Factors Influencing False-Negative Results of QuantiFERON-TB Gold In-Tube (QFT-GIT) in Active Tuberculosis and the Desirability of Resetting Cutoffs for Different Populations: A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Populations
2.2. Patient Classification and Diagnostic Criteria
2.3. Data Collection
2.4. QFT-GIT
2.5. Statistical Analysis
3. Results
3.1. Study Population
3.2. Positive QFT-GIT Results Greatly Shortened the Time Taken to Diagnose Smear-Negative TB
3.3. Factors Influencing the False-Negative and True-Positive QFT-GIT Results in the Diagnosis of Active Tuberculosis
3.4. Factors Influencing the False-Positive and True-Negative QFT-GIT Results in the Diagnosis of Active Tuberculosis
3.5. Influence of Different Cutoff Values of the QFT-GIT on the Diagnostic Value
3.6. Factors Influencing the False-Negative and False-Positive QFT-GIT Results in Smear-Negative Population
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Global Tuberculosis Report 2021. Available online: https://www.who.int/publications/i/item/9789240037021 (accessed on 14 October 2021).
- Du, F.; Xie, L.; Zhang, Y.; Gao, F.; Zhang, H.; Chen, W.; Sun, B.; Sha, W.; Fang, Y.; Jia, H.; et al. Prospective Comparison of QFT-GIT and T-SPOT.TB Assays for Diagnosis of Active Tuberculosis. Sci. Rep. 2018, 8, 5882. [Google Scholar] [CrossRef] [PubMed]
- Kobashi, Y.; Mouri, K.; Miyashita, N.; Okimoto, N.; Matsushima, T.; Kageoka, T.; Oka, M. QuantiFERON TB-2G test for patients with active tuberculosis stratified by age groups. Scand. J. Infect. Dis. 2009, 41, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Sester, M.; Sotgiu, G.; Lange, C.; Giehl, C.; Girardi, E.; Migliori, G.B.; Bossink, A.; Dheda, K.; Diel, R.; Dominguez, J.; et al. Interferon-γ release assays for the diagnosis of active tuberculosis: A systematic review and meta-analysis. Eur. Respir. J. 2011, 37, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Mazurek, G.H.; Jereb, J.; Lobue, P.; Iademarco, M.F.; Metchock, B.; Vernon, A. Guidelines for using the QuantiFERON-TB Gold test for detecting Mycobacterium tuberculosis infection, United States. MMWR. Recomm. Rep. Morb. Mortal. Wkly. Rep. Recomm. Rep. 2005, 54, 49–55. [Google Scholar]
- Pai, M.; Riley, L.W.; Colford, J.M., Jr. Interferon-gamma assays in the immunodiagnosis of tuberculosis: A systematic review. Lancet Infect. Dis. 2004, 4, 761–776. [Google Scholar] [CrossRef]
- Cardoso, F.L.; Antas, P.R.; Milagres, A.S.; Geluk, A.; Franken, K.L.; Oliveira, E.B.; Teixeira, H.C.; Nogueira, S.A.; Sarno, E.N.; Klatser, P.; et al. T-cell responses to the Mycobacterium tuberculosis-specific antigen ESAT-6 in Brazilian tuberculosis patients. Infect. Immun. 2002, 70, 6707–6714. [Google Scholar] [CrossRef]
- Diel, R.; Loddenkemper, R.; Nienhaus, A. Predictive value of interferon-gamma release assays and tuberculin skin testing for progression from latent TB infection to disease state: A meta-analysis. Chest 2012, 142, 63–75. [Google Scholar] [CrossRef]
- Nijhawan, A.E.; Iroh, P.A.; Brown, L.S.; Winetsky, D.; Porsa, E. Cost analysis of tuberculin skin test and the QuantiFERON-TB Gold In-tube test for tuberculosis screening in a correctional setting in Dallas, Texas, USA. BMC Infect. Dis. 2016, 16, 564. [Google Scholar] [CrossRef]
- Ahmed, A.; Feng, P.I.; Gaensbauer, J.T.; Reves, R.R.; Khurana, R.; Salcedo, K.; Punnoose, R.; Katz, D.J. Interferon-γ Release Assays in Children <15 Years of Age. Pediatrics 2020, 145, e20191930. [Google Scholar] [CrossRef]
- Chen, G.; Wang, H.; Wang, Y. Clinical application of QuantiFERON-TB Gold in-tube in the diagnosis and treatment of tuberculosis. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 607–612. [Google Scholar] [CrossRef]
- Chang, P.C.; Wang, P.H.; Chen, K.T. Use of the QuantiFERON-TB Gold In-Tube Test in the Diagnosis and Monitoring of Treatment Efficacy in Active Pulmonary Tuberculosis. Int. J. Environ. Res. Public Health 2017, 14, 236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, W.; Park, K.U.; Song, E.Y.; Kim, S.J.; Lee, Y.J.; Park, J.S.; Cho, Y.J.; Yoon, H.I.; Yim, J.J.; Lee, C.T.; et al. Comparison of the Sensitivity of QuantiFERON-TB Gold In-Tube and T-SPOT.TB According to Patient Age. PLoS ONE 2016, 11, e0156917. [Google Scholar] [CrossRef] [PubMed]
- Edwards, A.; Gao, Y.; Allan, R.N.; Ball, D.; de Graaf, H.; Coelho, T.; Clifford, V.; Curtis, N.; Williams, A.; Faust, S.N.; et al. Corticosteroids and infliximab impair the performance of interferon-γ release assays used for diagnosis of latent tuberculosis. Thorax 2017, 72, 946–949. [Google Scholar] [CrossRef]
- Magee, M.J.; Trost, S.L.; Salindri, A.D.; Amere, G.; Day, C.L.; Gandhi, N.R. Adults with Mycobacterium tuberculosis infection and pre-diabetes have increased levels of QuantiFERON interferon-gamma responses. Tuberculosis 2020, 122, 101935. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Kang, J.Y.; Kim, S.I.; Chang, M.S.; Kim, Y.R.; Park, Y.J. Predictors for false-negative QuantiFERON-TB Gold assay results in patients with extrapulmonary tuberculosis. BMC Infect. Dis. 2018, 18, 457. [Google Scholar] [CrossRef] [PubMed]
- Raby, E.; Moyo, M.; Devendra, A.; Banda, J.; De Haas, P.; Ayles, H.; Godfrey-Faussett, P. The effects of HIV on the sensitivity of a whole blood IFN-gamma release assay in Zambian adults with active tuberculosis. PLoS ONE 2008, 3, e2489. [Google Scholar] [CrossRef]
- Stephan, C.; Wolf, T.; Goetsch, U.; Bellinger, O.; Nisius, G.; Oremek, G.; Rakus, Z.; Gottschalk, R.; Stark, S.; Brodt, H.R.; et al. Comparing QuantiFERON-tuberculosis gold, T-SPOT tuberculosis and tuberculin skin test in HIV-infected individuals from a low prevalence tuberculosis country. Aids 2008, 22, 2471–2479. [Google Scholar] [CrossRef]
- Aabye, M.G.; Ravn, P.; PrayGod, G.; Jeremiah, K.; Mugomela, A.; Jepsen, M.; Faurholt, D.; Range, N.; Friis, H.; Changalucha, J.; et al. The impact of HIV infection and CD4 cell count on the performance of an interferon gamma release assay in patients with pulmonary tuberculosis. PLoS ONE 2009, 4, e4220. [Google Scholar] [CrossRef]
- Association, C.M. Guideline for Clinical Diagnosis and Treatment: Tuberculosis; People’s Medical Publishing House: Beijing, China, 2005. [Google Scholar]
- Lu, P.; Chen, X.; Zhu, L.M.; Yang, H.T. Interferon-Gamma Release Assays for the Diagnosis of Tuberculosis: A Systematic Review and Meta-analysis. Lung 2016, 194, 447–458. [Google Scholar] [CrossRef]
- Phetsuksiri, B.; Srisungngam, S.; Rudeeaneksin, J.; Boonchu, S.; Klayut, W.; Norrarat, R.; Sangkitporn, S.; Kasetjaroen, Y. QuantiFERON-TB Gold In-Tube test in active tuberculosis patients and healthy adults. Rev. Inst. Med. Trop. Sao Paulo 2018, 60, e56. [Google Scholar] [CrossRef]
- Kamiya, H.; Ikushima, S.; Kondo, K.; Satake, K.; Inomata, M.; Moriya, A.; Ando, T. Diagnostic performance of interferon-gamma release assays in elderly populations in comparison with younger populations. J. Infect. Chemother. 2013, 19, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, G.; Petrucci, R.; Corsini, I.; Bacchi Reggiani, M.L.; Visciotti, F.; Bernardi, F.; Landini, M.P.; Cazzato, S.; Dal Monte, P. Quantitative Analysis of Gamma Interferon Release Assay Response in Children with Latent and Active Tuberculosis. J. Clin. Microbiol. 2018, 56, e01360-17. [Google Scholar] [CrossRef]
- Horton, K.C.; MacPherson, P.; Houben, R.M.; White, R.G.; Corbett, E.L. Sex Differences in Tuberculosis Burden and Notifications in Low- and Middle-Income Countries: A Systematic Review and Meta-analysis. PLoS Med. 2016, 13, e1002119. [Google Scholar] [CrossRef] [PubMed]
- Ting, W.Y.; Huang, S.F.; Lee, M.C.; Lin, Y.Y.; Lee, Y.C.; Feng, J.Y.; Su, W.J. Gender disparities in latent tuberculosis infection in high-risk individuals: A cross-sectional study. PLoS ONE 2014, 9, e110104. [Google Scholar] [CrossRef]
- Draghiciu, O.; Nijman, H.W.; Daemen, T. From tumor immunosuppression to eradication: Targeting homing and activity of immune effector cells to tumors. Clin. Dev. Immunol. 2011, 2011, 439053. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.P.; George, P.J.; Kumaran, P.; Dolla, C.K.; Nutman, T.B.; Babu, S. Diminished systemic and antigen-specific type 1, type 17, and other proinflammatory cytokines in diabetic and prediabetic individuals with latent Mycobacterium tuberculosis infection. J. Infect. Dis. 2014, 210, 1670–1678. [Google Scholar] [CrossRef]
- Restrepo, B.I.; Schlesinger, L.S. Impact of diabetes on the natural history of tuberculosis. Diabetes Res. Clin. Pract. 2014, 106, 191–199. [Google Scholar] [CrossRef]
- Wang, Y.D.; Tang, H.; Chen, H.; Xu, J.J.; Li, B.P. Meta-analysis of pneumoconiosis complicated with tuberculosis. J. Occup. Health 2015, 31, 16–19. [Google Scholar] [CrossRef]
- Robinson, B.W.; Rose, A.H.; Hayes, A.; Musk, A.W. Increased pulmonary gamma interferon production in asbestosis. Am. Rev. Respir. Dis. 1988, 138, 278–283. [Google Scholar] [CrossRef]
- Garn, H.; Friedetzky, A.; Kirchner, A.; Jäger, R.; Gemsa, D. Experimental silicosis: A shift to a preferential IFN-gamma-based Th1 response in thoracic lymph nodes. Am. J. Physiol. Lung Cell. Mol. Physiol. 2000, 278, L1221–L1230. [Google Scholar] [CrossRef]
- Xiong, W.; Liu, Z.G.; Xiong, L.; Xiong, M.C.; Lei, G.H.; Wu, Y.; Zhao, Q. CD3+, CD4+, and CD8+ Expression in Cells in Peripheral Blood of Silicosis Patients and Intervention Effect of Thymalfasin. Ann. Clin. Lab. Sci. 2019, 49, 368–371. [Google Scholar]
- Yang, X.; Wang, J.; Zhou, Z.; Jiang, R.; Huang, J.; Chen, L.; Cao, Z.; Chu, H.; Han, B.; Cheng, Y.; et al. Silica-induced initiation of circular ZC3H4 RNA/ZC3H4 pathway promotes the pulmonary macrophage activation. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2018, 32, 3264–3277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bian, L.Q.; Mao, L.; Bi, Y.; Zhou, S.W.; Chen, Z.D.; Wen, J.; Shi, J.; Wang, L. Loss of regulatory characteristics in CD4+ CD25+/hi T cells induced by impaired transforming growth factor beta secretion in pneumoconiosis. APMIS Acta Pathol. Microbiol. Immunol. Scand. 2017, 125, 1108–1116. [Google Scholar] [CrossRef] [PubMed]
- Nikolova, M.; Markova, R.; Drenska, R.; Muhtarova, M.; Todorova, Y.; Dimitrov, V.; Taskov, H.; Saltini, C.; Amicosante, M. Antigen-specific CD4- and CD8-positive signatures in different phases of Mycobacterium tuberculosis infection. Diagn. Microbiol. Infect. Dis. 2013, 75, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.Y.; Li, J.P.; Chen, Y.M.; Liao, T.L.; Chen, H.H.; Hsieh, C.W.; Yeh, Y.W.; Lan, J.L. Elevated Neopterin Levels Are Associated with Increased Tuberculosis Risk in Rheumatoid Arthritis Patients with QuantiFERON Conversion during Biologic Therapy. PLoS ONE 2016, 11, e0166301. [Google Scholar] [CrossRef]
- Jeong, S.J.; Han, S.H.; Kim, C.O.; Baek, J.H.; Jin, S.J.; Ku, N.S.; Choi, J.Y.; Song, Y.G.; Kim, H.S.; Kim, J.M. Predictive factors for indeterminate result on the QuantiFERON test in an intermediate tuberculosis-burden country. J. Infect. 2011, 62, 347–354. [Google Scholar] [CrossRef]
- Komiya, K.; Ariga, H.; Nagai, H.; Teramoto, S.; Kurashima, A.; Shoji, S.; Nakajima, Y. Impact of peripheral lymphocyte count on the sensitivity of 2 IFN-gamma release assays, QFT-G and ELISPOT, in patients with pulmonary tuberculosis. Intern. Med. 2010, 49, 1849–1855. [Google Scholar] [CrossRef]
- Woo, K.S.; Kim, B.G.; Choi, J.L.; Kim, B.R.; Kim, K.H. Neutrophil-to-Lymphocyte Ratio Is Associated with Impaired Interferon-Gamma Release to Phytohemagglutinin. PLoS ONE 2015, 10, e0125794. [Google Scholar] [CrossRef]
- Leem, A.Y.; Song, J.H.; Lee, E.H.; Lee, H.; Sim, B.; Kim, S.Y.; Chung, K.S.; Kim, E.Y.; Jung, J.Y.; Park, M.S.; et al. Changes in cytokine responses to TB antigens ESAT-6, CFP-10 and TB 7.7 and inflammatory markers in peripheral blood during therapy. Sci. Rep. 2018, 8, 1159. [Google Scholar] [CrossRef] [Green Version]
Median Diagnosis Time (d) | Average Diagnosis Time (d) | Mode (d) | p | |
---|---|---|---|---|
QFT-GIT positive (n = 324) | 2 | 5.15 | 0 | p < 0.001 |
QFT-GIT negative (n = 98) | 5 | 30.92 | 5 |
Influencing Factor | Group | True Positive n (%) | False Negative n (%) | OR (95% CI) | p | PLR 1 | PPV 2 (%) |
---|---|---|---|---|---|---|---|
Age | <18 years | 58 (98.3) | 1 (1.7) | 12.619 (1.728–92.144) | 0.012 | / | 100 |
18–40 years | 869 (92.1) | 75 (7.9) | 2.521 (1.836–3.462) | <0.001 | 4.04 | 96.0 | |
40–60 years | 557 (86.4) | 88 (13.6) | 1.377 (1.011–1.876) | 0.042 | 3.30 | 81.7 | |
≥60 years | 478 (82.1) | 104 (17.9) | Contrast | 2.54 | 68.2 | ||
Sex | Male | 1310 (87.8) | 182 (12.2) | 0.949 (0.722–1.248) | 0.709 | 2.62 | 83.4 |
Female | 652 (88.3) | 86 (11.7) | 3.89 | 83.4 | |||
Smear | Positive | 707 (91.1) | 69 (8.9) | 0.615 (0.461–0.822) | 0.001 | ||
Negative | 1255 (86.3) | 199 (16.7) | |||||
Culture | Positive | 1400 (91.9) | 124 (8.1) | 0.346 (0.267–0.448) | <0.001 | ||
Negative | 562 (79.6) | 144 (20.4) | |||||
Treatment type | New | 1663 (88.4) | 218 (11.6) | 1.276 (0.916–1.766) | 0.149 | ||
Retreatment | 299 (85.7) | 50 (14.3) | |||||
Site of TB | Intrapulmonary | 1705 (88) | 232 (12) | 0.833 (0.530–1.309) | 0.428 | ||
EPTB | 54 (80.6) | 13 (19.4) | 0.471 (0.224–0.990) | 0.047 | |||
Co-infection 3 | 203 (89.8) | 23 (10.2) | Contrast | ||||
DST | Sensitive | 642 (91.2) | 62 (8.8) | 1.237 (0.719–2.129) | 0.442 | ||
DR-TB 4 | 609 (93.3) | 44 (6.7) | 1.654 (0.939–2.912) | 0.081 | |||
RR-TB 5 | 159 (89.3) | 19 (10.7) | Contrast | ||||
Tumor | Yes | 46 (76.7) | 14 (23.3) | 2.296 (1.244–4.235) | 0.008 | 2.48 | 43.8 |
No | 1916 (88.3) | 254 (11.7) | 3.10 | 85.5 | |||
Diabetes | Yes | 261 (90.6) | 27 (9.4) | 0.730 (0.480–1.110) | 0.141 | 2.35 | 82.1 |
No | 1701 (87.6) | 241 (12.4) | 3.17 | 83.9 | |||
Occupational disease | Yes | 14 (100) | 0 (0) | 0 | 0.999 | 2.88 | 63.6 |
No | 1948 (87.9) | 268 (12.1) | 3.06 | 83.8 | |||
Immune system diseases 6 | Yes | 32 (88.9) | 4 (11.1) | 0.914(0.321–2.604) | 0.866 | 10.96 | 91.4 |
No | 1930 (88.0) | 264 (12.0) | 2.99 | 83.5 | |||
WBC 7 | Normal | 1657 (88.9) | 207 (11.1) | Contrast | 2.98 | 85.5 | |
Decreased | 126 (86.3) | 20 (13.7) | 1.271 (0.776–2.801) | 0.341 | 3.21 | 83.4 | |
Increased | 110 (79.7) | 28 (20.3) | 2.038 (1.313–3.162) | 0.001 | 3.04 | 69.2 | |
NE 8 | Normal | 1710 (88.5) | 223 (11.5) | Contrast | 2.90 | 85.3 | |
Decreased | 91 (92.9) | 7 (7.1) | 0.590 (0.270–1.288) | 0.185 | 3.33 | 79.1 | |
Increased | 92 (78.6) | 25 (21.4) | 2.084 (1.311–3.313) | 0.002 | 3.73 | 72.4 | |
LC 9 | Normal | 1714 (88.5) | 223 (11.5) | Contrast | 2.98 | 83.6 | |
Decreased | 175 (84.5) | 32 (15.5) | 1.405 (0.940–2.101) | 0.097 | 4.71 | 92.6 | |
Increased | 4 (100) | 0 (0) | . | SE 10 = 0 | 2.67 | 57.1 | |
CD4 11 | Normal | 596 (88.3) | 79 (11.7) | Contrast | 2.71 | 82.7 | |
Decreased | 316 (87.5) | 45 (12.5) | 1.074 (0.727–1.588) | 0.719 | 3.36 | 84.7 | |
Increased | 686 (88.4) | 90 (11.6) | 0.990 (0.718–1.365) | 0.950 | 3.06 | 84.1 | |
CD8 12 | Normal | 557 (90.4) | 59 (9.6) | Contrast | 2.71 | 82.9 | |
Decreased | 782 (87.3) | 114 (12.7) | 1.376 (0.987–1.919) | 0.060 | 3.06 | 83.3 | |
Increased | 259 (86.3) | 41 (13.7) | 1.494 (0.977–2.286) | 0.064 | 3.41 | 86.6 | |
CD4/CD8 13 ratio | Normal | 840 (89.8) | 95 (10.2) | Contrast | 4.33 | 89.8 | |
Decreased | 149 (83.2) | 30 (16.8) | 1.780 (1.140–2.781) | 0.011 | 4.50 | 89.8 | |
Increased | 609 (87.2) | 89 (12.8) | 1.292 (0.950–1.757) | 0.102 | 2.92 | 82.5 | |
LC decline ratio | ≥50% | 15 (83.3) | 3 (16.7) | 0.877 (0.233–3.309) | 0.847 | 5.83 | 93.8 |
25–50% | 46 (83.6) | 9 (16.4) | 0.897 (0.380–2.115) | 0.803 | 5.85 | 93.9 | |
0–25% | 114 (85.1) | 20 (14.9) | Contrast | 4.63 | 92.7 |
Influencing Factor | Group | True Positive n (%) | False Negative n (%) | OR (95% CI) | p |
---|---|---|---|---|---|
Age | <18 years | 54 (98.2) | 1 (1.8) | 0.107 (0.014–0.813) | 0.031 |
18–40 years | 844 (92.0) | 73 (8.0) | 0.398 (0.271–0.586) | <0.001 | |
40–60 years | 539 (86.5) | 84 (13.5) | 0.753 (0.524–1.083) | 0.126 | |
≥60 years | 456 (82.5) | 97 (17.5) | Contrast | ||
Sputum smear | Positive | 681 (91.0) | 67 (9.0) | 1.219 (0.836–1.778) | 0.304 |
Negative | 1212 (86.6) | 188 (13.4) | |||
Sputum culture | Positive | 1352 (92.2) | 114 (7.8) | 3.844 (2.745–5.384) | <0.001 |
Negative | 541 (79.3) | 141 (20.7) | |||
Site of TB | Intrapulmonary | 1646 (88.1) | 223 (11.9) | 1.516 (0.870–2.641) | 0.142 |
EPTB | 53 (81.5) | 12 (18.5) | 1.487 (0.615–3.595) | 0.378 | |
Co-infection | 194 (90.7) | 20 (9.3) | Contrast | ||
Tumor | Yes | 43 (78.2) | 12 (21.8) | 0.691 (0.318–1.504) | 0.352 |
No | 1850 (88.4) | 243 (11.6) | |||
WBC | Normal | 1657 (88.9) | 207 (11.1) | Contrast | |
Decreased | 126 (86.3) | 20 (13.7) | 1.716 (0.906–3.252) | 0.098 | |
Increased | 110 (79.7) | 28 (20.3) | 1.361 (0.530–3.494) | 0.522 | |
NE | Normal | 1710 (88.5) | 223 (11.5) | Contrast | |
Decreased | 91 (92.9) | 7 (7.1) | 0.438 (0.160–1.200) | 0.108 | |
Increased | 92 (78.6) | 25 (21.4) | 0.132 (0.033–0.529) | 0.004 | |
CD4/CD8 ratio | Normal | 840 (89.8) | 95 (10.2) | Contrast | |
Decreased | 149 (83.2) | 30 (16.8) | 0.950 (0.685–1.319) | 0.761 | |
Increased | 609 (87.2) | 89 (12.8) | 1.728 (1.066–2.802) | 0.027 |
Influencing Factor | Group | True Negative n (%) | False Positive n (%) | OR (95% CI) | p | NLR 1 | NPV 2 (%) |
---|---|---|---|---|---|---|---|
Age | <18 years | 6 (100) | 0 (0) | SE = 0 | 59.00 | 85.7 | |
18–40 years | 122 (77.2) | 36 (22.8) | 1.618 (1.080–2.425) | 0.020 | 9.72 | 61.9 | |
40–60 years | 353 (73.8) | 125 (26.2) | 1.349 (1.041–1.747) | 0.024 | 5.41 | 80.0 | |
≥60 years | 467 (67.7) | 223 (32.3) | Contrast | 3.79 | 81.8 | ||
Sex | Male | 505 (66.5) | 254 (33.5) | 0.583 (0.456–0.747) | <0.001 | 5.45 | 73.5 |
Female | 443 (77.3) | 130 (22.4) | 6.63 | 83.7 | |||
Tumor | Yes | 132 (69.1) | 59 (30.9) | 1.122 (0.805–1.565) | 0.497 | 2.96 | 90.4 |
No | 816 (71.5) | 325 (28.5) | 6.11 | 76.3 | |||
Diabetes | Yes | 91 (61.5) | 57 (38.5) | 1.642 (1.151–2.341) | 0.006 | 6.56 | 77.1 |
No | 857 (72.4) | 327 (27.6) | 5.83 | 78.1 | |||
Occupational disease | Yes | 15 (65.2) | 8 (34.8) | 1.323 (0.556–3.147) | 0.526 | / | 100 |
No | 933 (71.3) | 376 (28.7) | 5.89 | 77 | |||
Immune system diseases | Yes | 34 (91.9) | 3 (8.1) | 0.212 (0.065–0.693) | 0.01 | 8.27 | 89.5 |
No | 914 (70.6) | 381 (29.4) | 5.87 | 77.6 | |||
WBC | Normal | 660 (70.2) | 280 (29.8) | Contrast | 6.32 | 76.1 | |
Decreased | 68 (73.1) | 25 (26.9) | 0.867 (0.537–1.399) | 0.558 | 5.34 | 77.3 | |
Increased | 138 (73.8) | 49 (26.2) | 0.837 (0.587–1.193) | 0.325 | 3.64 | 83.1 | |
NE | Normal | 673 (69.5) | 295 (30.5) | Contrast | 6.03 | 75.1 | |
Decreased | 62 (72.1) | 24 (27.9) | 0.883 (0.541–1.442) | 0.619 | 10.09 | 89.9 | |
Increased | 131 (78.9) | 35 (21.1) | 0.610 (0.410–0.907) | 0.015 | 3.69 | 84.0 | |
LC | Normal | 797 (70.3) | 337 (29.9) | Contrast | 6.10 | 78.1 | |
Decreased | 64 (82.1) | 14 (17.9) | 0.517 (0.286–0.935) | 0.029 | 5.31 | 66.7 | |
Increased | 5 (62.5) | 3 (37.5) | 1.419 (0.337–5.971) | 0.633 | / | 100 | |
CD4 | Normal | 259 (67.4) | 125 (32.6) | Contrast | 5.76 | 76.6 | |
Decreased | 162 (74.0) | 57 (26) | 0.729 (0.504–1.055) | 0.094 | 5.93 | 78.3 | |
Increased | 320 (71.1) | 130 (28.9) | 0.842 (0.627–1.131) | 0.253 | 6.13 | 78.0 | |
CD8 | Normal | 230 (90.4) | 115 (9.6) | Contrast | 6.96 | 79.6 | |
Decreased | 393 (87.3) | 157 (12.7) | 0.799 (0.598–1.068) | 0.130 | 5.62 | 77.5 | |
Increased | 118 (86.3) | 40 (13.7) | 0.678 (0.444–1.035) | 0.072 | 5.46 | 74.2 | |
CD4/CD8 ratio | Normal | 363(89.8) | 95 (10.2) | Contrast | 7.80 | 79.3 | |
Decreased | 75 (83.2) | 17 (16.8) | 0.496 (0.284–0.866) | 0.014 | 4.86 | 71.4 | |
Increased | 303 (87.2) | 129 (12.8) | 0.931 (0.706–1.227) | 0.612 | 5.50 | 77.3 | |
LC decline ratio | ≥50% | 6 (85.7) | 1 (14.3) | 1.35 (0.144–12.644) | 0.793 | 5.14 | 66.7 |
25–50% | 18 (85.7) | 3 (14.3) | 1.35 (0.326–5.586) | 0.679 | 5.24 | 66.7 | |
0–25% | 40 (81.3) | 9 (18.4) | Contrast | 5.47 | 66.7 |
Influencing Factor | Group | True Negative n (%) | False Positive n (%) | OR (95% CI) | p |
---|---|---|---|---|---|
Age | <18 years | 3 (100) | 0 (0) | SE = 0 | |
18–40 years | 97 (76.4) | 30 (23.6) | 0.650 (0.408–1.037) | 0.071 | |
40–60 years | 284 (73.6) | 102 (26.4) | 0.713 (0.529–0.960) | 0.026 | |
≥60 years | 357 (66.5) | 180 (33.5) | Contrast | ||
Sex | Male | 384 (64.5) | 211 (35.5) | 1.974 (1.484–2.625) | <0.001 |
Female | 357 (77.9) | 101 (22.1) | |||
Diabetes | Yes | 91 (61.5) | 57 (38.5) | 0.689 (0.459–1.033) | 0.071 |
No | 857 (72.4) | 327 (27.6) | |||
Immune system diseases | Yes | 34 (91.9) | 3 (8.1) | 3.937 (1.171–13.239) | 0.027 |
No | 914 (70.6) | 381 (29.4) | |||
NE | Normal | 586 (69.0) | 263 (31.0) | Contrast | |
Decreased | 56 (74.7) | 19 (25.3) | 0.848 (0.486–1.480) | 0.563 | |
Increased | 99 (76.7) | 30 (23.3) | 0.609 (0.389–0.952) | 0.029 | |
LC | Normal | 797 (70.3) | 337 (29.9) | Contrast | |
Decreased | 64 (82.1) | 14 (17.9) | 0.537 (0.277–1.043) | 0.066 | |
Increased | 5 (62.5) | 3 (37.5) | 1.387 (0.303–6.357) | 0.673 | |
CD4/CD8 ratio | Decreased | 64 (82.1) | 14 (17.9) | Contrast | |
Increased | 5 (62.5) | 3 (37.5) | 0.888 (0.667–1.183) | 0.417 | |
Increased | 303 (87.2) | 129 (12.8) | 0.527 (0.297–0.935) | 0.028 |
Influencing Factor | Group | Cutoff Value | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|
Age | <18 years | 0.385 | 98.3 | 100 |
18–40 years | 0.655 | 87.4 | 85.4 | |
40–60 years | 0.355 | 86.4 | 74.1 | |
≥60 years | 0.485 | 79.13 | 71.4 | |
Tumor | Yes | 0.205 | 83.3 | 66.5 |
No | 0.655 | 82.4 | 78.0 | |
Diabetes | Yes | 1.035 | 81.6 | 76.4 |
No | 0.355/0.655 | 87.5/81.3 | 72.8/78.9 | |
Immune system diseases | Yes | 0.36 | 88.9 | 91.9 |
No | 0.655 | 82.0 | 77.5 | |
WBC | Normal | 0.655 | 83.4 | 77.7 |
Decreased | 0.315 | 88.3 | 73.4 | |
Increased | 0.13 | 87.6 | 69.1 | |
NE | Normal | 0.655 | 82.7 | 76.8 |
Decreased | 0.425 | 92.7 | 73.6 | |
Increased | 0.13 | 86.2 | 73.7 | |
LC | Normal | 0.655 | 83.2 | 77.0 |
Decreased | 0.275 | 86.0 | 80.8 | |
Increased | 0.665 | 100 | 75.0 |
Influencing Factor | Cutoff Value | Sensitivity (%) | Specificity (%) | PPV 1 (%) | NPV 2 (%) |
---|---|---|---|---|---|
Ages (≥60 years) | 0.35 | 82.1 | 67.7 | 68.2 | 81.8 |
0.485 | 79.13 | 71.4 | 69.9 | 80.3 | |
Tumor | 0.35 | 76.7 | 69.1 | 43.8 | 90.4 |
0.205 | 83.3 | 66.5 | 43.9 | 92.7 | |
Diabetes | 0.35 | 90.6 | 61.5 | 82.1 | 77.1 |
1.035 | 81.6 | 76.4 | 87.0 | 68.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Liu, Y.; Yao, L.; Shen, Y.; Sun, Q.; Sha, W. Factors Influencing False-Negative Results of QuantiFERON-TB Gold In-Tube (QFT-GIT) in Active Tuberculosis and the Desirability of Resetting Cutoffs for Different Populations: A Retrospective Study. Trop. Med. Infect. Dis. 2022, 7, 278. https://doi.org/10.3390/tropicalmed7100278
Yu Y, Liu Y, Yao L, Shen Y, Sun Q, Sha W. Factors Influencing False-Negative Results of QuantiFERON-TB Gold In-Tube (QFT-GIT) in Active Tuberculosis and the Desirability of Resetting Cutoffs for Different Populations: A Retrospective Study. Tropical Medicine and Infectious Disease. 2022; 7(10):278. https://doi.org/10.3390/tropicalmed7100278
Chicago/Turabian StyleYu, Yuanyuan, Yidian Liu, Lan Yao, Yanheng Shen, Qin Sun, and Wei Sha. 2022. "Factors Influencing False-Negative Results of QuantiFERON-TB Gold In-Tube (QFT-GIT) in Active Tuberculosis and the Desirability of Resetting Cutoffs for Different Populations: A Retrospective Study" Tropical Medicine and Infectious Disease 7, no. 10: 278. https://doi.org/10.3390/tropicalmed7100278
APA StyleYu, Y., Liu, Y., Yao, L., Shen, Y., Sun, Q., & Sha, W. (2022). Factors Influencing False-Negative Results of QuantiFERON-TB Gold In-Tube (QFT-GIT) in Active Tuberculosis and the Desirability of Resetting Cutoffs for Different Populations: A Retrospective Study. Tropical Medicine and Infectious Disease, 7(10), 278. https://doi.org/10.3390/tropicalmed7100278