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Abstract: Multimodal interaction is a transformative human-computer interaction (HCI)
approach that allows users to interact with systems through various communication chan-
nels such as speech, gesture, touch, and gaze. With advancements in sensor technology
and machine learning (ML), multimodal systems are becoming increasingly important
in various applications, including virtual assistants, intelligent environments, healthcare,
and accessibility technologies. This survey concisely overviews recent advancements in
multimodal interaction, interfaces, and communication. It delves into integrating different
input and output modalities, focusing on critical technologies and essential considerations
in multimodal fusion, including temporal synchronization and decision-level integration.
Furthermore, the survey explores the challenges of developing context-aware, adaptive
systems that provide seamless and intuitive user experiences. Lastly, by examining current
methodologies and trends, this study underscores the potential of multimodal systems and
sheds light on future research directions.

Keywords: multimodal interaction; human-computer interaction; adaptive systems;
multimodal fusion

1. Introduction
Multimodal interaction signifies a significant change in HCI, integrating multiple

communication channels or modalities to enhance user experiences with extraordinary
richness, intuitiveness, and efficiency. Traditionally, computer interaction has been limited
to single inputs such as keyboard, mouse, or text-based commands, which can limit the
naturalness of user engagement. However, recent advancements in sensor technologies, ML,
and natural language processing (NLP) have opened the door for systems to understand
and respond to various inputs, including speech, gesture, gaze, touch, and haptics. This
shift towards multimodal interfaces enables more seamless and adaptable interaction,
making technology more akin to human communication patterns, where multiple sensory
inputs are processed simultaneously to convey intent, emotion, and context [1–3].

Multimodal interaction aims to improve usability and accessibility by enabling users
to engage with systems in the most natural and convenient ways. By utilizing multiple
input channels, multimodal systems can provide more flexible, robust, and context-aware
interactions. For instance, a voice command can complement a hand gesture to clarify the
user’s intention in a noisy environment. Similarly, in hands-free or immersive environments
such as augmented reality (AR), virtual reality (VR) and mixed reality (MR), gaze-based
input can work with touch or speech to streamline interactions. The power of multimodal
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systems lies in their capacity to merge and synchronize diverse inputs, giving users greater
control over their interactions with technology while enhancing the system’s real-time
responsiveness and accuracy [4–6].

Despite multimodal systems’ enormous potential, their development presents several
challenges. It is crucial to carefully coordinate the fusion of different input modalities
to ensure that they complement each other rather than cause conflicts. That involves
complex input synchronization, modality fusion, and context awareness, all of which
demand advanced algorithms and ML techniques. Additionally, multimodal systems must
be designed to adapt to diverse environments and user preferences, making them versatile
across various applications, from healthcare and education to entertainment and smart
environments [7–9].

Table 1 summarizes prior surveys on multimodal interaction, highlighting their focus
areas. This survey advances the discourse on multimodal interaction systems by providing
a holistic and integrated analysis that spans critical technologies, synchronization chal-
lenges, adaptive systems, and future research directions. Unlike [10], which primarily
explores vision-based multimodal techniques, including gesture and gaze, this survey in-
cludes a broader range of modalities, such as speech, touch, and haptics, and discusses their
integration in diverse applications. This comprehensive approach not only contextualizes
vision-based systems but also delves into the interplay of non-visual modalities, offering
insights into their practical implementation in real-world environments. The author in [11]
emphasizes the cognitive and neuroscience foundations of multimodal systems, focusing
on language processing and multimodal ML. While these aspects are significant, this sur-
vey extends beyond foundational theories to address applied challenges such as temporal
synchronization and real-time decision-level integration, which are crucial for developing
adaptive systems in dynamic contexts. Furthermore, this survey introduces a detailed
exploration of emerging sensory technologies like brain-computer interfaces (BCIs), which
are not deeply examined in [11].

Table 1. Summary of surveys and descriptions.

Survey Description

[10] Overview of multimodal HCI focusing on vision-based techniques like gesture, gaze,
and affective interaction, including challenges and emerging applications.

[11]
State-of-the-art analysis of multimodal-multisensor interfaces, emphasizing cognitive
and neuroscience foundations, language processing, multimodal ML, and future re-
search directions.

[12]
Focuses on challenges in designing multimodal interfaces, discussing technologies for
integrating speech, gesture, and gaze recognition with robust interface designs for
real-world applications.

[13]
Examination of multimodal interfaces and communication cues in remote collaboration,
highlighting VR/AR/MR technologies and their impact on task performance and
user experience.

[14] Analysis of multimodal interfaces for HCI, detailing their evolution, principles, and use
cases across domains like robotics, transport, and education.

[15] Study of model-driven engineering approaches to multimodal interaction, focusing on
simplifying the design and development of mobile multimodal applications.

[16] Comprehensive discussion on multimodal interaction principles, frameworks, and
architectures, including real-time processing and fusion of multiple data types.

[17]
Presents a comprehensive review of how interaction technologies such as VR, AR,
haptics, and tracking are utilized across various domains, including medicine, cultural
heritage, transportation, and industry.
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Table 1. Cont.

Survey Description

[18]
Explores the evolution and key aspects of multimodal interaction systems. It discusses
the definition, advantages, and history of multimodal interaction, focusing on the role of
input/output modalities, fusion engines, and human-centered interaction approaches.

[19]

Discusses the design and functionality of multimodal systems that integrate multiple in-
put and output modalities, such as speech, gestures, and visual inputs. It introduces key
concepts like multimodal messages, temporal relationships, and classes of cooperation
between modalities.

[20]
Provides an overview of the evolution, opportunities, and challenges in multimodal HCI.
It explores input/output modalities, integration methods, and key design principles,
offering insights into the historical advancements and future directions in the field.

In [12] is discussed the integration of speech, gesture, and gaze recognition, with an
emphasis on robust interface designs. While this overlaps with some topics covered here,
this survey provides a more extensive analysis of synchronization techniques and their
application in creating context-aware systems. It also addresses challenges in multimodal
fusion and adaptability in noisy or complex environments, which are not the primary focus
of [12]. Moreover, [13] investigates multimodal interfaces in remote collaboration and their
influence on user experience, particularly within VR, AR, and MR environments. This
survey builds on such insights by exploring these technologies across a wider array of
use cases, including accessibility and healthcare. The inclusion of future trajectories, like
integrating BCIs, positions this work as a forward-looking contribution compared to the
more domain-specific focus of [13].

In [14] is analyzed the evolution and principles of multimodal interfaces, emphasizing
robotics, transportation, and education. This survey complements and expands on these
discussions by presenting a unified roadmap that ties technological advancements to
user-centric design principles, focusing on adaptive and context-aware interactions that
are applicable across domains. The model-driven engineering approaches to multimodal
interaction highlighted in [15] provide a valuable perspective on simplifying interface
design. However, this survey takes a different approach by focusing on challenges in
deployment, particularly modality fusion and real-time processing, offering practical
solutions for enhancing usability and adaptability in real-world applications.

Furthermore, the authors in [16–18] delve into the principles, frameworks, and architec-
tural considerations of multimodal systems. While these studies provide strong conceptual
models, this survey distinguishes itself by presenting a detailed examination of modality
synchronization, error handling, and the role of artificial intelligence (AI) in personaliz-
ing user experiences, thus bridging theoretical insights with actionable methodologies.
Lastly, the evolution of multimodal systems and the integration of multiple modalities are
outlined in [19,20]. This survey extends the aforementioned works’ scope by emphasiz-
ing emerging trends and addressing gaps, such as the practical challenges of achieving
seamless interaction in noisy environments and leveraging advanced ML algorithms for
context-aware adaptation.

In conclusion, this survey distinguishes itself by integrating a wide range of multi-
modal interaction aspects, addressing both theoretical foundations and applied challenges.
It offers a comprehensive roadmap for advancing the field, with a forward-looking focus
on future directions like BCIs and advanced sensory technologies. This work not only
synthesizes the state of the art but also provides critical insights into overcoming cur-
rent limitations, setting a benchmark for future research and development. Specifically,
this survey:
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• Provides an analysis of the various input and output modalities used in multimodal
interaction systems, such as speech, gesture, touch, and gaze.

• Discusses the challenges involved in modality fusion, synchronization, and context
awareness, offering insight into current solutions and ongoing research.

• Explores the applications of multimodal systems across industries, including health-
care, VR, smart environments, and accessibility technologies.

• Highlights future directions for multimodal interaction, focusing on advancements in
ML and emerging technologies like BCIs.

Figure 1 illustrates a visual overview of the key topics, major application areas, and
future directions in the field. It serves as a roadmap for the following sections, guiding a
structured exploration of the challenges and solutions in multimodal interaction systems
and their integration into real-world applications. The figure highlights the interplay
between modalities, practical implementations, and technological advancements necessary
for future development, ensuring a cohesive narrative throughout the subsequent sections.

More specifically, the remaining paper is structured as follows. Section 2 defines
multimodal interaction and interfaces. Moreover, Section 3 outlines the communication
in multimodal systems. Section 4 analyzes interaction modalities. Besides, Section 5
notes challenges in multimodal interaction systems. Section 6 discusses applications of
multimodal systems and future directions. Finally, Section 7 summarizes the findings of
this research survey.

Multimodal Interaction, Interfaces, and
Communication

Defining Multimodal
Interaction and Interfaces

Challenges in Multimodal
Interaction Systems

Communication in
Multimodal Systems Interaction Modalities

Input Processing in
Multimodal Systems

Fusion of Multimodal
Inputs

Context-Aware Input
Interpretation

The Concept of
Multimodal Interaction

Designing Multimodal
Interaction for Usability

Multimodal Interfaces:
Practical

Implementation

Speech and Natural
Language Processing

Touch and Haptics

Gesture and Motion
Sensing

Eye-Tracking and Gaze-
Based Interaction

Modality Fusion and
Synchronization

Context Awareness and
Adaptability

Multimodal Adaptation in
Noisy Environments

Applications and Future
Directions

Applications of
Multimodal Systems

Future Directions of
Multimodal Systems

The Role of Artificial
Intelligence and

Machine Learning
Multimodal Feedback

Loops and Error
Handling

User-Centric Design and
Usability

Figure 1. Roadmap for the topics explored in this survey.

2. Defining Multimodal Interaction and Interfaces
The evolution of HCI has progressed toward more natural and intuitive systems,

where multimodal interaction and interfaces play a pivotal role. By enabling commu-
nication through multiple sensory channels, such as speech, gesture, and touch, these
systems emulate the richness of human-to-human communication. This section delves
into the principles and design of multimodal interaction and interfaces, highlighting their
transformative potential in creating seamless and adaptive interactions.

2.1. The Concept of Multimodal Interaction

Multimodal interaction is fundamentally rooted in the ability to use multiple sensory
channels for communication between humans and machines, aiming to mimic the natu-
ral ways humans interact with the world and each other. Traditional human-computer
interfaces like keyboards and mice are limited to single-modality inputs. In contrast, multi-
modal interaction systems integrate diverse input channels like speech, gesture, touch, and
gaze, allowing users to interact more flexibly and intuitively. This approach leverages the
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inherent strengths of different modalities, overcoming the limitations of each and providing
a richer interaction experience. By enabling the concurrent use of multiple modalities, these
systems allow users to communicate more naturally, combining verbal and non-verbal
cues, as humans often do in everyday conversations [11,21,22].

Complementarity is a central concept in multimodal interaction, where different
modalities convey more detailed or clarified information. For example, in a system where
users give verbal commands, pointing gestures can specify the command’s target, as in the
instruction, “Turn on that light”, while pointing to a specific fixture. This complementary
use of modalities reduces ambiguities and enhances system reliability by compensating
for any channel’s weaknesses or uncertainties. Furthermore, redundancy strengthens
interaction robustness when the same information is provided across different modalities.
If one modality fails or is disrupted (such as speech recognition in a noisy environment),
another modality (such as a touch gesture) can ensure the continuity of interaction. The
system’s capacity to handle these multimodal inputs simultaneously forms the basis for
more prosperous, more effective user-system communication [23–25].

Beyond enhancing user experience, multimodal interaction systems are designed to
adapt to various contexts and user preferences. They achieve this by leveraging ML algo-
rithms and context-aware systems that dynamically adjust which modalities are prioritized
based on environmental conditions or user behaviour. For instance, in a noisy room, a
system may shift its focus from speech recognition to gesture or touch input to maintain
efficient interaction. The underlying complexity of such systems lies in their ability to
harmonize multiple modalities without increasing the cognitive load on the user. Ensuring
smooth, seamless transitions between different input types and enabling users to naturally
switch between them reflects the ultimate goal of multimodal interaction systems: creating
interactions that feel as intuitive and adaptable as human communication itself [26–28].

2.2. Multimodal Interfaces: Practical Implementation

Multimodal interfaces are the technical systems that support multimodal interaction,
providing the infrastructure necessary for capturing, processing, and integrating inputs
from diverse sensory channels. These interfaces interpret user inputs and coordinate
multiple output modalities to deliver appropriate feedback. This interplay between input
and output across modalities forms the core of effective multimodal systems [29–31].

The role of input modalities, such as speech, gestures, touch, and gaze, is critical in
enabling rich interaction. Speech remains one of the most commonly used modalities due
to advancements in automatic speech recognition (ASR) technologies. However, challenges
such as background noise, accents, and variations in speech patterns still affect the reliability
of speech recognition systems. On the other hand, gesture recognition enables users to
interact with systems using natural movements captured by cameras or sensors. Gesture
input is instrumental in scenarios where speech or touch may not be feasible, such as when
a user’s hands are occupied [32–34].

Touch and haptic feedback are essential, particularly in mobile devices and virtual
environments. Touchscreens allow users to interact directly with visual interfaces, while
haptic systems provide tactile feedback that enhances the user’s sense of control. For
example, in VR, haptic feedback can simulate physical sensations, contributing to a more
immersive experience. Eye-tracking and gaze-based systems offer another dimension to
multimodal interaction by allowing users to control systems with their gaze, making it
particularly useful in accessibility contexts or hands-free environments [35–37].

On the output side, multimodal interfaces generate feedback through visual, auditory,
and tactile channels. Visual output, typically delivered through screens or AR displays,
provides users real-time information. Auditory output, such as spoken responses or sound
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alerts, is especially useful in hands-free environments or when visual attention is elsewhere.
Haptic feedback, often in the form of vibrations or force resistance, enhances the physicality
of interaction, especially in AR/VR systems [38–40].

2.3. Designing Multimodal Interaction for Usability

The design of multimodal interfaces must account for user experience, balancing the
complexity of multiple input channels with the need for a clear and intuitive interaction flow.
User-centred design (UCD) principles are critical in guiding the development of multimodal
systems, ensuring that interfaces are tailored to user needs and preferences [41–43].

A key concern in multimodal design is cognitive load. When users are presented
with too many modalities simultaneously, the interaction can become overwhelming,
leading to errors or frustration. Therefore, multimodal systems must be designed to
offer seamless transitions between modalities, allowing users to switch between input
channels as needed without increasing mental effort. Effective multimodal design also
considers personalization, where systems adapt to individual user preferences, learning
which modalities are most effective in different contexts [44–46].

Error handling is another crucial aspect of usability in multimodal systems. Given the
complexity of interpreting multiple input modalities, errors are inevitable. A well-designed
system must detect when an input has been misunderstood and ask for clarification or offer
alternative responses. Providing real-time feedback through visual or auditory cues can
help guide users and reduce the likelihood of repeated errors [47–49].

2.4. The Role of Artificial Intelligence and Machine Learning

AI and ML are critical enablers of advanced multimodal interaction systems, pro-
viding the computational power and flexibility to interpret complex and dynamic inputs.
Multimodal systems generate diverse data streams—such as speech, gestures, touch, and
gaze—each requiring specialized processing techniques. AI and ML allow systems to
integrate these inputs seamlessly, making interactions more intuitive, adaptive, and ro-
bust [50,51].

One of the key contributions of AI in multimodal systems is its ability to adapt
dynamically to user behaviour and environmental contexts. For example, AI models can
analyze real-time data to determine the most suitable modalities for a given scenario. In
a smart home environment, when speech recognition is hindered by noise, the system
can shift focus to touch or gesture inputs. These adaptive capabilities are made possible
through ML algorithms that learn from historical user interactions, optimizing modality
selection and improving interaction efficiency over time [52–54].

AI-driven models also enhance the personalization of multimodal systems. By analyz-
ing individual user preferences and interaction patterns, ML algorithms can tailor interfaces
to specific needs. For instance, a system may prioritize gesture recognition for a user who
frequently uses hand motions, while another may emphasize speech-based commands for
a user with limited mobility. This level of personalization improves usability and increases
user satisfaction by aligning the system’s behaviour with individual expectations [55–58].

Furthermore, AI is integral to managing the computational complexity of multimodal
systems. Advanced algorithms such as deep learning (DL) enable efficient feature ex-
traction, real-time decision-making, and error correction across modalities. For example,
neural networks can resolve ambiguities in user input by integrating data from multiple
modalities, such as combining speech and gaze to disambiguate a command. Predictive
models also allow systems to anticipate user intent, reducing cognitive load and enhancing
the fluidity of interactions [59–61].
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Although AI and ML provide significant advantages, their implementation in multi-
modal systems poses challenges, such as the need for high computational resources and
ensuring user privacy. Balancing the scalability of AI models with real-time performance
remains a critical area of research, particularly for applications in resource-constrained en-
vironments like mobile devices. Additionally, ethical considerations, including the security
and confidentiality of user data, are essential to fostering trust and ensuring the responsible
deployment of AI in multimodal systems [62,63].

By leveraging AI and ML, multimodal systems are evolving to become more context-
aware, personalized, and efficient, setting the stage for transformative advances in human-
computer interaction. These technologies enable seamless integration across diverse modal-
ities, making interactions more natural and adaptive to user needs [64].

Table 2 provides a clear view of the current landscape in multimodal systems and
categorizes surveyed references across various domains related to multimodal interaction.
It highlights critical areas such as modality fusion, synchronization challenges, user-centred
design, and the role of AI and ML in enhancing system adaptability. The table serves as
a foundation for understanding the complexities of integrating multiple modalities and
offers insights into the key technologies driving the field forward.

Table 2. A classification of references on multimodal interaction and interfaces.

References Focus Area Techniques/Features Description

[11,21,22] Multimodal integration Conceptual integration
across modalities

Theoretical models for HCI improvements with
limited real-world validations.

[23–25] Complementarity
and redundancy

Fusion based on redundancy
and complementarity

Enhances system robustness by combining
modalities to overcome weaknesses.

[26–28] Context-aware adaptation ML-based
dynamic prioritization

Systems adjust input modalities dynamically
based on environmental contexts.

[29–31] Multimodal infrastructure Core systems for
input-output integration

Highlights systems’ role in enhancing multimodal
feedback mechanisms.

[32–34] Gesture recognition Camera/sensor-based
gesture systems

Addresses usability in speech-limited or
hands-occupied scenarios.

[35–37] Eye-tracking and gaze Accessibility and
hands-free systems

Utilizes gaze tracking for accessibility and
dynamic interaction.

[38–40] Haptic feedback Enhancing AR/VR
immersion

Simulates real-world tactile interactions for
improved engagement.

[41–43] UCD Principles for user-driven
system design

Guides development to align with user needs
and preferences.

[44–46] Cognitive load management Modality transitions
and personalization

Emphasizes seamless modality switching and
learning user preferences.

[47–49] Error handling and feedback Real-time correction
and clarification

Uses feedback mechanisms to mitigate
input errors.

[50,51] AI/ML for data fusion General
multimodal integration

AI and ML enable seamless interpretation of
diverse input streams.

[52–54] Adaptive learning Context-aware
smart systems

Systems adapt dynamically to real-time
environmental contexts.

[55–58] User personalization Tailored interfaces for users AI models learn individual preferences to
enhance usability.
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Table 2. Cont.

References Focus Area Techniques/Features Description

[59–61] Neural networks and
predictive models

Real-time error handling and
intent prediction

Resolves ambiguities and reduces cognitive load
through AI integration.

[62,63] Privacy and ethical AI Secure and scalable systems Addresses challenges like computational overhead
and user data confidentiality.

[64] Multimodal
dialogue systems

Industry-specific AI
dialogue models

Explores dialogue systems in AI-assisted
industries for adaptive and
effective communication.

3. Communication in Multimodal Systems
Effective communication in multimodal systems hinges on the seamless integration

of diverse sensory inputs and outputs to facilitate natural and intuitive user interactions.
These systems rely on sophisticated processing techniques to interpret, fuse, and respond
to multimodal data in real-time, ensuring accuracy and coherence across channels. This
section delves into the core principles, challenges, and advancements in communication
mechanisms within multimodal systems, emphasizing their role in creating adaptive and
context-aware interactions.

3.1. Input Processing in Multimodal Systems

In multimodal systems, the first stage of communication begins with processing user
inputs across different modalities. This input processing is not only about receiving raw
data but involves understanding, transforming, and interpreting these inputs in a way the
system can handle [65,66].

Each modality—speech, gestures, or touch—requires specialized signal processing
techniques. For instance, speech input relies on ASR, which involves several layers of signal
filtering, noise reduction, and the application of sophisticated NLP models to understand
user intent. In contrast, gestural inputs use motion capture technologies, often based on
depth-sensing cameras or wearable sensors, to detect body parts’ position, movement,
and orientation. Gesture recognition algorithms then process this data to distinguish
meaningful actions from irrelevant or involuntary movements [67–69].

At this stage, one of the significant challenges is dealing with the inherent variability
in input signals, both within and across modalities. Speech, for example, can be affected
by accents, background noise, or even the user’s emotional state, while gestures can vary
in speed, amplitude, or fluidity depending on the user’s context. Multimodal systems
must, therefore, employ robust preprocessing mechanisms to ensure that the input from
each modality is accurately interpreted before it is passed on for fusion [70–72]. Addi-
tionally, these systems need to account for cultural differences and personal preferences
in gesture interpretation [73–75], as well as adapt dynamically to variations in environ-
mental conditions and user behavior to maintain accuracy and usability across diverse
scenarios. This adaptability is critical for achieving reliable and seamless interaction in
real-world applications.

3.2. Fusion of Multimodal Inputs

The fusion of multimodal inputs is a critical component of effective communication in
multimodal systems. By integrating data from diverse modalities such as speech, gestures,
and gaze, these systems can achieve a coherent interpretation of user intent. The fusion
process enables complementary modalities to work together, mitigating the limitations
of individual channels and enhancing overall system robustness. For example, a speech
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command such as “Turn on that light” can be clarified by a simultaneous pointing gesture,
ensuring accurate intent recognition [76–78].

Fusion can occur at different levels (as shown in Figure 2), depending on the system’s
requirements. Early or sensor-level fusion involves combining raw data from different
modalities during initial processing. This approach captures the synergies between modali-
ties but requires robust preprocessing algorithms to handle high-dimensional data. Feature-
level fusion, on the other hand, integrates features extracted from each modality, enabling
systems to focus on specific characteristics relevant to the task. Decision-level fusion, where
outputs from independent classifiers are combined, is often employed in systems requiring
modularity or asynchronous operation [79,80].

Synchronization is a central challenge in multimodal fusion. Inputs from different
modalities frequently arrive at varying times due to differences in processing speeds or
user behavior. Temporal alignment algorithms, such as dynamic time warping or recurrent
neural networks, play a crucial role in ensuring that asynchronous inputs contribute to
a unified interpretation. For instance, speech recognition may take longer to process
than gesture recognition, necessitating sophisticated synchronization techniques to avoid
resynchronization [81–83].

AI and ML have significantly advanced the capabilities of multimodal fusion. DL
models, in particular, excel at handling large volumes of heterogeneous data, enabling
systems to learn complex patterns and relationships between modalities. These models also
resolve conflicts between modalities by dynamically assigning weights based on context
and input reliability. For example, in a noisy environment, the system may prioritize
gesture inputs over speech to maintain interaction continuity [84,85].

The applications of multimodal fusion are diverse, spanning virtual assistants, VR/AR
systems, and smart home environments. In VR, for example, fusion enables users to
interact seamlessly with virtual objects through a combination of speech, gaze, and hand
gestures. Similarly, in smart home systems, multimodal fusion ensures robust operation by
integrating voice commands, touch interactions, and environmental context [86–88].

Figure 2. An overview of different levels of modalities fusion.

3.3. Context-Aware Input Interpretation

Context-aware input interpretation is a fundamental aspect of multimodal systems,
enabling them to adapt dynamically to the user’s environment, tasks, and behavior. By
incorporating contextual information, these systems can prioritize specific input modalities
and adjust their processing strategies to enhance interaction accuracy and efficiency [89,90].
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One of the core elements of context-awareness is environmental adaptability. Mul-
timodal systems leverage sensors and algorithms to detect and interpret environmental
factors such as noise, lighting, or user location. For example, in a smart home environment,
a system may prioritize gesture input over voice commands when it detects high levels
of background noise. Similarly, in outdoor settings with limited visibility, systems might
emphasize touch or auditory feedback to ensure seamless interaction [91–93].

Another critical aspect is task and user-specific adaptability. Multimodal systems must
recognize and respond to the unique requirements of a user’s current activity. For instance,
in a driving scenario, a system might emphasize voice commands and gaze-based input to
minimize manual interaction, ensuring both safety and usability. Over time, ML models can
refine this adaptability by learning individual user preferences and tailoring interactions
to suit specific habits. For example, a user who frequently combines gestures with speech
for smart home commands will experience a system that anticipates and supports this
modality combination [94–96].

The ability to handle contextually relevant input extends to managing conflicting or
incomplete data. When a user provides ambiguous or partial inputs—such as a vague
gesture combined with a spoken command—the system uses contextual clues to infer
intent. This process might involve considering the user’s physical location, previous
interactions, or environmental conditions to resolve ambiguity and deliver the appropriate
response [97,98].

However, achieving robust context awareness is not without challenges. Real-time
data processing and adaptation require computationally efficient algorithms, especially
in mobile or embedded systems. Additionally, ensuring that context-aware interactions
remain intuitive and do not overwhelm users with unnecessary complexity is a delicate
balance. Effective multimodal systems must seamlessly integrate contextual cues into their
input interpretation processes without imposing additional cognitive load on users [99,100].

3.4. Multimodal Feedback Loops and Error Handling

Multimodal systems must use continuous feedback loops to ensure a fluid and adap-
tive interaction between the user and the system. These feedback loops are critical for
refining user inputs, mainly when ambiguities arise. In multimodal communication, users
often employ several input modalities in tandem, such as combining speech with gesture
or gaze, to convey intent. A key challenge lies in the system’s ability to interpret these
inputs correctly and provide timely feedback when interpretation errors occur. Multimodal
systems use feedback loops to confirm the success or failure of input interpretation to facili-
tate smoother interactions. For instance, when the system is uncertain about a command
in speech recognition, it may prompt the user with clarification questions or offer options,
such as “Did you mean A or B”? This process reduces the likelihood of escalating errors,
enhancing the system’s reliability [101–103].

Effective error handling in multimodal systems is tightly integrated with these feed-
back loops, enabling dynamic adjustments based on user responses. When multimodal
inputs conflict or fail to meet the system’s confidence threshold, real-time feedback helps
the system and user recover from potential breakdowns. In complex environments like
virtual or AR, haptic or visual cues may alert users when their input is misunderstood. For
example, if a gesture is misinterpreted in a VR interface, the system might provide subtle
visual feedback, such as highlighting the wrong object, prompting the user to modify or
repeat the gesture. This ongoing feedback prevents significant disruptions and ensures
the system can quickly adapt to fluctuating user behaviours and environmental contexts,
creating a more resilient interaction model [104–107].
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Additionally, adaptive feedback loops are crucial for learning and improving user
interactions over time. Multimodal systems that incorporate ML or AI can use these
feedback loops to fine-tune their models based on user behaviour, preferences, and context.
For example, if a user frequently corrects a specific type of error in gesture recognition, the
system can adjust its algorithms to interpret future inputs better, improving accuracy and
efficiency. This type of adaptive error handling increases user satisfaction and allows the
system to become more personalized and responsive to individual needs. By continuously
learning from user feedback, multimodal systems can evolve to offer more intuitive and
seamless interactions, further reducing the cognitive load on users and making human-
computer communication more natural and fluid [108–110].

Table 3 provides a structured classification of the key references that address the critical
aspects of multimodal communication. These topics include advanced input processing
techniques, the complexities of synchronizing multiple data streams, and the development
of context-aware systems that adapt dynamically to user behavior and environmental
changes. Additionally, the table highlights the challenges and solutions related to output
coordination, such as managing multimodal feedback and real-time error handling. This
organized overview serves as a guide for understanding how various technical approaches
contribute to the efficient processing and synchronization of inputs as well as the refinement
of interaction flows.

Table 3. Summary of key topics, techniques, and descriptions of multimodal systems, covering input
processing, fusion, context-aware interpretation, and feedback mechanisms.

References Topics Covered Techniques/Approaches Description

[65,66] Input processing
across modalities

Signal processing, NLP for speech,
motion capture for gestures

Focuses on preprocessing inputs like speech,
gestures, and touch. Describes how signal filtering
and noise reduction enable accurate input
interpretation.

[67–69] Gesture recognition
and variability

Depth-sensing cameras,
wearable sensors

Discusses the variability in input signals and the
use of gesture recognition to detect meaningful
actions from user movement.

[70–72] Robust preprocessing
mechanisms

Noise filtering, robust algorithms
for variability

Explains techniques to handle inherent variability
in speech and gestures, ensuring reliable signal
interpretation before fusion.

[73–75]
Gesture
recognition and
cultural differences

Deep neural network (DNN)—body
gesture, Convolutional Neural
Networks (CNNs)—hand gesture,
Viterbi algorithm on Hidden
Markov Models
(HMM)—hand, arm

Conceptual design and early prototype for
real-time translation on intercultural
communication; Influence of cultural factors on
freehand gesture design and recognition; Real-time
rescue gesture recognition for UAV.

[76–78] Fusion of
diverse modalities

Decision-level fusion,
feature extraction

Integrates speech, gestures, and gaze for a unified
interpretation of user intent. Highlights
complementary use of modalities to mitigate
individual weaknesses.

[79,80] Levels of fusion Sensor-level, feature-level,
decision-level

Explains different fusion strategies, from raw data
combination to feature extraction and
classifier outputs.

[81–83] Synchronization
challenges

Temporal alignment, dynamic
time warping

Describes methods to synchronize inputs arriving
at different times to ensure coherent interpretation.
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Table 3. Cont.

References Topics Covered Techniques/Approaches Description

[84,85] AI-driven fusion Context-aware DL models
Explores the use of AI to assign weights
dynamically to modalities, prioritizing reliable
inputs in specific contexts.

[86–88] Applications in
multimodal systems

Virtual assistants, VR/AR, smart
homes

Demonstrates applications where fusion enables
robust interaction, combining modalities like voice,
gaze, and touch.

[89,90] Environmental
adaptability Sensor-based environment detection

Describes how systems prioritize specific
modalities (e.g., gestures over voice in noisy
environments) using real-time environmental data.

[91–93] User-specific task
adaptability Dynamic input prioritization

Discusses tailoring modalities like voice or gaze to
specific tasks, such as driving or
hands-free scenarios.

[94–96] Learning
user preferences ML-based adaptive interaction

Explores how systems use ML to recognize user
habits and adjust modality
prioritization dynamically.

[97,98] Resolving
conflicting inputs

Contextual clues and
past interactions

Describes techniques for inferring user intent
when inputs are ambiguous or incomplete,
leveraging context and historical data.

[99,100] Challenges in
real-time adaptability

Computational efficiency, seamless
transitions

Addresses the challenges of integrating
context-awareness into interactions without
adding complexity or cognitive load for the user.

[101–103]
Feedback
mechanisms for
input errors

Clarification prompts,
redundancy checks

Discusses the importance of real-time feedback in
reducing ambiguities in multimodal inputs,
ensuring smooth interaction and error reduction.

[104–107] Error recovery and
interaction resilience

Adaptive feedback loops,
user-specific error handling

Focuses on real-time feedback and error
management, using visual, auditory, or haptic cues
to alert users about misinterpreted commands.
Adaptive systems refine input
recognition dynamically.

[108–110] Adaptive learning
from errors

ML-driven personalization and
error correction

Explains how multimodal systems learn and
improve over time through user feedback,
reducing repeated errors and creating a more
tailored interaction experience.

4. Interaction Modalities
Multimodal systems utilize various interaction channels, each contributing to different

aspects of usability and user experience. This section delves into the most prominent
modalities and how they are integrated within multimodal systems.

4.1. Speech and Natural Language Processing

Speech is one of the most natural and efficient modes of communication for humans,
making it a critical component of multimodal interaction systems. Communicating with
computers through speech significantly reduces the need for cumbersome inputs, such as
typing or manual manipulation, thus enhancing the overall user experience. Recent ad-
vancements in ASR and NLP technologies have made it possible for systems to understand
and interpret spoken language with increasing accuracy. State-of-the-art models powered
by DL and neural networks are capable of handling complex language tasks, including
recognizing accents, parsing colloquialisms, and understanding context-specific nuances.
In a multimodal system, speech recognition is not isolated but is often integrated with
other input modalities, such as gestures or eye movements, to provide a more robust and
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contextually aware user experience. This integration enables users to engage with systems
more intuitively, allowing for complex, context-rich interactions [111–114].

One of the core challenges in using speech as a modality in multimodal systems is
dealing with the variability and ambiguity inherent in natural language. Human speech
is far from perfect—filled with disfluencies like pauses, false starts, or filler words that
can confuse basic speech recognition systems. To address these challenges, modern NLP
techniques utilize advanced language models, such as transformer-based architectures
(e.g., GPT, BERT), capable of capturing linguistic patterns and contextual meaning from
large datasets. These models improve the accuracy of word recognition and enable deeper
semantic understanding, allowing the system to infer user intent more accurately. In mul-
timodal contexts, speech is often disambiguated through other modalities; for example,
a gesture or gaze can help clarify a vague spoken command. This complementary use of
modalities allows systems to resolve ambiguities more effectively and ensures that users
interact naturally without consciously refining their speech to match machine expecta-
tions [115–118].

Speech-driven interactions are further enhanced by integrating real-time context
awareness, which allows systems to adjust their processing based on environmental factors
or user behaviour. Contextual NLP systems can infer meaning from the user’s physical
environment, task, or previous interactions. For instance, in a smart home setting, a com-
mand like “turn it off” could be disambiguated by using information from the environment
(e.g., detecting that the lights are currently on) or by integrating other inputs such as gaze
direction or gesture. Moreover, speech interfaces are becoming increasingly adaptive,
capable of learning user preferences and adjusting over time, which is particularly useful
in handling variations in accents, speech patterns, and even emotional tone. As speech
and NLP technologies continue to evolve, their integration within multimodal systems will
offer even greater personalization and adaptability, pushing the boundaries of HCI into
more natural and seamless territories [98,119–121].

4.2. Gesture and Motion Sensing

Gesture and motion sensing technologies have become pivotal components of multi-
modal interaction systems, offering a natural and intuitive means for users to communicate
with machines. Unlike traditional input methods, such as keyboards or touchscreens,
gestures allow users to express commands through physical movements, making them
especially valuable when hands-free or touchless interaction is essential. The ability of mo-
tion sensors, cameras, and depth-sensing devices to capture these movements has enabled a
range of applications, from gaming and VR to smart homes and automotive interfaces. The
strength of gesture-based interaction lies in its alignment with natural human behaviour;
gestures can be expressive, contextually rich, and non-verbal, allowing for more seamless
and instinctive interactions. However, this same flexibility introduces significant challenges,
as systems must accurately distinguish between intentional gestures and unintentional
body movements, often in highly variable environments [122–125].

The core of gesture recognition systems relies on sophisticated computer vision and ML
algorithms to interpret user movements’ spatial and temporal dynamics. These systems
process data from motion sensors, depth cameras, or wearables to detect and classify
gestures in real-time. In multimodal systems, gesture input is often combined with other
modalities, such as speech, to refine or disambiguate user commands. For example, a user
might point to an object while issuing a spoken command, providing the system with
additional spatial information that helps clarify the intended action. This synergy between
modalities can significantly enhance the accuracy and fluidity of interactions. However, the
processing demands of gesture recognition—particularly in real-time applications—require
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highly efficient algorithms capable of operating under varying conditions, such as different
lighting, occlusion, or changes in the user’s environment [126–129].

Despite the advances in gesture recognition, the development of gesture-based sys-
tems must also address user-centred concerns, such as usability and fatigue. Natural
gestures are often imprecise, and users may interpret what constitutes a particular motion
differently. Therefore, systems need to be flexible enough to accommodate a wide range
of gesture inputs while maintaining high accuracy. Additionally, prolonged or repetitive
gesture use can lead to “gorilla arm” syndrome, where users experience fatigue or discom-
fort after extended periods of gesturing. To counteract this, many systems incorporate
adaptive learning mechanisms that tailor the gesture recognition process to individual
users, optimizing for comfort and minimizing physical strain. Future research in this field
will likely focus on creating more context-aware systems that can seamlessly integrate
gesture recognition with other modalities and improve the naturalness and comfort of
gesture-based interactions [57,130–132].

4.3. Touch and Haptics

Touch interaction has become a central modality in modern HCI, particularly with the
widespread use of touchscreens in smartphones, tablets, and other consumer devices. Touch
interfaces enable users to manipulate digital objects directly, providing an intuitive and
natural method for interaction. The simplicity of touch gestures—such as tapping, swiping,
pinching, and dragging—allows users to control systems without needing physical periph-
erals. Furthermore, advances in multi-touch technologies have enabled complex gestures,
expanding the possibilities for interaction by recognizing multiple points of contact. How-
ever, despite its intuitive nature, touch interaction can sometimes suffer from limitations
such as occlusion, where the user’s finger blocks the view of the interface, or the lack of
tactile feedback on flat screen surfaces, leading to less satisfying user experiences [133–136].

To address the limitations of traditional touch interaction, haptic feedback has emerged
as a crucial complement. Haptics uses tactile sensations to enhance interaction by providing
physical feedback to the user. Through vibrations, pressure, or even force resistance, haptic
technology creates the illusion of interacting with real-world objects, thus increasing the
user’s sense of control and immersion. In mobile devices, for example, subtle vibrations
can confirm touch inputs, improving the accuracy of interactions and reducing errors.
In gaming and VR environments, more advanced haptic systems can simulate textures,
collisions, or resistance forces, making the virtual world feel more tangible and responsive.
These tactile cues are particularly valuable in scenarios where visual or auditory feed-
back might be insufficient or inappropriate, such as in high-speed or visually demanding
tasks [137–140].

Combining touch and haptic feedback in multimodal systems creates a powerful tool
for enhancing user interaction. When paired with visual or auditory feedback, haptics
can reinforce actions and provide discreet, contextually appropriate responses that guide
the user without overwhelming them. For example, in an automotive interface, haptic
feedback might alert the driver to changes in the vehicle’s state without requiring them to
take their eyes off the road. In medical training simulations, haptic technology can replicate
the sensation of performing physical tasks, such as inserting a needle or making an incision,
enabling realistic skill development in a safe environment. As haptic technology advances,
its integration into multimodal systems will likely expand, providing more prosperous,
immersive, and practical interaction experiences across various applications [141–143].

Finally, touchless haptic feedback, such as air jets and ultrasound-based systems,
extends the possibilities of haptic interactions by providing tactile sensations without
physical contact. These technologies enable a new level of interaction, particularly in
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scenarios requiring hygienic or hands-free operations while maintaining high precision
and user immersion [144–146].

4.4. Eye-Tracking and Gaze-Based Interaction

Eye-tracking and gaze-based interaction represent a powerful modality in multimodal
systems, offering an efficient and intuitive input form. Eye-tracking systems enable hand-
free control by monitoring where users are looking, providing seamless interaction with
digital environments, particularly in scenarios where other modalities may be limited or
impractical. This technology leverages infrared cameras or optical sensors to detect the
movement and focus of a user’s eyes, allowing systems to interpret gaze direction as input.
When combined with other modalities, such as speech or gesture, gaze-based interaction
enables highly contextual and precise interface control. For instance, a user could look at
an object on a screen and issue a voice command to interact with that object, making the
interaction more intuitive and reducing the need for explicit selection through touch or
mouse inputs [77,147–149].

One of the significant benefits of gaze-based interaction lies in its ability to provide
highly adaptive and context-aware interactions. In AR and VR, eye-tracking enhances
immersion by allowing users to naturally explore and interact with the virtual space
without relying solely on physical movements or controllers. By interpreting where users
are looking, the system can anticipate their intentions and adjust the interface accordingly,
such as highlighting objects of interest or changing the focus of the display. Additionally,
gaze tracking can be particularly beneficial for accessibility applications, offering a robust
alternative for individuals with motor impairments who cannot use traditional input
methods like keyboards or touchscreens [150–153].

However, despite the promise of eye-tracking technology, significant challenges still
need to be addressed in implementing it effectively within multimodal systems. Accuracy
and precision are critical for successful interaction, but factors such as lighting condi-
tions, user eye physiology, and movement can affect the reliability of eye-tracking sensors.
Moreover, gaze-based systems need to distinguish between deliberate and passive eye
movements, as not all glances or eye movements are intended to trigger actions. Sophis-
ticated algorithms are required to filter out unintentional eye movements and improve
the precision of gaze tracking. Furthermore, ethical concerns arise regarding privacy, as
eye-tracking data can reveal sensitive information about users’ focus and interests. Ad-
dressing these challenges requires ongoing advancements in sensor technology, algorithmic
development, and privacy safeguards to ensure that gaze-based interaction becomes a
reliable and integral part of multimodal systems [154–157].

Table 4 offers a breakdown of the most significant interaction modalities discussed in
this section. It categorizes key studies that examine the integration of speech and gesture,
haptic feedback, and gaze-based interfaces, along with their applications in fields like
VR/AR. The table also highlights the role of real-time synchronization and AI-driven
adaptation, which are critical to improving the fluidity and precision of interactions. This
classification is a clear reference point for understanding how different modalities are
combined to create richer, more immersive interactions in modern systems.
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Table 4. Classification of references on interaction modalities highlighting their integration and
applications in immersive environments.

References Topics Covered Techniques/Approaches Applications

[98,111–121]

Multimodal interaction in visual
and audio systems, indigenous
language speech recognition,
hybrid fusion models,
gesture-speech integration

Hybrid fusion models and
gesture-speech
interaction techniques

Effective multimodal systems addressing
linguistic diversity and
integration challenges.

[57,122–132] HCI, multimodal
communication in learning

Audio-visual integration for
communication and learning

In educational and medical settings with
challenges in data synchronization.

[133–146]

Gesture and haptic technologies
in HCI, Feedback systems,
Wearable tactile interfaces and
surface haptics, Immersive
interaction in VR/AR,
Multimodal interfaces, Usability
enhancement and adaptive
interaction paradigms

DL for gesture recognition,
Electrovibration, air-jet,
ultrasonic arrays, Predictive
interaction models, Dynamic
tactile feedback systems,
Surface and
contactless haptics

HCI evaluation, Immersive AR/VR and
gaming, Automotive interfaces, Surgical
robotics and training, Public and touchless
displays, Usability in aerial and
tactile systems

[77,147–153]

Eye-tracking and gaze-based
interfaces, real-time interaction
in AR, event cameras for face
and eye detection,
multimodal analytics

Event-based cameras and
gaze-tracking techniques

Real-time interaction systems for AR with
challenges in accuracy, precision,
and privacy.

[154–157] Advanced sensory modalities,
real-time analytics

Sensor fusion and dynamic
feedback loops

Adaptive environments leveraging
multimodal analytics with high
computational overhead challenges.

5. Challenges in Multimodal Interaction Systems
Despite significant advancements, multimodal interaction systems face several chal-

lenges that complicate their design and implementation. These issues arise from the need
to integrate diverse modalities, ensure seamless synchronization, and adapt dynamically
to changing user and environmental contexts. This section explores the key obstacles in
developing robust, efficient, and user-friendly multimodal systems, emphasizing areas
requiring further research and innovation.

5.1. Modality Fusion and Synchronization

The integration of multiple input modalities is a cornerstone of multimodal systems,
yet it presents a range of technical challenges. Modality fusion, the process of combining
inputs from various sensory channels, must be performed seamlessly to ensure a coherent
and responsive interaction experience. However, differences in input timing, accuracy, and
the complementary or redundant nature of information across modalities often complicate
this process [158,159].

One critical challenge is temporal synchronization. Inputs from modalities such as
speech and gesture frequently arrive at different times due to variations in processing
speeds or user behavior. For example, speech recognition might require more time to
interpret a verbal command compared to the instantaneous detection of a gesture. Syn-
chronizing these inputs to create a unified understanding of the user’s intent demands
advanced algorithms, such as dynamic time warping or probabilistic models, to align the
inputs accurately without introducing latency [160–162].

Another aspect of modality fusion involves resolving conflicts between inputs. When
modalities provide contradictory information—such as a gesture pointing to one object
while speech refers to another—the system must determine which input to prioritize. ML
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models play a critical role in assigning weights to inputs based on contextual factors,
enhancing decision-making and overall system reliability [163,164].

In addition to addressing conflicts and synchronization, robust error-handling mecha-
nisms are essential. Multimodal systems must degrade gracefully when certain modalities
fail or when inputs are noisy or incomplete. For example, a system might need to rely more
heavily on gesture recognition if speech processing becomes unreliable. Effective fusion
models should account for these scenarios and adjust dynamically to maintain interaction
continuity [165,166].

5.2. Context Awareness and Adaptability

Context awareness is fundamental to the success of multimodal systems, enabling
them to adapt dynamically to the user’s environment, tasks, and preferences. By leverag-
ing contextual information, these systems can determine which modalities to prioritize
and how to interpret inputs effectively. This adaptability ensures seamless interactions,
particularly in scenarios where user needs or environmental conditions are constantly
changing [167,168].

An essential aspect of context awareness is the system’s ability to adjust its behav-
ior based on the user’s environment. For instance, in a driving scenario, the system
might prioritize voice commands and eye-tracking to minimize the need for manual
interaction, ensuring safety and usability. Similarly, in a hands-free environment, ges-
tures might take precedence over touch-based inputs, offering a more natural interaction
experience [169,170].

Adaptability also extends to understanding individual user preferences and behav-
iors. Users may favor specific modalities depending on their tasks or habits, and these
preferences can vary over time. A robust multimodal system leverages ML models to
learn and predict these preferences, tailoring the interaction accordingly. For instance, a
user who frequently uses voice commands on a smart home system might experience a
more responsive interface that prioritizes speech inputs while retaining other modalities as
complementary options [171–173].

Despite its benefits, achieving context-aware adaptability is not without challenges.
Continuous monitoring of environmental and user data can be computationally intensive,
particularly in real-time applications. Systems must strike a balance between responsive-
ness and resource efficiency to remain practical across various platforms, including mobile
and embedded devices. Advanced AI algorithms and sensor technologies are critical for
optimizing context awareness while minimizing computational overhead [174,175].

5.3. Multimodal Adaptation in Noisy Environments

Adapting multimodal systems to noisy environments is a critical challenge that sig-
nificantly impacts their usability and performance. In scenarios where ambient noise
interferes with speech recognition, such as in busy public spaces, kitchens, or industrial
settings, alternative modalities like gestures, gaze, or touch must be prioritized to maintain
seamless interaction. Effective adaptation in such conditions involves a combination of
dynamic modality switching, redundancy in input channels, and advanced environmental
awareness [176–178].

Dynamic modality switching is a key strategy for handling noisy environments. For
instance, when speech input becomes unreliable due to high levels of acoustic interference,
the system can automatically transition to gesture recognition. This transition requires
real-time detection of environmental noise levels and a contextual understanding of the in-
teraction. By employing algorithms capable of analyzing audio signals and predicting noise
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conditions, the system can proactively adapt its input modality to ensure uninterrupted
communication [179–181].

In addition to switching between modalities, integrating multiple input channels
can enhance robustness. Combining gesture recognition with gaze tracking or touch-
based interactions provides redundancy, reducing the likelihood of errors caused by noisy
conditions. For example, a user gesturing toward an object while gazing at it offers
complementary information that the system can process to clarify intent. This multimodal
integration not only compensates for individual modality failures but also enhances overall
system reliability [182,183].

Adapting to noisy environments also demands sophisticated algorithms for real-
time data fusion and synchronization. As inputs from different modalities may arrive
asynchronously, systems must align them temporally to create a coherent understanding of
user intent. Temporal alignment techniques, such as dynamic time warping or recurrent
neural networks, are often employed to achieve this synchronization without introducing
latency [184,185].

Despite these advancements, multimodal adaptation in noisy environments faces
several challenges. The computational overhead of monitoring environmental conditions
and processing multimodal inputs in real time can strain system resources, particularly in
mobile or embedded platforms. Moreover, ensuring smooth transitions between modalities
without disrupting user experience requires precise and efficient design [186,187].

5.4. User-Centric Design and Usability

The success of any multimodal interaction system depends on its usability and how
well it aligns with user expectations and cognitive capabilities. While introducing multiple
modalities can enhance flexibility and provide alternative input methods, there is also a risk
of overwhelming users with too many options. A well-designed multimodal system must
ensure that the interaction remains intuitive and does not burden the user with unnecessary
complexity. This requires a careful balance between offering diverse input channels and
maintaining simplicity in the user interface [188–191].

Cognitive load is a significant concern in multimodal systems. When users are required
to manage multiple input modalities simultaneously, it can lead to confusion, frustration,
and reduced task performance. To mitigate this, multimodal systems should be designed
to guide users naturally from one modality to another, offering clear cues and feedback.
For example, if a user begins a task using speech, the system might provide a subtle visual
cue or auditory confirmation that the command has been understood, allowing the user to
shift seamlessly between modalities without cognitive strain. User studies and usability
testing are critical in identifying friction points in the interaction flow and optimizing the
system accordingly [192–195].

Personalization is another critical factor in user-centric design. Users have different
preferences, abilities, and interaction styles, and a successful multimodal system must be
able to adapt to these differences. Personalization can be achieved through ML models that
analyze a user’s past interactions and preferences, adjusting the interface to suit their needs
better. For example, a system might learn that a particular user prefers touch over voice
commands and modify its interface accordingly. However, implementing personalization
in a way that respects user privacy and avoids intrusive behaviour is an ongoing challenge.
Balancing the system’s adaptability with respect for user autonomy and data security
is crucial for building trust and ensuring long-term user engagement with multimodal
systems [196–199].

Table 5 recaps the critical challenges discussed in this section. The listed references
cover essential topics like modality fusion, synchronization, and multimodal conversations,
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with a focus on real-time systems. The table also highlights efforts in integrating speech,
gesture, and other inputs for more natural, intuitive interactions. These studies explore
solutions such as DL models for modality fusion, algorithms for temporal synchronization,
and practical systems for multimodal conversations. Together, this body of research outlines
the current state of multimodal systems and their ability to combine diverse inputs into
seamless, coherent user interactions.

Table 5. Summary of key topics and techniques in multimodal interaction systems.

References Topics Covered Techniques/ Approaches Description

[158,159]
Temporal
synchronization and
input fusion

Dynamic time warping,
probabilistic models

Discusses challenges in aligning asynchronous inputs
from different modalities (e.g., speech vs. gesture) and
techniques to ensure seamless integration.

[160–162] Conflict resolution in
multimodal inputs

ML models for
contextual weighting

Explores resolving contradictory inputs from modalities
by assigning weights based on context, enhancing
decision-making and overall system reliability.

[163,164] Error handling in
multimodal fusion

Adaptive fusion models,
fallback mechanisms

Focuses on systems that adjust dynamically when inputs
fail or are noisy, relying on alternate modalities to
maintain continuous interaction.

[165,166]
Robustness and
adaptability in
modality integration

Context-aware algorithms,
redundancy in
input channels

Highlights the importance of redundancy and adaptive
strategies to ensure robust operation in noisy or variable
environments, enhancing system reliability.

[167,168] Context-aware
haptic feedback

Retargeting self-haptics,
dynamic response

Explores haptic feedback’s role in adapting to user
environments, enhancing immersion and interaction
reliability, particularly in VR/AR systems.

[169,170] Sensor integration
for adaptability

Ultrasonic sensors,
electrovibration feedback

Describes sensor-based enhancements for adaptability in
multimodal systems, focusing on seamless integration
and responsive feedback.

[171–173] Adaptive feedback for
critical applications

Real-time force feedback,
AI-driven context adaptation

Highlights adaptive feedback mechanisms in surgical
training and critical systems, ensuring precise interaction
and skill development in dynamic scenarios.

[174,175] Gaze-based interaction
and context adaptation

Event-based gaze tracking,
contextual prioritization

Investigates how eye-tracking and gaze technologies
adapt dynamically to user contexts, improving
responsiveness and interaction accuracy in smart systems.

[176–178] Context-awareness in
adaptive systems

AI-based context modeling,
multi-sensor integration

Examines methods for leveraging AI and multi-sensor
data to enhance context-awareness and system
adaptability in diverse interaction environments.

[179–181]
Multimodal interaction
in dynamic
environments

Real-time fusion,
environment-specific
prioritization

Focuses on strategies for adapting to dynamically
changing environments by prioritizing relevant
modalities and maintaining interaction fluidity.

[182,183]
Redundancy and
robustness in
noisy settings

Multi-modal redundancy,
failure compensation

Discusses redundancy techniques to compensate for
modality failures in noisy or unpredictable environments,
ensuring interaction continuity and reliability.

[184,185]
Synchronization in
complex
multimodal systems

Probabilistic models,
temporal
alignment algorithms

Highlights challenges in synchronizing inputs across
modalities and presents solutions like probabilistic
models and advanced temporal alignment techniques.

[186,187] Decision-making in
modality conflicts

Context-aware
weighting, adaptive
decision frameworks

Explores frameworks for resolving modality conflicts
using contextual weighting and real-time decision-making
algorithms to improve system responsiveness.

[188–191] Dynamic error handling
in multimodal systems

Error recovery algorithms,
real-time feedback loops

Explores approaches to dynamically handle errors in
multimodal interactions by employing feedback loops
and recovery mechanisms for robust system operation.
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Table 5. Cont.

References Topics Covered Techniques/ Approaches Description

[192–195] Adaptive interaction in
real-time environments

ML, context-sensitive
adaptation

Focuses on leveraging ML to adapt system responses
dynamically based on real-time environmental and
contextual changes, improving interaction efficiency.

[196–199] Personalization in
multimodal interfaces

User-specific modeling,
preference learning

Highlights techniques to tailor multimodal systems to
individual user preferences, ensuring usability and
satisfaction through adaptive interaction models.

6. Applications and Future Directions
The rise of multimodal interaction systems has significantly broadened the scope of

applications across various industries, revolutionizing how humans interact with tech-
nology. By enabling systems to interpret and integrate multiple input modalities—such
as speech, touch, gesture, and gaze—multimodal interfaces offer more natural, flexible,
and efficient forms of interaction. From healthcare to VR, multimodal systems transform
user experiences by enhancing accessibility, personalization, and adaptability. As the field
continues to evolve, future developments are expected to push the boundaries of HCI,
incorporating advanced ML, AI, and emerging sensory technologies. This section will
explore both current applications of multimodal systems and the future directions that
promise to shape the next generation of interactive technologies.

6.1. Applications of Multimodal Systems

Multimodal systems play a transformative role across diverse industries, including
healthcare, education, VR and AR, intelligent environments, and accessibility technologies.
In healthcare, for instance, multimodal interfaces facilitate human-machine communication
in critical situations, such as during surgeries or patient monitoring. Voice commands,
gesture recognition, and touch-based inputs allow surgeons to control medical equipment
without physical contact, maintaining sterile environments while enhancing precision and
efficiency. In inpatient rehabilitation, multimodal systems incorporating haptics, speech,
and visual feedback are used to develop personalized therapy plans, enabling more effective
monitoring of motor skills and progress [200–204].

In VR and AR, multimodal interaction is essential for creating immersive environ-
ments. VR/AR systems leverage speech, gestures, and eye-tracking to allow users to
navigate virtual spaces seamlessly and interact naturally with digital objects. These appli-
cations are critical for entertainment and training simulations, education, and professional
development. For instance, in military or pilot training, multimodal VR systems provide
realistic scenarios that closely mimic real-world conditions, allowing trainees to interact
with their environments using multiple modalities simultaneously, thereby improving
learning outcomes and engagement [205–209].

Intelligent environments, such as smart homes and smart cities, are another area
where multimodal systems are making an impact. Voice-activated virtual assistants, like
Amazon Alexa or Google Assistant, combine voice recognition with other modalities, such
as gesture or touch, to control appliances, provide information, and enhance convenience.
These systems can also integrate with wearable technology, using multimodal feedback
to offer real-time updates on health, traffic, or environmental conditions. Accessibility
technology has similarly benefited from multimodal systems, offering innovative solutions
for individuals with disabilities. By combining voice recognition, gaze tracking, and haptics,
these systems enable individuals with mobility impairments to interact with computers,
smartphones, and other digital devices in previously inaccessible ways [210–215].
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Table 6 lists references covering advances in multimodal systems applied to biomedical
AI, smart gloves for rehabilitation, AR/VR in medicine, and cognitive and emotional
engagement in VR. Additionally, it highlights work in command and control systems using
AR, gesture recognition in smart cities, and wearable sensors for real-time interaction in
AR/VR. Finally, these studies illustrate the versatility of multimodal systems, showcasing
how they enhance user experiences across diverse domains by improving interaction
accuracy, real-time feedback, and context-aware adaptation.

Table 6. Key applications of multimodal systems across diverse domains.

References Topics Covered Techniques/Approaches Applications/Use Cases & Challenges

[200–204]
Multimodal biomedical AI,
Smart gloves, AR/VR
in medicine

Smart tactile gloves for
rehabilitation, AR/VR for
surgical training, multimodal
biomedical AI techniques

Enhances medical outcomes through
immersive AR/VR systems and
personalized rehabilitation. Challenges
include sensor precision and
real-time adaptability.

[205–209]
Command and control systems
with AR, cognitive and
emotional engagement in VR

AR-based systems for command
control, VR environments for
cognitive engagement

Improves user training and
decision-making through AR/VR systems
with emotional and cognitive engagement.
Challenges include creating realistic and
adaptive scenarios.

[210–215]

Voice-controlled drones, gesture
recognition in smart cities,
wearable sensors in
AR/VR applications

Gesture recognition algorithms,
wearable sensor integration for
real-time interaction

Applications include voice-controlled
drones, AR/VR feedback systems, and
gesture-based interfaces for smart cities.
Scalability and integration complexity
remain challenges.

6.2. Future Directions of Multimodal Systems

The future of multimodal interaction lies in creating even more adaptive, intelligent,
and context-aware systems. One of the most promising directions is the integration of
AI and ML to enhance the adaptability of multimodal systems. AI-driven models will
allow systems to learn from user behaviour, refining their ability to predict user intent
and provide personalized interactions. As AI technologies mature, multimodal systems
will become more autonomous, anticipating user needs and responding dynamically to
environmental changes. For example, in smart home systems, future multimodal interfaces
could adapt in real-time to lighting, sound, or user activity changes, automatically adjusting
inputs and outputs to optimize the user experience [216–220].

Emerging technologies, such as BCIs, will likely become integral to future multimodal
systems. BCIs offer the potential to capture neural activity directly from the brain, creating
a new modality that allows users to control systems using thought alone. When integrated
with existing modalities such as speech, gesture, and gaze, BCIs could enable profoundly
immersive experiences in fields such as VR/AR, gaming, and accessibility. For example,
BCIs could enhance accessibility for individuals with severe physical disabilities, allowing
them to control devices or communicate through a combination of brain signals and other
multimodal inputs [221–225].

Another exciting area of development is the enhancement of context-awareness in
multimodal systems. Current systems often need help recognizing and adapting to complex,
dynamic environments. In the future, multimodal interfaces will be capable of analyzing
environmental data in real-time, using sensors, AI, and ML to understand the user’s context
and deliver contextually relevant feedback. This could be particularly valuable in industries
such as automotive, where multimodal systems could combine voice commands, gesture
input, and eye-tracking to provide real-time driver assistance while dynamically adjusting
to traffic conditions, weather, and driver behaviour [226–230].
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In summary, the future of multimodal systems will be characterized by increasingly
sophisticated interactions driven by AI, ML, and new sensory technologies like BCIs. These
developments will enhance user experience across a broad spectrum of applications and
push the boundaries of what is possible in HCI. As multimodal systems evolve, their
ability to provide natural, intuitive, and adaptive interactions will continue to grow, further
bridging the gap between humans and machines [231–233]. Table 7 outlines the future paths
in advancing multimodal systems. These studies emphasize the potential of AI to enhance
the adaptability and personalization of multimodal interfaces, and BCIs and advanced
sensory technologies to push the boundaries of HCI into entirely new dimensions.

Table 7. Emerging technologies and future directions in multimodal systems.

References Topics Covered Techniques/Approaches Applications/ Use Cases & Challenges

[216–220]
AI and ML for adaptive
multimodal systems,
real-time context adaptation

AI-driven context-aware
models for real-time
interaction and learning

Enhances smart home systems with adaptive
and personalized multimodal interactions.
Challenges include ensuring real-time
adaptability and minimizing computational
overhead.

[221–225] BCIs & immersive
technologies

BCIs integrated with gesture
and speech recognition

Improves accessibility and immersive
experiences in AR/VR for individuals with
disabilities. Challenges include user comfort
and seamless integration of modalities.

[226–230] Advanced context awareness
in dynamic environments

AI-driven voice, gesture, and
eye-tracking integration for
real-time assistance

Applications in automotive and smart
environments with challenges in dynamic
context management and
multimodal synchronization.

[231–233] Emerging sensory
technologies in HCI

Innovative sensory
interfaces, such as
taste-based BCIs and
advanced
perception techniques

Expands sensory studies and multimodal
scenarios, addressing emerging interaction
paradigms. Challenges include developing
practical and user-friendly implementations.

7. Conclusions
Multimodal interaction is rapidly transforming the landscape of HCI, allowing for

more natural, intuitive, and efficient engagement between users and digital systems. By
leveraging multiple input and output modalities—such as speech, gestures, touch, gaze,
and haptics—multimodal systems offer a robust and flexible alternative to traditional
unimodal interfaces. This survey has examined the key aspects of multimodal interaction,
including integrating various modalities, the technical challenges of modality fusion, and
the importance of context awareness in ensuring seamless interactions. Fusing these diverse
inputs allows systems to enhance user experience by offering more adaptable, contextually
appropriate responses that closely mimic human communication patterns.

Despite the potential of multimodal systems, several challenges persist. Achieving
efficient modality fusion and temporal synchronization remains a complex task, requiring
sophisticated algorithms and ML models to ensure that different modalities complement
each other rather than conflict. Additionally, the system’s ability to adapt to dynamic
environments, user preferences, and varying contexts is essential for the continued success
of multimodal interaction. Privacy concerns, particularly in modalities like gaze tracking
and voice recognition, must also be addressed to safeguard user data. Overcoming these
challenges will require ongoing research and innovation, particularly in areas such as AI
and ML, which are critical in making multimodal systems more intelligent and adaptive.

Looking ahead, the future of multimodal interaction promises to be shaped by emerg-
ing technologies such as BCIs, AI-driven personalization, and increasingly immersive
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virtual and AR environments. These developments will push the boundaries of HCI, allow-
ing systems to learn from user behaviour, adapt in real-time, and anticipate user needs more
accurately than ever before. As the field advances, the convergence of multimodal systems
with AI will unlock new possibilities in fields ranging from healthcare and education to
intelligent environments and accessibility, ultimately transforming how humans interact
with machines and digital environments globally.
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