In one part of the study, half
of the participants started swiping in the sitting condition while the other half started in the
standing condition, or vice versa. Figure 5 illustrates the differences between these swipe
conditions. The participants initially used both mobile devices, and then they proceeded to
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use only the smartphone or the smartwatch to record the vibration signals. We provided
different combinations to ensure that participants did not always start with both devices.
The order of the swipe surfaces was randomly assigned to the participants, and the order
of movement behaviors changed after each participant.

During the screening phase of the study, several differences were identified compared
with the already conducted user study:

1. Selection of swipe behavior: In the screening phase, the examiner provided instruc-
tions to participants regarding the swipe behavior to be used in the study.

2. Different swipe conditions: During the screening phase, participants only performed
swipes in the sitting condition. However, in the in-field user study, both sitting and
standing swipe behaviors were included. The change in swipe conditions is significant
because the position of the mobile devices and the swipe surface differs when standing,
as depicted in Figure 5. This variation in the swipe condition should answer the
question of whether and how it affects the classification of the swipe surface.

3. Bluetooth connection: In the screening phase, both mobile devices were consistently
connected via Bluetooth. However, in the in-field user study, the smartphone and
smartwatch were used separately, without a Bluetooth connection between them.
Participants performed swipe movements using both connected and unconnected de-
vices. When there is no Bluetooth connection, the hand posture changes, as illustrated
in Figure 6.

Mobile devices: We used the smartphone and smartwatch from the laboratory user
study. We added an LG P700 smartphone to this user study. The dimensions of the device
are 125.5 × 67 × 8.7 mm. All three mobile devices run the Android operating system, so we
applied the coded software directly from the laboratory user study.

Participants: We invited twelve participants from our university. The average age of
the participants was 28.33 (SD: 3.70) years, and six of them were female. During the study,
eleven of the participants swiped over the swipe surface with their right index finger. The
user study took approximately 20 minutes for each participant.

We conducted a three-factor user study with a within-subjects design, consider-
ing only the factors we can control. These controlled factors are movement behaviors
∈ {sitting, standing}, the mobile devices ∈ {smartwatch, smartphone, both devices}, and
the five different swipe surfaces. These factors lead to 12 (participants) × 2 (movement
behaviors, see Figure 5) × 3 (mobile devices) × 5 (swipe surfaces, see Figure 1) × 2 (repeti-
tions) = 720 swipe movements. We used all the extracted sliding windows w⃗ from these
swipe movements.

We observed in the first two participants that the repetition of the task was not
displayed to them. After checking the data, we realized that they swiped over the swipe
surfaces for a longer duration, resulting in more extracted w⃗ than expected. Additionally,
two other participants started and stopped the vibration recording for one swipe movement
behavior extremely quickly, resulting in no recorded vibration signals. These examples
highlight the high variance in swipe lengths. Nevertheless, despite these challenges, we
were still able to collect sufficient data in the user study, making data analysis possible. For
l = 64 → n(w⃗) = {715, 760.50, 834} and for l = 128 → n(w⃗) = {275, 1075.05, 1441}, we
only distinguished between the mobile device types smartwatch and smartphone, without
considering different manufacturers.

6.3. Ambient Noise User Study

Previously, the one-class SVM was tested only on sliding windows that contained
potential vibration signals. To evaluate the performance of the one-class SVM, we focused
on human physical activities that other researchers [35,36,82–85] aimed to detect using
accelerometers. These activities included walking, climbing up stairs, climbing downstairs,
and typing on a desktop computer keyboard [36,82–85]. Based on their considerations,
we extracted several usage conditions for the smartphone and the smartwatch that were
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unrelated to potential swipe surface vibration signals. These vibration signals were named
ambient noise.

Method

The activities and the number of sliding windows w extracted from each recorded
ambient noise task are listed below. During the user study, both mobile devices recorded
ambient noise while the participants performed these activities. The activities performed
by the participants are listed below.

1. Walking: The participants walked around our university for about five minutes.
They wore the smartwatch on their wrist and held the smartphone in their hand.
This walking activity also involved climbing up and down stairs. We included this
condition based on our observation of how people typically hold their smartphones
while walking on the campus at our university.
l = 64; n(w⃗) = {1903};
l = 128; n(w⃗) = {951, 1525, 2144};

2. Text typing: The participants picked up the smartphone from the desk and typed a
text. Afterward, they placed the smartphone back on the desk. We did not provide a
specific input text, and it was not crucial how they typed the text, that is, whether it
was with their index finger or thumb, for example. The participants repeated this task
three times.
l = 64; n(w⃗) = {892};
l = 128; n(w⃗) = {445, 811.80, 1126};

3. Phone call: We simulated a phone call for the participants. In this scenario, they
picked up the smartphone from the table. Next, they swiped over the touchscreen to
accept the phone call. After a while, they returned the smartphone to the table. The
participants repeated this task three times.
l = 64; n(w⃗) = {169};
l = 128; n(w⃗) = {84, 176, 241};

4. Whole day: The mobile devices recorded vibration signals for a duration of two
hours. During this time, the devices were also charging. Each task was repeated
twice, allowing us to collect vibration signals for approximately eight hours. These
tasks were distributed throughout the day to simulate typical mobile device usage
patterns. These charging times are in consideration of the limited battery capacity of
the smartwatch. We handed over the mobile devices to the participants and were not
able to observe their activities during the recording time.
The start of the vibration recording varied slightly because the mobile devices were
not connected via Bluetooth. Participants pressed the start button on each device to
begin recording the vibration signals. A time series of s⃗ = {s1, s2, s3, . . . , sl=128} was
recorded randomly. To manage the data effectively, the software application on the
mobile devices stopped after two hours, resulting in nearly 1000 of s⃗. At this stage, s⃗ is
not converted to a sliding window. When about 500 such time series in one hour have
been recorded in one hour, the software application will stop recording the vibration
signals until the next hour is started. After the recording time, the sliding windows w
with 64 or 128 samples were applied as specified in Table 5 and explained in Figure 3.
l = 64; n(w⃗) = {9079};
l = 128; n(w⃗) = {4252, 6725, 9519};

Mobile devices: The LG P700 smartphone was used for the conditions walking, text
typing, and phone call, as participants preferred its smaller size, making it easier to hold
compared with the Samsung GALAXY Note 3. For the whole day condition, the smartphone
Samsung GALAXY Note 3 was preferred due to its longer battery life compared with the LG
P700. The smartwatch Sony SmartWatch 3 was chosen for all conditions in this user study.
Participants: For the ambient noise user study involving the tasks of walking, text typing,
and phone calling, we recruited twelve participants primarily from our university. The
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average age of the participants was 35.42 (SD: 13.96) years, with a gender distribution of six
females. Nine of the participants reported using their right hand as their dominant hand.

The duration of the user study for each participant was approximately twelve minutes.
To record ambient noise throughout the day, we invited five participants, with only

one of them being affiliated with our university. The average age of these participants was
46.40 (SD: 16.24) years, with a gender distribution of two females. Three of the participants
wore the smartwatch on their left hand. These participants had no prior knowledge of our
research and were not associated with it. They also did not receive any compensation for
their participation.

This user study spanned a minimum of eight hours.
We conducted a two-factor user study with a within-subjects design, focusing on

mobile devices and four conditions. In the in-field user study, instead of counting swipe
movements, we tracked the time spent on different activities. For each activity in the user
study, such as walking, text typing, . . ., whole day, we counted the number of extracted
sliding windows, categorized by l ∈ {64, 128} samples.

So far, we have discussed the three user studies that we conducted. In the laboratory
user study, we identified the best and worst conditions for the classification of the different
swipe surfaces based on different swipe movement behaviors. One of these conditions
involved creating an SVM model for both mobile devices, while the other conditions in-
volved creating separate SVM models for smartphones and smartwatches. These conditions
were detailed in Table 5. We evaluated the six different SVM models listed in this table
with respect to the whole swipe from Section 6.1, in-field user study from Section 6.2,
and ambient noise from Section 6.3. The following section presents the results of these
user studies.

7. Results

We compare the results of human-determined and software-determined aspects. In this
section, human-determined aspects refer to how users swipe, while software-determined
aspects involve different SVM models and the accuracy of classifying swipe surfaces.

7.1. Human-Determined Aspects

First, we discuss the questionnaire from the laboratory user study regarding the swipe
behaviors over the swipe surfaces. The obtained answers are illustrated in Tables 7 and 8.
These two tables should give a first indication in which direction it might be possible to go.

We start by explaining the result in Table 7. In this table, the column Filled in shows
the result of the questionnaire in the laboratory user study. The column Applied lists the
selected swiping behavior in the field user study. This table compares the suggestions for
human-determined aspects in the laboratory user study questionnaire and their aspects in
the field user study. Our interpretation of the result in this table is that users should not
have to choose between different swipe contacts. We noticed that some of the participants
in the user studies had very short nails, which made the nail swipe contact irrelevant for
them. In addition, one participant had artificial fingernails, which initially seemed suitable
for the nail swipe contact. In practice, when the artificial nails were broken or protected
by the user, it became difficult to perform the swipe contact correctly. In such cases, it was
impossible to distinguish between the nail and skin swipe contacts. We observed that the
questionnaire responses were generally consistent with the actual findings.
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Table 7. Preferred swipe behaviors of the participants based on the questionnaire and the selected
swipe behaviors in the field user study. In the column Filled in, we have no values in the rows
Dispreferred, because the participants were free to choose their swipe behaviors. Therefore, we can
assume that the participants preferred the swipe behaviors they chose.

Swipe
Behavior

Condition Filled in
in %

Applied
in %

V
Orientation Horizontal 41.67 50.00

Vertical 58.33 50.00

Contact Skin 75.00 75.00
Nail 25.00 25.00

Movement Hand 100.00 100.00
Finger 00.00 00.00

V
Orientation Horizontal 50.00

Vertical 50.00

Contact Skin 16.67
Nail 83.33

Movement Hand 25.00
Finger 75.00

Pr
ef

er
re

d
D

is
pr

ef
er

re
d

Table 8 lists the preferred and dispreferred swipe surfaces. The most disliked swipe
surfaces were the breadbasket and splayed fingers, likely due to their irregular structure,
which participants found unfavorable.

Table 8. Participants’ preferred and dispreferred swipe surfaces based on the questionnaire in the
laboratory user study.

Preferred
in %

Dispreferred
in %

Small comb 41.67 8.33
Breadbasket 33.33 41.67
Notebook 16.67 8.33
Closed fingers 8.33 0.00
Splayed fingers 8.33 41.67

We also asked participants in the laboratory user study about their preferences regard-
ing the size of the smartphone used for swiping over the surfaces. The evaluation of their
responses revealed that none of the participants preferred a larger smartphone for this user
study. Only 8.33% of the participants were satisfied with the given touchscreen size, while
the majority preferred a smaller smartphone. The preference for a smaller smartphone is
confirmed in the field user study, as participants exclusively used the LG P700 smartphone,
which is smaller than the smartphone used in the laboratory user study.

The results of the questionnaire must be interpreted with caution due to the limited
sample size, although a trend is indicated, given the extremely small number of participants.

7.2. Software-Determined Aspect (Classification)

We outline the classification accuracy for the different swipe surfaces under different
conditions as listed in Table 5. In this table, we listed the best and the worst conditions for
the smartphone, the smartwatch, and both devices. We list the results for the laboratory
user study, using the whole swipe movement in the laboratory user study and in the field
user study.

Kostakos and Musolesi [86] argued that evaluating the SVM based solely on classifier
accuracy is insufficient. Therefore, we present the data from various user studies in the
form of a confusion matrix, also known as a confusion table or contingency table [40].
According to Kostakos and Musolesi [86], the presence of false positives is an important
aspect that is often overlooked in study evaluations. By using a confusion matrix, we can



Multimodal Technol. Interact. 2024, 8, 76 28 of 46

consider false positives and shed light on this aspect. The feature vectors were created
using data from the laboratory, field, and ambient noise creation tasks. Figure 6 depicts
the confusion matrix for the best conditions, as listed in Table 5. Figure 7 illustrates the
confusion matrix for the worst conditions, also from the same table.
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Figure 6. Confusion matrices (multiclass SVMs) and bar charts (one-class SVMs) for the best condi-
tions from Table 5 are indicated by the column name. The row names represent the user studies.
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Figure 7. Confusion matrices (multiclass SVMs) and bar charts (one-class SVMs) for the worst
conditions from Table 5 are indicated by the column name. The row names represent the user studies.

The structure of these figures resembles a table, with columns indicating the used
SVM kernel and rows highlighting the data submitted to the SVM. The name of the column
in these figure list the SVM model from Table 5. For example, the row labeled Laboratory
represents data from the laboratory user study. All the displayed confusion matrices
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show classification accuracy in percentages. The one-class SVM, as described in Figure 2,
classified the ambient noise successfully. The bar chart to the left of the confusion matrix
illustrates the classification success visually.

Upon analyzing the presented confusion matrices, we observed that SVMs performed
exceptionally well under the best conditions, specifically in the laboratory. This observation
holds true for smartphones, smartwatches, or a combination of both. However, in the worst
SVM conditions, the classification accuracy significantly decreased compared with the best
conditions. Under the evaluation conditions of whole swipe and in the field, the accuracy of
swipe surface classification declined compared with the laboratory condition. This decline
was observed irrespective of whether we considered the best or worst SVM conditions.
Furthermore, regardless of the condition, the one-class SVM rejected approximately half of
the extracted sliding windows from a single swipe movement. This finding is reflected in
the confusion matrix for both the whole swipe and in the field conditions.

Ruuska et al. [87] emphasize that validation methods are not always in agreement.
Therefore, they recommend using several methods for validation. Ben-David [88] concludes
that simply counting the number of misses for each swipe surface, as in the confusion
matrix, may be misleading when assessing the accuracy of swipe surfaces. Hence, Table 9
lists Cohen’s κ for these confusion matrices as an additional validation method. Other most
common statistical methods or metrics are, for instance, the coefficient of variation and
Kendall’s coefficient of concordance [89]. We chose to use Cohen’s κ coefficient because it is
generally considered a more reliable measure than a simple percent agreement calculation.
It is because it takes into account the agreement occurring by chance [90]. We applied
the interpretation of Cohen’s κ according to McHugh [91]. κ can range from −1 to +1. A
negative κ represents an agreement worse than expected. Low or negative values for κ
represent no agreement and lead to the same result as in the confusion matrices.

Table 9. Calculation of Cohen’s κ for the best and worst conditions from the confusion matrix in
Figures 6 and 7. Thus, κ is calculated only for the multiclass SVM. The range of κ is computed with a
95% confidential interval (CI).

Best Condition Worst Condition

User Study Device κ κ-CI Agreement κ κ-CI Agreement

Laboratory both devices 0.615 0.575 0.655 moderate 0.284 0.220 0.348 minimal
Laboratory smartphone 0.970 0.953 0.988 almost perfect 0.007 −0.069 0.082 none
Laboratory smartwatch 0.997 0.992 1.000 almost perfect −0.053 −0.078 −0.028 none
Whole swipe both devices 0.184 0.171 0.197 none 0.116 0.096 0.137 none
Whole swipe smartphone 0.250 0.231 0.270 minimal 0.581 0.511 0.652 weak
Whole swipe smartwatch 0.268 0.251 0.285 minimal 0.036 0.028 0.045 none
In the field both devices 0.039 0.016 0.061 none 0.025 −0.026 0.076 none
In the field smartphone 0.014 −0.034 0.063 none 0.056 −0.075 0.188 none
In the field smartwatch 0.048 0.025 0.072 none 0.005 −0.009 0.019 none

In Figures 8 and 9, we aim to highlight the impact of swiping while sitting and
standing, as shown in Figure 5, as well as the hand pose, as depicted in Table 6. These are
the findings from the user study conducted in the field, as discussed in Section 6.2.

These figures follow the same format as the previous two. If a row is labeled One device,
it indicates no connection between the smartphone and the smartwatch, while the row
labeled Both Devices signifies a Bluetooth connection between the two mobile devices. If we
used a Bluetooth connection in the in-field user study, then the participants used the mobile
devices at the same time as was illustrated in Table 6. Without the Bluetooth connection,
the hand pose changed, as was illustrated also in this table. In the laboratory user study,
we also had a Bluetooth connection. However, in that study, we did not differentiate the
swipe orientation, as depicted in Figure 1.
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Figure 8. Confusion matrices (multiclass SVM) and bar charts (one-class SVM) illustrating the
results under the best conditions during the in-field user study. The column name in the matrices
represents the best conditions for the SVM, which was listed in Table 5. The row name in the matrices
corresponds to different hand poses, as depicted in Figure 6.
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Figure 9. Confusion matrices (multiclass SVM) and bar charts (one-class SVM) illustrating the
results under the worst conditions during the in-field user study. The column name in the matrices
represents the best conditions for the SVM, which was listed in Table 5. The row name in the matrices
corresponds to different hand poses, as depicted in Figure 6.
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The shown confusion matrices and bar charts reveal a distinction based on whether
the smartphone is held in the hand or not. However, we did not explore the specific
reasons for this difference in detail. Further investigation into this matter is beyond the
scope of this work, and therefore, we cannot provide any additional interpretations of the
presented data.

It is worth noting that all participants preferred using the smaller smartphone, as was
used in the laboratory study.

We calculated also Cohen’s κ only for the confusion matrices of the multiclass SVMs.
The result of this calculation is listed in Table 10. Also in this case, Cohen’s κ leads to the
same interpretation as the confusion matrices in Figures 8 and 9.

Table 10. Calculation of Cohen’s κ for the best and worst conditions from the confusion matrix in
Figures 8 and 9. Thus, κ is calculated only for the multiclass SVM. The range of κ is computed with a
95% confidential interval (CI).

Best Condition Worst Condition

Device Used κ κ-CI Agreement κ κ-CI Agreement

Both devices both standing −0.010 −0.041 0.020 none 0.030 −0.043 0.103 none
Both devices both sitting 0.079 0.047 0.111 none 0.015 −0.057 0.087 none
Both devices one standing −0.044 −0.072 −0.017 none 0.001 −0.075 0.077 none
Both devices one sitting 0.038 0.008 0.068 none 0.009 −0.057 0.075 none
Smartphone both standing 0.000 −0.068 0.067 none 0.062 −0.124 0.249 none
Smartphone both sitting 0.032 −0.036 0.100 none 0.042 −0.126 0.211 none
Smartphone one standing 0.048 −0.023 0.118 none −0.090 −0.229 0.049 none
Smartphone one sitting 0.030 −0.036 0.097 none −0.133 −0.336 0.070 none
Smartwatch both standing −0.003 −0.035 0.029 none −0.018 −0.037 0.001 none
Smartwatch both sitting 0.092 0.059 0.125 none 0.030 0.008 0.052 none
Smartwatch one standing −0.043 −0.072 −0.014 none 0.001 −0.021 0.023 none
Smartwatch one sitting 0.039 0.008 0.069 none 0.021 −0.004 0.046 none

In Appendix E, we explain the process of calculation of κ.
Figure 10 showcases the various tasks that generated ambient noise signals. In the

optimal condition, the SVM classifies 100% of the recorded human body activities as
ambient noise. We achieve a near-optimal case with the SVM kernel for the smartphone, as
shown in Figure 10b. However, in the remaining cases, the SVM struggles to distinguish
between a potential swipe surface and ambient noise.

In Appendix F, we outline also the shape of the feature vector Υ⃗.
In the previous section, we compared the answers from the questionnaire with the

actions in the field user study, where we found that the results were similar. We then dis-
cussed the evaluation of SVM-based classification for swipe surface recognition, presenting
data from user studies conducted in different environments. We also analyzed the shapes
of the resulting feature vectors. We discuss our findings in the next section.
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Figure 10. Misclassified ambient noise signals as swipe gestures. The best and the worst conditions
are taken from Table 5.

8. Discussion

We compare our outcome with the existing literature, exploring both human- and
software-related aspects.

8.1. Human-Determined Aspects

The role of human-determined aspects in achieving high accuracy in swipe surface
classification is significant. When these aspects are not adequately trained, it leads to a
drastic decline in classification accuracy. Previous research by Han et al. [2] proposed a
gesture involving the use of a fingernail, which has been found to be unfavorable for this
interface. User studies have revealed that the availability of a required fingernail is not
always guaranteed. On the other hand, the horizontal and vertical swipe orientations
suggested by Han et al. [2] have shown promise. However, we concur with the findings
of Han et al. [2] that an individual’s swiping styles may vary from swipe to swipe. These
variations in swiping style must be taken into account for this swipe-based interaction.

We have adopted and extended the swipe movement behaviors over textured surfaces
as outlined by Han et al. [2], considering that users hold smartphones in their hands.
Table 1 lists these behaviors. Additionally, the gestures described in Table 6 offer a new
perspective on swipe surface interaction. However, it is important to note that while
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choosing an appropriate gesture is crucial, placing emphasis on the software aspects is even
more critical. In the following section, we discuss these software aspects in relation to the
existing literature.

8.2. Software-Determined Aspects

We conducted experiments to confirm the sampling frequencies of the smartphone
and smartwatch. The smartphone operates at an approximate sampling frequency of
100 Hz, while the smartwatch has a higher sampling frequency. Similar to the findings of
Lukowicz et al. [17] and Owusu et al. [34], we were able to achieve accurate classifica-
tion of different swipe surfaces using these sampling frequencies. We also acknowledge
Han et al.’s [2] concern regarding the lower sampling rate of accelerometers in mobile
devices compared with acoustic sensors, which can affect the sensitivity in detecting
vibration signals.

Through our investigation, we found that the most successful swipe surface classifi-
cation was achieved when using a feature vector consisting of samples in the frequency
domain, such as mels. We observed that additional signal descriptors were not necessary for
the frequency domain samples. Analyzing the feature vector plots provided us with a better
understanding of its elements. We noticed that the feature vector performed exceptionally
well under laboratory conditions, but its classification accuracy significantly decreased
during the evaluation. This aligns with the viewpoint expressed by Saeys et al. [39] that
deeper insights into the underlying data generation processes are necessary to achieve
high swipe surface classification accuracy. We also concur with Sherin and Supriya [38]
on the importance of selecting an appropriate feature vector, as it directly contributes to
achieving high classification accuracy. These considerations pertain to the interpretability
and explainability of feature vectors and the classification of different swipe surfaces [92,93].
Interpretability primarily relates to the intuition behind the outputs of the SVM kernel [93],
while explainability focuses on the internal logic and mechanics within an SVM [93].
Ribeiro et al. [92] emphasized that accuracy often proves to be an unsuitable metric for
evaluating SVM kernels, motivating the need for explaining SVM kernels [92]. However,
Linardatos et al. [93] found a lack of mathematical formality and rigor in both inter-
pretability and explainability, despite several attempts made. We concur with [22], who
observed that the selection of elements in the feature vector remains an ongoing research
topic in supervised learning, closely tied to feature vector engineering [92]. Two types
of models need to be considered for these concepts. An SVM kernel represents one such
model. We employed SVM kernels as black-box models. Conversely, we have the so-called
white-box or glass-box models. White-box models yield explainable results at the cost of
reduced power, failing to achieve state-of-the-art performance compared with black-box
models [93].

Our findings demonstrate that SVM is capable of effectively separating ambient noise
from potential swipe surfaces, indicating that training an additional class is unnecessary.
However, we observed that the classification accuracy can be further improved. Under this
assumption, we anticipate better classification results for different swipe surfaces compared
with the current performance.

The presence of a first-order Butterworth high-pass filter has an impact, suggesting
the necessity of a filter. We believe that further investigation is required to determine the
specific details of ωc in order to make definitive statements.

For l ∈ {64, 128} samples with fs ≈ 100 Hz, it is sufficient to classify different swipe
surfaces. However, a higher sample rate might lead to improved classification accuracy. It
is worth noting that a constant sample rate, rather than a higher one, might be the crucial
factor. We discovered variations in the sample frequency, causing the feature vector to
differ due to missing samples required for its calculation. Consequently, the feature vector
contains elements that describe another swipe surface, leading to the misclassification of
swipe surfaces.
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The RBF kernel and a linear kernel demonstrate high classification accuracy and serve
as a solid starting point for further research. Lin and Lin [94] emphasized that the RBF
kernel should be the first choice. However, to effectively classify swipe surfaces using these
kernels, appropriate hyperparameters need to be determined. The default values for the
hyperparameters result in low classification accuracy for swipe surfaces. Additionally, Lin
and Lin [94] indicated that under certain parameter settings, the sigmoid kernel behaves
similarly to the RBF kernel, while the linear kernel can be seen as a special case of the RBF
kernel among existing SVM kernels.

We agree with Manevitz and Yousef [60] that Υ⃗ should consist of a small number of
elements. Specifically, for the RBF SVM kernel, Manevitz and Yousef [60] demonstrated
that 10 elements in Υ⃗ yield significantly better results than 20 elements. However, it should
be noted that generalizing these findings to other applications can be challenging.

9. Conclusions

In this work, we have addressed additional considerations that were not explored
by Harrison et al. [4] and Han et al. [2]. We considered human-determined aspects and
software-determined aspects. The human-determined aspects consider the manner in
which users swipe over the swipe surfaces and the location of the mobile devices. The
software-determined aspects pertain to the length of the sliding window w, the cut-off
frequency wc for the Butterworth high-pass filter, the kernels for the one-class SVM and
the multiclass SVM, and the feature elements in the feature vector Υ⃗. In particular, the
software-determined aspects have been included in the flow diagram. Figure 2 shows this
flow diagram, which can be used to detect swiping gestures on textured surfaces. However,
the results of our conducted user studies indicate that users tend to perform the gestures
imprecisely when using this interface. This imprecision can be attributed to factors such as
the size of the smartphone being too large for comfortable handling or the fingernails being
cut too short to make effective contact with the swipe surface. Nevertheless, considering this
“sloppy” execution of gestures, our findings clearly highlight the need for future research to
focus on software-determined aspects that can accommodate moderately imprecise swipe
gestures in this interface.

The research question can be answered by identifying the key software-determined
aspects that influence the vibration-based input on mobile devices for recognizing various
textured surfaces using SVM. Our work also provides guidance on the specific software-
determined aspects that require special attention to achieve accurate classification of tex-
tured surfaces. In the following, we briefly discuss these software-determined aspects.

In the laboratory user study, we achieved high surface classification using the mels
from MFCC approach (see Equation (11) on page 18), which aligns with research on rapid
recognition of speed [65]. Gaspar et al. [65] emphasized the importance of selecting the
appropriate kernel, tuning hyperparameters, adjusting the misclassification penalty C, and
carefully choosing the elements for the feature vector. Additionally, a suitable filter for
the vibration signal must be selected to attain high classification accuracy. It is crucial to
keep the feature vector concise, as an increase in the number of elements in Υ⃗ significantly
decreased the classification performance of different swipe surfaces [60].

We acknowledge that our study has limitations because we only used textured surfaces.
We assumed that the SVM could easily distinguish vibration signals from these surfaces.
It’s important to first confirm if our findings can apply to vibration signals of surfaces
with small amplitude differences. Although other machine learning algorithms like neural
networks could also be used, we chose to stick with the SVM for detecting the vibration
signals of different surfaces, inspired by Han et al. [2]. Recognizing this limitation, we
understand the need for further research on the human-perceived aspects of this vibration-
based interface. In the next section, we provide a list of additional research topics to explore
in future investigations.
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9.1. Outlook
9.1.1. Human-Determined Aspects

In this study, we demonstrated that participants have a preference for smaller smart-
watches. However, there is a need for further research to investigate how smartphones
can be effectively held in the hand. Currently, it remains unclear how handles designed
for smartphones can enhance the usability of larger devices and how they may impact
the detection of vibration signals. Conducting research in this area will provide valu-
able insights into the ergonomic considerations and potential implications for vibration
signal detection.

9.1.2. Software-Determined Aspects

Suitable values for hyperparameters: One approach to address the optimization
problem is the Bat Algorithm [38,95]. This algorithm is a metaheuristic method inspired
by the echolocation behavior of bats [95]. Another technique that can be employed is grid
search [49,62,63], along with other similar algorithmic methods [96]. These approaches
offer potential strategies to find suitable hyperparameters for SVM kernels and enhance
the accurate classification of various swipe surfaces.

Sample rate: The sample rate on mobile devices running the Android operating system
often varies, leading to lower classification accuracy for different swipe surfaces. To
address this issue, Liu et al. [33] employed cubic spline interpolation, a widely used signal-
processing technique, to correct nonuniformly sampled data. An alternative approach
involves utilizing the native language C/C++ for Android, which offers a nearly constant
sampling rate of 200 Hz [97]. The consideration of sample rate arose due to the use of
a commercially available, low-cost vibration sensor by Han et al. [2], as such sensors
typically maintain a consistently high sample rate. By addressing the variations in sample
rate, we can improve the reliability and accuracy of the classification process for different
swipe surfaces.

Vibration signal synchronization: We observed variations in hand movements, which
is consistent with the findings by Guerra-Casanova et al. [98] and Liu et al. [33]. In
order to enhance the accuracy of swipe surface classification in future work, it is crucial
to synchronize these different human behaviors. We believe that synchronizing hand
movements can improve classification accuracy. A potential way to achieve synchronization
is by using dynamic time warping (DTW) [30,99] or its extension locally slope-based
dynamic time warping (LSDTW) [100]. Furthermore, we need to determine whether a
sample size of 64 or 128 is enough to capture the vibration signal from a swipe surface.
Understanding the optimal sample size will help to improve the classification process.
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Appendix A. Swipe Gesture

The term swipe gesture refers to the same action of moving one’s finger across a surface
in a single continuous motion. The word swipe gesture is commonly used and recog-
nized in technical contexts, especially when discussing interactions with digital devices or
user interfaces.

In addition, we use the word swipe to indicate a single instance of the action, while
swiping refers to the ongoing or repeated action.

Appendix B. Single-Board Computer

The Odroid N2+ CPU operates at a maximum clock frequency of 2.4 GHz on quad-core
Cortex-A73 and 2.0 GHz on dual-core Cortex-A53. To maintain high clock frequencies
for extended periods, a fan was utilized. Without the fan, the computer would heat up,
resulting in decreased clock frequency and longer computation times. We employed
GraalVM, see more details on the web page of GraalVM: https://www.graalvm.org/, last
access 15 October 2022, version 22.2.0 for the AArch64 chip architecture (community edition)
to enhance the performance of the Java code by generating native binaries. The Odroid N2+
is equipped with 4 GB of memory, and to avoid exceeding the memory limit, we trained
only four different SVMs simultaneously.

Appendix C. Vibration Signal

Figure A1 demonstrates the effect of different swipe movement behaviors on the
recorded vibration signal from the smartphone and smartwatch separately. In this figure,
the three acceleration directions x, y, and z are depicted. These plots are aligned with the
representation of the sliding window w in a matrix structure, as described by Equation (1).

In this figure, the closed fingers symbolize the swipe surface. These two figures
highlight the varying swipe behaviors that result in different vibration signal amplitudes.
These distinct amplitudes should contribute to different elements in the feature vector Υ⃗,
thereby facilitating the accurate classification of swipe surfaces.

In Figure A1, the recorded vibration signal with the finger and hand is displayed.
The time period of 1.25 to 3.25 s was utilized for wi, resulting in a duration of 2 s de-
noted as T. The sampling frequency fs on mobile devices is approximately 100 Hz.
The total number of samples within this time frame is represented by N, calculated as
N = fs · T = 100 Hz · 2 s = 200 samples. To account for the half-overlap used, the number
of samples should be greater or nearly equal to 192 samples. We assume a maximum
of 128 samples within wi due to the half-overlap and the train/test split method, which
requires 3 sets of 64 samples. This satisfies the condition of extracting three ws from a swipe
movement. However, extracting more than three wi per swipe movement would increase
the likelihood of including samples with ambient noise information. If we cannot extract at
least three wi, the swipe movement is not considered for training the SVM.

In the previous determination of the required samples, we assumed 100 Hz. Now, we
want to determine the sampling frequency present on the two mobile devices. Therefore,
we used the recorded vibration signals from the user study. For this, we used the number
of samples N within a swipe movement gesture over a surface. The time required to
record the samples of this swipe gesture was also measured and denoted as ∆t with second
as unit. Then we can determine the sampling frequency fs with N/∆t. We obtained
for the smartphone an overall measured sampling frequency of 102.15 Hz (SD: 0.91 Hz).
The smartwatch had an fs of 124.42 Hz (SD: 6.65 Hz). From the calculation of sampling
frequency fs, we saw that the fs on the smartphone was nearly constant. On the smartwatch,

https://www.graalvm.org/
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the sampling frequency varies more than on the smartphone. We have enough samples N
so that we can extract three different sliding windows from each swipe movement. The
smartphone recorded on average 658.22 (SD: 245.71) samples. The other device recorded
on average 795.01 (SD: 284.92) samples. On average, the swipe movement took 3.22 (SD:
1.21) seconds over each swipe surface on the smartphone. The samples were recorded for
an average of 3.2 (SD: 1.17) seconds on the smartwatch. However, we have to consider
that the hand moves to the swipe surface and releases the swipe surface after finishing the
swipe movement. Thus, not every extracted sliding window contained information about
a swipe surface.
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Figure A1. The vibration signal shape while participants swipe over their closed fingers.

Appendix D. D-Optimal Design

To implement the D-optimal design, we utilized the statistical software program R.
In R, we used the optFederov command from the AlgDesign library. We set the parame-
ters for optFederov as follows: nTrails = 300, approximate = TRUE, criterion = D, and
andevaluateI = TRUE. By setting nTrails to 300, we reduced the full factorial design to
the desired number of experiments. The D criterion was chosen to employ the standard
approach of D-efficiency [101,102]. After applying the optFederov command with the speci-
fied parameters, we obtained the design, along with the values of the parameter D (0.199)
and Ge (1.0). These values indicate that the selected parameters are appropriate, as D is
low and Ge is close to one [103].

Appendix E. Cohen’s Kappa

We used the statistical software program R to determine Cohen’s κ coefficient. We
used confusion matrices from Figures 6–9. Instead of calculating the percentage, we now
used the count in each matrix. Then, we submit each matrix to the function Kappa(. . .)
from the library vcd. After we executed the function Kappa(. . .), we extract the result of κ
from this function with the function confint(. . .).
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Appendix F. Shape of Feature Vector

To gain a deeper understanding of the feature vector, we discuss in this section the
shape of the feature vector. To focus only on the elements in a feature vector where the
classified wipe surface matches the given swipe surface, Figure A2 shows the values of
the elements in feature vectors for the best and worst SVM conditions. These plots do not
account for misclassified swipe surfaces or ambient noise.
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Figure A2. Feature vector shapes for swipe surfaces. The best and the worst conditions are taken
from Table 5.
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The y-axes in these plots have been normalized. To obtain the average and standard
deviation (SD) of the feature vectors for each condition (e.g., the swipe surface small comb,
the user study in the laboratory, and the usage of both devices), we calculated the average
and SD of individual elements across all the generated feature vectors. This normalization
allows us to compare the different values of feature elements in Υ⃗. The plots only display the
first 20 elements of each feature vector, even if they contain more elements. This displayed
number of feature elements ensures that the feature vector can be properly represented in
the plot. The number of elements in the feature vector were listed in Table 5. In these plots,
the thicker line represents the mean values of each element in the feature vector, while
the thinner line represents the standard deviation. The mean values of the elements are
very close within the range of one to four, but the standard deviation is large in this range.
Comparing the best and worst SVM conditions, the plots show that the feature vector
elements are almost overlaid. Under these conditions, the swipe surface classification
accuracy is extremely low, as also indicated by the confusion matrix in Figure 7. The
overlapped SD of each element suggests a significant decline in classification accuracy for
the whole swipe and in-field evaluation scenarios.

To examine the shape of the feature vector for ambient noise vibration signals,
Figure A3 illustrates samples of wi for the best and worst candidates under different
mobile conditions.
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(a) Best conditions
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(b) Worst conditions

Figure A3. Feature vector shape for ambient noise signals. The best and the worst conditions are
taken from Table 5.

Comparing the shape of Υ⃗ in Figures A2 and A3, we see that the shape of the ambient
noise feature vector is somewhat different from that of the vibration signal of the swipe
surface. However, this difference in shape may be too small to significantly improve classi-
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fication accuracy. This observation is supported by Poel [21], who noted that mislabeled
data or noise in the labels can adversely affect the classification performance of SVMs.

Figure A4 visually illustrates the schema the theoretically worst and the best shape for
the feature vector.

−
0.

5
0.

0
0.

5
1.

0

Element

A
m

pl
itu

de

Best Case

1 2 3  … n

●

●
●

●
●

−
0.

5
0.

0
0.

5
1.

0
Element

A
m

pl
itu

de

Worst Case

1 2 3  … n

●
●

●

●
●

●

Small comb
Breadbasket

Notebook
Splayed fingers

Closed fingers

Figure A4. Schematic of the best and worst feature vector conditions for high classification accuracy
of different swipe surfaces in Figure 1.

In this schematic sketch, the dotted line represents the mean amplitude value of an
element in Υ⃗, while the solid lines above and below it indicate the standard deviation (SD)
of this amplitude value. This visual representation aims to illustrate the variations in the
feature vector elements under different conditions. On the left sketch, we can observe the
ideal shape of feature vector elements that indicate high classification potential. Another
sketch showcases the actual form of elements obtained from user studies, where the SD
closely aligns with the mean of each element in Υ⃗. It is important to note that the means of
the elements in the feature vector do not overlap and are not equal to their corresponding
standard deviations, which contributes to achieving high classification accuracy.
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