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Abstract: HIV remains a significant health issue, especially in sub-Saharan Africa. There
are 39 million people living with HIV (PLWH) globally. Treatment with ART improves
patient outcomes by suppressing the HIV RNA viral load. However, not all patients treated
with ART suppress the HIV RNA viral load. This research paper explores the potential
predictors of VL suppression in ART-treated PLWH. We used retrospective data from the
4820 ART-treated participants enrolled through population-based surveys conducted in
Zambia and Malawi. We applied several machine learning (ML) classifiers and used the
top classifiers to identify the predictors of VL suppression. The age of participants ranged
from 15 to 64 years, with a majority being females. The predictive performance of the
various ML classifiers ranged from 64% to 92%. In our data from both countries, the logistic
classifier was among the top classifiers and was as follows: Malawi (AUC = 0.9255) and
Zambia (AUC = 0.8095). Thus, logistic regression was used to identify the predictors of viral
suppression. Our findings indicated that besides ART treatment status, older age, higher
CD4 T-cell count, and longer duration of ART were identified as significant predictors
of viral suppression. Though not statistically significant, ART initiation 12 months or
more before the survey, urban residence, and wealth index were also associated with VL
suppression. Our findings indicate that HIV prevention programs in the region should
integrate education on early ART initiation and adherence in PLWH.

Keywords: sub-Saharan Africa; HIV; machine learning; HIV-1 viral load

1. Introduction
Human Immunodeficiency Virus (HIV) has become a critical global health issue,

impacting millions of people worldwide. It targets and weakens the body’s immune
system by attacking CD4 T-cells, essential for immune defense. If not treated, it can lead
to Acquired Immunodeficiency Syndrome (AIDS), a condition where the immune system
is compromised, making the body vulnerable to opportunistic infections [1]. HIV disease
progression can be monitored by measuring the HIV-1 Ribonucleic Acid (RNA) viral load
(VL), calculated in copies per milliliter of blood [2]. Treatment with Antiretroviral Therapy
(ART) can significantly reduce the amount of HIV in the blood, leading to viral suppression,
defined as ≤1000 HIV-RNA copies/mL per World Health Organization (WHO) criteria [3].
Through ART, people living with HIV (PLWH) can also achieve a good life span [4]. The
HIV virus relies on CD4 T-cells to replicate and transmit. Thus, both the CD4 T-cell count
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and the HIV RNA viral load are frequently used to monitor HIV disease progression and
treatment efficacy [5].

UNAIDS has set a target of reaching the 95-95-95 goal by 2025, which means that by
2025, 95% of people with HIV will know their HIV status, 95% of people with HIV will
receive ART, and 95% of people receiving ART will have VL suppression [6]. Globally,
among the 39 million PLWH in 2022, only 29.8 million people were accessing ART, and 71%
of those people receiving ART achieved viral suppression [7]. Globally, there has been a
more than three-fold increase in the number of people receiving ART in the last 10+ years [7].
An increase in ART usage was also seen in sub-Saharan Africa, where HIV/AIDS continues
to be a public health burden. In sub-Saharan Africa, the percentage of PLWH receiving
ART has increased from 66% to 83% from 2017 to 2022. Of the 83% who received ART,
77% have achieved VL suppression [8]. A closer examination of country-specific data from
Malawi and Zambia, the two countries our datasets are drawn from, reveals similar trends.
According to the UNAIDS report, Malawi had 1.0 million PLWH, with 94% knowing their
status, of them 93% on treatment, and of the treated, 87% achieved viral suppression [8].
Similarly, in Zambia, 1.4 million people were living with HIV in 2022, with 93% knowing
their status and of those aware, 90% were on ART, and of those treated, 87% were virally
suppressed [8]. Despite improvements, these figures highlight that we are still far from
achieving the UNAIDS target of 95% viral suppression by 2025.

In sub-Saharan Africa, efforts to achieve the UNIADS goal have led to the implemen-
tation of several prevention strategies, including widespread testing, the use of ART, and
educational programs aimed at reducing stigma and creating more awareness [9–11]. The
educational programs have helped increase the number of people identifying their HIV
status and receiving ART treatment [10,11]. Despite these efforts, numerous challenges
remain in the region, which has limited access to treatment and healthcare services. To com-
bat the HIV epidemic, Zambia and Malawi have adopted and implemented World Health
Organization (WHO) guidelines aimed at reducing HIV-related morbidity. Both countries
have embraced the WHO “Treat All” approach starting in 2016, which promotes the early
initiation of ART through rapid HIV testing [12]. This approach focuses on providing ART
to all individuals diagnosed with HIV, regardless of their CD4 count, clinical stage, or age,
to curb new infections and deliver essential care [12]. According to these guidelines, viral
load (VL) testing is conducted at six and twelve months after ART initiation and annually
thereafter [13]. The WHO guidelines recommend a preferred combination of antiretroviral
(ARV) drugs, including tenofovir, lamivudine, emtricitabine, and efavirenz, as the first-line
regimen for ART treatment [13]. Patients with a VL exceeding 1000 copies/mL are enrolled
in enhanced adherence counseling sessions, which aim to address issues affecting ART
adherence [13]. Following the counseling sessions, a repeat VL test is performed. If the
VL remains above 1000 copies/mL and adherence is confirmed, patients are moved to a
second-line ART regimen [13].

For ART to be effective, lifelong adherence is required. Consistent ART adherence is
crucial for successfully achieving viral suppression. Non-adherence often results in unsup-
pressed viral load, making individuals more vulnerable to other infections and increasing
their mortality risk. Studies conducted in sub-Saharan Africa have identified numerous barri-
ers that hinder ART adherence and make achieving VL suppression more difficult [14–16].
Commonly reported barriers to ART adherence include financial challenges, poverty, food
insecurity, limited availability of healthcare resources, and transportation expenses. Despite
substantial efforts to expand ART access and the implementation of a “treat all” approach,
significant obstacles persist in the region, creating challenges in achieving VL suppression.

In this study, we aimed to identify socio-demographic, socioeconomic, clinical, vi-
rological, and immunological risk factors associated with treatment failure/success in
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sub-Saharan Africa, which was evaluated based on HIV RNA viral load suppression. Our
study’s findings will contribute to a growing body of literature on the use of machine
learning in healthcare, demonstrating how diverse algorithms can be applied to enhance
predictive accuracy in health outcomes.

2. Materials and Methods
In this study, we undertook a secondary analysis of retrospective data collected

through the Population-based HIV Impact Assessment (PHIA) surveys conducted in
Zambia and Malawi. These assessments were part of the PHIA Project, funded by the
U.S. President’s Emergency Plan for AIDS Relief (PEPFAR) and technically supported
by the International Center for AIDS Care and Treatment Programs (ICAP) at Columbia
University through the U.S. Centers for Disease Control and Prevention (CDC) [17–19].
The PHIA project surveys capture the status of the HIV epidemic in 13 sub-Saharan African
countries and Haiti by assessing HIV prevalence, incidence, and viral load suppression
at a population level [20]. The participants provided blood samples for HIV and other
Sexually Transmitted Infections (STI) testing. Following the national testing standards
for HIV in each country, the participants underwent in-home counseling and rapid HIV
testing [20]. Written informed consent was obtained at every survey stage (head of the
household interview, individual interview, and blood sample collection). All survey ma-
terials, including questionnaires and consent forms, were translated from English into
local languages. The survey covered various aspects, including a household questionnaire,
individual interviews addressing HIV care and treatment, HIV knowledge, behavioral
risk factors associated with HIV incidence and prevalence, and questions on co-infections
such as syphilis, tuberculosis, hepatitis B, and cervical cancer. Participants completed a
standardized questionnaire, and whole blood samples were collected for HIV testing. HIV
home-based testing and counseling (HBTC) was conducted following national guidelines,
using a sequential rapid-test algorithm. This algorithm included the Determine HIV-1/2
test (Abbott Molecular Inc., Des Plaines, IL, USA) as the screening test and the Uni-Gold
test (Trinity Biotech, Wicklow, Ireland) as the confirmatory test. Individuals with reac-
tive results on both tests were identified as HIV-positive and referred to HIV care and
treatment services. For participants identified as HIV-positive, further assessments were
conducted, including CD4 T cell count measurement, HIV viral load testing, and the pres-
ence of antiretroviral drugs (ARVs). ARV presence was determined using high-resolution
liquid chromatography-tandem mass spectrometry to detect markers such as efavirenz,
atazanavir, lopinavir, and nevirapine. The methodology, including survey questionnaires,
study design, and testing procedures, were previously described in detail in Sachathep K.
et al. and the references therein [21].

The primary outcome of interest in this paper was HIV-1 RNA VL suppression, de-
fined as having less than 1000 copies/mL [3]. The covariates examined included socio-
demographic factors (such as age, gender, and urban residence), socio-economic factors
(such as wealth index), ART status, duration on ART divided into four categories (not
on ART, on ART for less than 12 months, on ART for 12–23 months, and on ART for
24 months or more), ART initiation, CD4 T cell count, and co-infections (such as hepatitis B
and syphilis).

The objectives of the analyses were twofold: First, we sought to select a classifier model
that will be used to evaluate the predictors of treatment failure/success in sub-Saharan
Africa. The results from this analysis will inform the selection of the optimal predictive
model based on a balance of accuracy, the area under the ROC curve (AUC), and inter-
pretability. Second, we employed the selected ML classifier to identify predictors of HIV-1
RNA VL suppression, i.e., having less than 1000 copies/mL. The data we analyzed in-
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cluded clinical, socio-demographic, and socio-economic predictors such as CD4 count, age,
gender, urban/rural residence, and wealth index to assess their impact on VL suppression
along with ART duration, ART initiation 12 months or more prior to the survey, and ART
treatment status. ART duration was categorized into the four following groups: (1) not on
ART, (2) on ART for less than 12 months, (3) on ART for 12–23 months, and (4) on ART for
more than 24 months. For our Zambia dataset, additional variables related to co-infections
(syphilis and hepatitis B) were included. After data preparation and preprocessing, models
were built and evaluated for classification accuracy and robustness, with the primary ob-
jective of comparing predictive performance across multiple machine learning algorithms.
The dataset was refined by removing rows with missing values to maintain data quality
and integrity in line with recommendations by Rubin (1987) on handling missing data in
predictive modeling [22]. This procedure reduced the dataset to a size partitioned into
training and testing subsets using a 0.75/0.25 split. This partitioning was accomplished
using a random seed of 100 to ensure the replicability of results. The training dataset
(75% of the data) was used for model fitting, while the testing dataset (25% of the data)
enabled out-of-sample evaluation, an approach consistent with Hastie et al. (2009) [23].
Several ML algorithms were implemented to develop and compare predictive models
for the targeted outcome variable, i.e., VL suppression. These algorithms included Ad-
aBoost, AdaBag, Naive Bayes, Logistic Regression (Logistic), Neural Networks (MNet),
Quadratic Discriminant Analysis (QDA), K-Nearest Neighbors (KNN), Random Forest
(RF), Recursive Partitioning and Regression Trees (rpart), Support Vector Machines with
Radial Basis Function Kernel (SVMRadial), and Linear Discriminant Analysis (LDA). Each
model was implemented with cross-validation to ensure stable estimates of accuracy and
minimize overfitting, as recommended by Kohavi (1995) [24]. The inclusion of multiple ML
algorithms allowed for a comprehensive assessment of various classification approaches
on the dataset. Each algorithm offers distinct advantages. For instance, ensemble methods
such as Random Forest and AdaBoost are known for their high accuracy and robustness to
overfitting, whereas simpler models like logistic offer greater interpretability, making them
valuable in a clinical setting where model transparency is essential (Breiman, 2001) [25].
Each algorithm was trained on the training subset of the data using 10-fold cross-validation.
The primary outcome metric was the Area Under Curve (AUC), calculated from the test
data, which reflects the percentage of correctly classified cases. Performance evaluation
was conducted on the test dataset to validate each model’s predictive power. Area under
the ROC curve is a widely recognized metric for evaluating classification models, partic-
ularly when the outcome is binary, as in this analysis (Zou et al., 2007) [26]. Continuous
and categorical patient characteristics were compared using the Wilcoxon rank sum and
Fisher’s exact tests. Statistical analyses were performed using the R package version 4.4.2.
All p values were two sided and considered statistically significant if <0.05.

3. Results
We analyzed data from 4820 ART-treated PLWH, of which 2239 are from Malawi and

2581 are from Zambia. The ages of the participants ranged from 15 to 59 years in Zambia
and from 15 to 64 years in Malawi. In Malawi, 68.6% (n = 1536) of the participants achieved
VL suppression. Meanwhile, 61% (n = 1562) achieved VL suppression in Zambia. These
figures are less than the 95% suppression rate targeted by UNAIDS [6]. Most participants
were females: 67.7% (n = 1516) in Malawi and 65.2% (n = 1684) in Zambia. The median age
of participants was 40 years (IQR: 33–46 years) in Zambia, comparable to the median age
of participants in Malawi, which was 39 years (IQR: 32–46 years). The median CD4 T cell
count in Malawi was 485 cells/µL (IQR: 335.8–652.2), comparable to the median CD4 T cell
count in Zambia, which was 453 cells/µL (IQR: 306.2–476.6). In Malawi, 55.6% (n = 1247)



Trop. Med. Infect. Dis. 2025, 10, 24 5 of 14

and in Zambia, 45.5% (n = 1176) of the participants initiated ART 12 months or more before
the survey. Most of the participants from both countries were on ART. Only 33.8% (n = 758)
and 39.3% (n = 1016) were not receiving ART in Malawi and Zambia, respectively. ART
duration was divided into four categories in both countries: not on ART, on ART for less
than 12 months, on ART for 12–23 months, and on ART for 24 months or more. A total
of fifty-five percent (n = 1243) in Malawi and thirty-seven percent (n = 957) in Zambia
were on ART treatment for 24 months or more. In Zambia, some participants were tested
positive for co-infections like syphilis and hepatitis B, with 15.8% (n = 408) testing positive
for syphilis and 6.6% (n = 171) testing positive for hepatitis B. In Malawi, the majority of
the participants, 52.1% (n = 1167), resided in rural areas. On the other hand, in Zambia, the
majority, 55.2% (n = 1427), are urban residents. The wealth index was categorized into three
income levels (low, medium, and high), with a distribution ranging from 22.8% (n = 512)
in the low-income group to 44.0% (n = 986) in the high-income group in Malawi. On the
other hand, in Zambia, the distribution was more in the middle-income group, with 46.7%
(n = 1206).

Table 1 presents the characteristics of our participants based on viral suppression
status in Malawi. The participants with HIV suppression (median = 39 years, IQR = 32–46)
were older than those without HIV suppression (median = 34 years, IQR = 28–41), show-
ing a statistically significant difference (p < 0.001). Participants on ART medication
had a higher viral suppression rate at 91.8% (n = 1410) than those without suppres-
sion at 12.5% (n = 88). Participants with HIV suppression have a higher CD4 T-cell
count (median = 512 cells/µL, IQR = 366–675.5) compared to those without suppression
(median = 319 cells/µL, IQR = 192–475), also showing a statistically significant difference
(p < 0.001). The proportion of females who suppressed viral load is higher, with 71.1%
(n = 1092), showing a statistically significant difference (p < 0.001). The proportion of
patients who initiated ART before the survey was higher among those with suppression
at 73.2% (n = 1124) than those without at 17.5% (n = 123), with a statistically significant
difference (p < 0.001). The duration on ART varies, with 74% (n = 1137) of patients with
suppression being on ART for more than 24 months, compared to 15.1% (n = 106) of patients
without suppression (p < 0.001). Though statistically significant (p < 0.001), participants
from urban residences achieved less viral suppression at 45% (n = 693) compared to those
without suppression at 53.9% (n = 379). However, participants with a high income were
more virally suppressed at 43% (n = 660), but it was not statistically significant (p = 0.57). In
summary, our analyses indicate that age, female gender, CD4 T cell count, urban residence,
initiation of ART 12 months or more before the survey, and ART duration were associated
with HIV viral suppression in Malawi.

Table 2 presents the characteristics of patients based on viral suppression status in
Zambia. The participants with VL suppression (median = 40 years, IQR = 33–46) were
older than those without VL suppression (median = 33 years, IQR = 26–42), showing a
statistically significant difference (p < 0.001). Participants on ART medication had a higher
viral suppression rate at 87.2% (n = 1362) than those without suppression at 11.1% (n = 114),
making ART status a statistically significant factor (p< 0.001). Participants with HIV
VL suppression have a higher CD4 T-cell count (median = 473 cells/µL, IQR = 338–639)
compared to those without suppression (median = 336 cells/µL, IQR = 210.5–490.2), a
statistically significant difference (p < 0.001). Compared to Malawi, the proportion of
females who suppressed VL was less in Zambia at 67.4% (n = 1053), and it was also not
statistically significant (p = 0.02). The proportion of patients who initiated ART 12 months
or more before the survey was higher among those with suppression at 67.2% (n = 1050)
than those without at 12.4% (n = 126), but this difference was not statistically significant
(p = 0.16). The duration on ART varies, with 55% (n = 904) of participants with suppression
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being on ART for more than 24 months compared to 51.3% (n = 523) of patients without
suppression, making it statistically significant (p < 0.001). Conversely, the proportion of
patients not on ART was lower among those with suppression at 12.7% (n = 199) than those
without suppression at 80.2% (n = 817). Co-infections like syphilis and hepatitis B were
more prevalent among those with suppression (16.1% for syphilis and 6.8% for hepatitis
B) compared to those without (15.4% for syphilis and 6.3% for hepatitis B), showing no
significant difference (p = 0.81). Participants from urban residences achieved more viral
suppression at 57.9% (n = 904) with 51.3% (n = 523) of those from urban residences without
suppression. However, participants who fell under the middle-income category were more
virally suppressed at 46.1% (n = 720), compared to those without suppression at 47.7%
(n = 486), showing a statistically significant difference (p < 0.001). In Zambia, our analyses
identified that ART status, age, CD4 T-cell count, wealth index, and duration on ART were
associated with VL suppression.

Table 1. Variables by viral load suppression status among PLWH in Malawi.

Variable

Participants with HIV
Suppressed (n = 1536,
68.6%)

Participants Without
HIV Suppressed
(n = 703, 31.4%) p-Value

N (%) N (%)

Age 38.5 (IQR: 46–32) 34 (IQR: 41–28) <0.001

CD4 T-cell Count 512 (IQR: 675.5–366) 319 (IQR: 475–192) <0.001

Gender (Female) 1092 (71.1) 424 (60.3) <0.001

ART Initiation 1124 (73.2) 123 (17.5) <0.001

ART Status 1410 (91.8) 88 (12.5) 0.54

ART Duration

Not on ART 189 (12.3) 569 (80.1) <0.001

Less than 12 months 0 0

12–23 months 164 (10.7) 20 (2.8)

24 months or more 1137 (74) 106 (15.1)

Urban Residence 693 (45.1) 379 (53.9) <0.001

Wealth Index

Low income 356 (23.1) 156 (22.2) 0.57

Middle income 520 (33.9) 221 (31.4)

High income 660 (43) 326 (46.4)

We applied various machine learning classifiers to our datasets to assess their pre-
dictive performance, with the ROC-AUC metric as the evaluation criterion. The results
are shown in the forest plot in Figure 1. The AUC values ranged from 64% to 92% in both
countries. In our Malawi data, as shown in Figure 1a, the Logistic classifier demonstrated
the best performance with an AUC of 0.9255, followed by MNet with an AUC of 0.9244.
This indicates that both models accurately identified VL suppression status in over 92%
of the participants. In our Zambia data, as shown in Figure 1b, the Logistic classifier
(AUC = 0.8095) was among the top classifiers to correctly identify VL suppression status in
more than 80% of participants. Hence, we selected the Logistic classifier as the optimal pre-
dictive classifier model based on AUC values and interpretability. Thus, we ran univariate
and multivariate logistic regression models to identify the socio-demographic, socioeco-
nomic, clinical, and immunological factors associated with VL suppression in ART-treated
PLWH. In both our Malawi and Zambia datasets, ART status was strongly associated with
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higher odds of viral suppression, for Malawi [OR = 98.07, 95% CI: 72.4–132.2, p < 0.01] and
Zambia [OR =113.7, 95% CI: 84.9–152.2, p < 0.01]. The odds of viral suppression associated
with the other variables are summarized in the forest plots presented in Figure 2. The
forest plots of our data for both countries revealed that older age: Malawi [OR= 1.04, 95%
CI: 1.03–1.05, p < 0.001] and Zambia [OR= 1.05, 95% CI: 1.04–1.06, p < 0.001]; higher CD4
T-cell count: Malawi [OR= 1.004, 95% CI: 1.003–1.004, p < 0.001] and Zambia [OR= 1.003,
95% CI: 1.002–1.003, p < 0.001]; and longer duration on ART: Malawi [OR= 2.43, 95%
CI: 2.27–2.6, p < 0.001] and Zambia [OR= 3.61, 95% CI: 3.28–3.97, p < 0.001] were associ-
ated with higher odds of viral suppression. In Malawi, female gender [OR = 1.61, 95%
CI: 1.34–1.95, p < 0.001] was also associated with viral suppression. Though it was not
statistically significant, ART initiation 12 months or more before the survey in Malawi [OR
= 0.86, 95% CI = 0.54–1.35, p = 0.51] and Zambia [OR = 1.33, 95% CI = 0.89–1.98, p = 0.15];
urban residence in Zambia [OR = 1.26, 95%CI: 1.07–1.48, p = 0.005]; female gender in
Zambia [OR = 1.225, 95%CI:1.03–1.45, p = 0.021] and wealth index in Malawi [OR = 1.16,
95%CI: 0.80–1.70, p = 0.418] and Zambia [OR = 1.37, 95%CI: 0.97–1.92, p = 0.069] were
also associated with viral suppression. Although co-infections are generally expected to
complicate treatment and reduce the likelihood of viral suppression, our data showed no
significant association between co-infections and VL suppression.

Table 2. Variables by viral load suppression status among PLWH in Zambia.

Variable

Participants with HIV
Suppressed (n = 1562,
61%)

Participants Without
HIV Suppressed
(n = 1019, 39%) p-Value

N (%) N (%)

Age 40 (IQR: 46–33) 33 (IQR: 42–26) <0.001

Cd4 T-cell Count 473 (IQR: 639–338) 336 (IQR: 490.2–210.5) <0.001

Syphilis 251 (16.1) 157 (15.4) 0.82

Hepatitis B 106 (6.8) 65 (6.3) 0.81

Gender Female 1053 (67.4) 631 (61.9) 0.02

ART Initiation 1050 (67.2) 126 (12.4) 0.16

ART Status 1362 (87.2) 114 (11.1) <0.001

ART Duration

Not on ART 199 (12.7) 817 (80.2) <0.001

Less than 12 months 221 (14.1) 35 (3.4)

12–23 months 167 (10.7) 10 (1)

24 months or more 860 (55) 97 (9.5)

Urban Residence 904 (57.9) 523 (51.3) 0.005

Wealth Index

Low income 296 (18.9) 249 (24.5) <0.001

Middle income 720 (46.1) 486 (47.7)

High income 480 (30.7) 227 (22.3)
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Logistic Regression, MNet: Neural Networks, LDA: Linear Discriminant Analysis, RF: Random For-
est, ADA: AdaBoost, QDA: Quadratic Discriminant Analysis, Naive Bayes, SVMRadial: Support 
Vector Machines with Radial Basis Function Kernel, AdaBag, rpart: Recursive Partitioning and Re-
gression Trees, and KNN: K-Nearest Neighbors. The blue box represents the point estimate of the 
models, while horizontal lines represent the confidence interval (CI). The ends of the lines mark the 
boundaries of the CI and arrow mark indicate the extended CI beyond the x-axis limits. 

Figure 1. Forest plot showing the areas under the receiver operating characteristic curves with 95%
confidence intervals for several machine learning classifiers in Malawi (a) and Zambia (b). Logistic:
Logistic Regression, MNet: Neural Networks, LDA: Linear Discriminant Analysis, RF: Random
Forest, ADA: AdaBoost, QDA: Quadratic Discriminant Analysis, Naive Bayes, SVMRadial: Support
Vector Machines with Radial Basis Function Kernel, AdaBag, rpart: Recursive Partitioning and
Regression Trees, and KNN: K-Nearest Neighbors. The blue box represents the point estimate of the
models, while horizontal lines represent the confidence interval (CI). The ends of the lines mark the
boundaries of the CI and arrow mark indicate the extended CI beyond the x-axis limits.
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Figure 2. Forest plot of odds ratios (OR) together with their 95% confidence intervals for PLWH
in Malawi (a) and Zambia (b). The blue box represents the point estimate of the analysis, while
horizontal lines represent the confidence interval (CI). The ends of the lines mark the boundaries of
the CI and arrow mark indicate the extended CI beyond the x-axis limits.

4. Discussion
This paper highlights the value of machine learning techniques in HIV/AIDS research,

offering insights that can inform treatment strategies and improve patient outcomes. The
study’s findings will contribute to a growing body of literature on the use of machine
learning in healthcare, demonstrating how diverse and robust algorithms can be applied
to enhance predictive accuracy in health outcomes. We undertook secondary analyses on
our data collected from Zambia and Malawi. The objectives of the analyses were twofold:
First, we selected the optimal predictive classifier model based on a balance of accuracy,
the area under the ROC curve, and interpretability. Second, we employed the selected
classifier model to identify predictors of HIV treatment success, assessed by HIV RNA viral
suppression, in sub-Saharan Africa.

In our Malawi data, almost 69% of participants exhibited VL suppression, while in our
Zambia data, 61% showed suppression. These rates are relatively lower compared to findings
from previous studies conducted in other sub-Saharan African countries [27,28]. Besides
treatment with ART, baseline CD4 T cell count, ART duration, and age were identified as
important correlates of viral suppression. In our Malawi dataset, 91% of participants on
ART medication achieved viral suppression, while in our Zambia dataset, 87% had similar
outcomes. This significant impact of ART on viral suppression is consistent with previous
research conducted across different regions of the world and populations [29–31], further
validating our results and reinforcing the global consensus on the efficacy of ART treatment



Trop. Med. Infect. Dis. 2025, 10, 24 10 of 14

in suppressing VL. The median CD4 T cell count in our data from Malawi and Zambia was
485 cells/µL [IQR: 335.8–652.2] and 453 cells/µL [IQR: 306.2–476.6], respectively. These figures
are slightly lower than the normal CD4 T-cell count range in PLWH. According to the WHO, a
normal CD4 T-cell count range is from 500 to 1500 cells/mm3, progressively decreasing if ART
treatment is not received [32,33]. In our data from both countries, higher CD4 T cell count
was associated with higher odds of VL suppression, which is consistent with studies from
sub-Saharan Africa as well as other regions globally [33–36]. We found that a longer duration
on ART treatment was a significant predictor of VL suppression. In Malawi, individuals on
ART for more than 24 months had a 74% suppression rate, compared to a 23% suppression
rate for those on ART for less than 24 months. Similarly, for Zambia, 55% of participants on
ART for 24 months or more achieved VL suppression compared to 37.5% on ART for less
than 24 months. This association between ART adherence and VL suppression is consistent
with the results reported in similar studies from sub-Saharan Africa [37]. Our findings show
that a longer duration on ART and higher CD4 T-cell counts are also associated with VL
suppression, which is consistent with other studies from sub-Saharan Africa and other regions
globally [33,38–41]. Aligning with the results of other related studies from sub-Saharan Africa
and different regions, our analysis demonstrates that older age was associated with higher
odds of VL suppression [40,42,43].

Our findings from our Zambia dataset indicate that socio-economic factors, such as
the wealth index, also play a role in achieving viral suppression, though are not statistically
significant. This aligns with findings from previous studies conducted in sub-Saharan
Africa [44]. This impact may be attributed to better access to treatment and educational
programs among individuals in high-income groups compared to those in low- and middle-
income groups [45]. Therefore, we would like to highlight the importance of awareness of
HIV treatment among PLWH in the low-income index as an important factor for accessing
ART to reach VL suppression targets set by UNAIDS. While urban/rural residence did not
significantly affect VL suppression in our study, urban participants in our Zambia dataset
showed better suppression than rural participants in our Malawi dataset. This disparity
could be due to the higher number of rural participants in our Malawi dataset and the
challenges rural areas face, such as limited access to healthcare, higher costs, and fewer
educational resources on ART adherence [46].

The analyses in this paper provide valuable insights that can aid HIV clinicians and
policymakers in enhancing strategies to combat HIV infection. Using the robust machine
learning models, we highlight critical factors such as older age, CD4 T cell count, and ART
duration, wealth index, urban residence as important factors affecting viral suppression.
HIV/AIDS prevention programs in the regions should target and encourage PLWH to
initiate ART early and adhere to ART treatment for effective treatment outcomes. We
acknowledged the limitations of our study, and hence, our results must be interpreted
cautiously. Compared with previous related studies, our study has many advantages.
Unlike many previous studies, which were based either on a smaller sample size or spe-
cific groups such as female sex workers, MSM, or pregnant women, we utilized a large
population-based survey, reducing the potential biases associated with small sample sizes
and sampling specific groups of participants. It is important to interpret these findings
cautiously due to certain limitations. One significant limitation is the retrospective data
we used from a cross-sectional survey, which may not account for changes over time in
key variables such as healthcare access or behavioral factors and variability in diagnostic
standards or the standard CD4/CD8 ratio values across both regions. These disparities
may influence the availability of ART regimens, patient adherence, and viral suppression
outcomes, potentially limiting the generalizability of our findings. The self-reported na-
ture of the data may still be affected by recall bias and the tendency to provide answers
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perceived as favorable, particularly on sensitive topics. Furthermore, while we categorized
ART duration, the survey lacked details like the reasons for discontinuation or switching,
which could have enriched our understanding of treatment effects. Lastly, the absence
of long-term follow-up data restricts our ability to evaluate the durability of ART effects
on viral suppression. Future research should incorporate prospective data collection and
consider a more diverse set of variables to enhance the predictive accuracy of VL sup-
pression models. Despite these limitations, our analysis underscores the importance of
ART adherence, regular CD4 T-cell count monitoring, and comprehensive medication
management, aligning with global goals such as the 95-95-95 targets. Ensuring patients are
tested and treated with appropriate ART medications, achieving higher CD4 T-cell count,
and adherence to ART treatment remains crucial for effective VL suppression.

5. Conclusions
In this paper, we utilized retrospective data from Zambia and Malawi and applied

several machine-learning models to identify key factors influencing VL suppression in
PLWH treated with ART. Our comprehensive analysis revealed that factors such as baseline
CD4 T-cell count, duration on ART, and age significantly impact VL suppression. Though
not statistically significant, ART initiation, wealth index, and urban/rural residence were
also associated with VL suppression. The findings underscore the critical role of ART
initiation, regular CD4 T-cell count monitoring, and strict adherence to medication regimens.
Ultimately, ensuring comprehensive medication management and consistent monitoring
were essential for achieving successful treatment outcomes and advancing toward global
HIV suppression targets. Our analysis contributes to the growing body of evidence that
supports integrated and holistic approaches to HIV care, which are vital for improving
patient outcomes and achieving long-term VL suppression.
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