Dengue Prediction in Latin America Using Machine Learning and the One Health Perspective: A Literature Review
Abstract
:1. Introduction
2. Approach to Dengue Using the One Health Perspective
3. Ecology of the Dengue Vectors
4. Serotypes Circulating
5. Human Conditions
5.1. Individual Factors
5.2. Socioeconomic Factors
5.3. Educational Level
5.4. Human Behaviour
6. Environmental Factors
6.1. Climatic Factors
6.2. Geographical Factors
6.3. Demographic Factors
7. Machine Learning for Dengue Predictive Purposes in Latin America
7.1. Machine Learning Overview
7.2. Machine Learning Applied to Dengue in Latin America
8. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cabrera, M.; Taylor, G. Modelling Spatio-Temporal Data of Dengue Fever Using Generalized Additive Mixed Models. Spat. Spatio-Temporal Epidemiol. 2019, 28, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Castrillón, J.C.; Castaño, J.C.; Urcuqui, S. Dengue En Colombia: Diez Años de Evolución. Rev. Chil. Infectol. 2015, 32, 142–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holmes, E.C.; Twiddy, S.S. The Origin, Emergence and Evolutionary Genetics of Dengue Virus. Infect. Genet. Evol. 2003, 3, 19–28. [Google Scholar] [CrossRef]
- Messina, J.P.; Brady, O.J.; Pigott, D.M.; Brownstein, J.S.; Hoen, A.G.; Hay, S.I. A Global Compendium of Human Dengue Virus Occurrence. Sci. Data 2014, 1, 140004. [Google Scholar] [CrossRef] [Green Version]
- Saydam, F.N.; Erdem, H.; Ankarali, H.; Ramadan, M.E.E.-A.; El-Sayed, N.M.; Civljak, R.; Pshenichnaya, N.; Moroti, R.V.; Mahmuodabad, F.M.; Maduka, A.V.; et al. Vector-Borne and Zoonotic Infections and Their Relationships with Regional and Socioeconomic Statuses: An ID-IRI Survey in 24 Countries of Europe, Africa and Asia. Travel Med. Infect. Dis. 2021, 44, 102174. [Google Scholar] [CrossRef]
- Iqbal, N.; Islam, M. Machine Learning for Dengue Outbreak Prediction: An Outlook. Int. J. Adv. Res. Comput. Sci. 2017, 8, 93–102. [Google Scholar]
- Giusti, M.D.; Barbato, D.; Lia, L.; Colamesta, V.; Lombardi, A.M.; Cacchio, D.; Villari, P.; Torre, G.L. Collaboration between Human and Veterinary Medicine as a Tool to Solve Public Health Problems. Lancet Planet. Health 2019, 3, e64–e65. [Google Scholar] [CrossRef] [Green Version]
- Klauder, J.V. Interrelations of Human and Veterinary Medicine. N. Engl. J. Med. 1958, 258, 170–177. [Google Scholar] [CrossRef]
- Mackenzie, J.S.; Jeggo, M. The One Health Approach—Why Is It So Important? Trop. Med. Infect. Dis. 2019, 4, 88. [Google Scholar] [CrossRef] [Green Version]
- Faburay, B. The Case for a `one Health’ Approach to Combating Vector-Borne Diseases. Infect. Ecol. Epidemiol. 2015, 5, 28132. [Google Scholar] [CrossRef] [Green Version]
- Humboldt-Dachroeden, S.; Rubin, O.; Frid-Nielsen, S.S. The State of One Health Research across Disciplines and Sectors—A Bibliometric Analysis. One Health 2020, 10, 100146. [Google Scholar] [CrossRef] [PubMed]
- Faruk, M.O.; Jannat, S.N.; Rahman, M.S. Impact of Environmental Factors on the Spread of Dengue Fever in Sri Lanka. Int. J. Environ. Sci. Technol. 2022, 19, 10637–10648. [Google Scholar] [CrossRef] [PubMed]
- Zambrano, L.I.; Rodriguez, E.; Espinoza-Salvado, I.A.; Fuentes-Barahona, I.C.; de Oliveira, T.L.; da Veiga, G.L.; da Silva, J.C.; Valle-Reconco, J.A.; Rodríguez-Morales, A.J. Spatial Distribution of Dengue in Honduras during 2016–2019 Using a Geographic Information Systems (GIS)–Dengue Epidemic Implications for Public Health and Travel Medicine. Travel Med. Infect. Dis. 2019, 32, 101517. [Google Scholar] [CrossRef] [PubMed]
- Dickerson, A.K.; Shankles, P.G.; Madhavan, N.M.; Hu, D.L. Mosquitoes Survive Raindrop Collisions by Virtue of Their Low Mass. Proc. Natl. Acad. Sci. USA 2012, 109, 9822–9827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhury, F.R.; Ibrahim, Q.S.U.; Bari, M.S.; Alam, M.M.J.; Dunachie, S.J.; Rodriguez-Morales, A.J.; Patwary, M.I. The Association between Temperature, Rainfall and Humidity with Common Climate-Sensitive Infectious Diseases in Bangladesh. PLoS ONE 2018, 13, e0199579. [Google Scholar] [CrossRef]
- Tuladhar, R.; Singh, A.; Varma, A.; Choudhary, D.K. Climatic Factors Influencing Dengue Incidence in an Epidemic Area of Nepal. BMC Res. Notes 2019, 12, 131. [Google Scholar] [CrossRef] [Green Version]
- Destoumieux-Garzón, D.; Mavingui, P.; Boetsch, G.; Boissier, J.; Darriet, F.; Duboz, P.; Fritsch, C.; Giraudoux, P.; Roux, F.L.; Morand, S.; et al. The One Health Concept: 10 Years Old and a Long Road Ahead. Front. Vet. Sci. 2018, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Arora, M.; Curtin, P.; Curtin, A.; Austin, C.; Giuliani, A.; Birnbaum, L.S. Environmental Biodynamics: A New Science of How the Environment Interacts with Human Health; Oxford University Press: Oxford, UK, 2021; ISBN 978-0-19-758294-7. [Google Scholar]
- Jácome, G.; Vilela, P.; Yoo, C. Social-Ecological Modelling of the Spatial Distribution of Dengue Fever and Its Temporal Dynamics in Guayaquil, Ecuador for Climate Change Adaption. Ecol. Inform. 2019, 49, 1–12. [Google Scholar] [CrossRef]
- Ibarra, A.M.S.; Ryan, S.J.; Beltrán, E.; Mejía, R.; Silva, M.; Muñoz, Á. Dengue Vector Dynamics (Aedes Aegypti) Influenced by Climate and Social Factors in Ecuador: Implications for Targeted Control. PLoS ONE 2013, 8, e78263. [Google Scholar] [CrossRef]
- Zambrano, L.I.; Sierra, M.; Lara, B.; Rodríguez-Núñez, I.; Medina, M.T.; Lozada-Riascos, C.O.; Rodríguez-Morales, A.J. Estimating and Mapping the Incidence of Dengue and Chikungunya in Honduras during 2015 Using Geographic Information Systems (GIS). J. Infect. Public Health 2017, 10, 446–456. [Google Scholar] [CrossRef] [Green Version]
- Cabrera, M.; Taylor, G.; Saldaña-Núñez, V.; Córdova-Lepe, F.; Escalera-Antezana, J.P.; Alvarado-Arnez, L.E.; Rodríguez-Morales, A.J. Risk of Dengue Incidence in Children and Adolescents in Zulia, Venezuela, Using a Negative Binomial Generalized Linear Mixed Model. Rev. Panam. Enferm. Infect. 2019, 2, 39–45. [Google Scholar]
- Hoyos, W.; Aguilar, J.; Toro, M. Dengue Models Based on Machine Learning Techniques: A Systematic Literature Review. Artif. Intell. Med. 2021, 119, 102157. [Google Scholar] [CrossRef] [PubMed]
- Quintero-Herrera, L.L.; Ramírez-Jaramillo, V.; Bernal-Gutiérrez, S.; Cárdenas-Giraldo, E.V.; Guerrero-Matituy, E.A.; Molina-Delgado, A.H.; Montoya-Arias, C.P.; Rico-Gallego, J.A.; Herrera-Giraldo, A.C.; Botero-Franco, S.; et al. Potential Impact of Climatic Variability on the Epidemiology of Dengue in Risaralda, Colombia, 2010–2011. J. Infect. Public Health 2015, 8, 291–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattar, S.; Morales, V.; Cassab, A.; Rodríguez-Morales, A.J. Effect of Climate Variables on Dengue Incidence in a Tropical Caribbean Municipality of Colombia, Cerete, 2003–2008. Int. J. Infect. Dis. 2013, 17, e358–e359. [Google Scholar] [CrossRef] [Green Version]
- Zambrano, L.; Sevilla, C.; Reyes-Garcia, S.; Sierra, M.; Kafati, R.; Rodriguez-Morales, A.; Mattar, S. Potential Impacts of Climate Variability on Dengue Hemorrhagic Fever in Honduras, 2010. Trop. Biomed. 2012, 29, 499–507. [Google Scholar]
- Herrera-Martinez, A.D.; Rodríguez-Morales, A.J. Potential Influence of Climate Variability on Dengue Incidence Registered in a Western Pediatric Hospital of Venezuela. Trop. Biomed. 2010, 27, 280–286. [Google Scholar] [PubMed]
- Musso, D.; Rodriguez-Morales, A.J.; Levi, J.E.; Cao-Lormeau, V.-M.; Gubler, D.J. Unexpected Outbreaks of Arbovirus Infections: Lessons Learned from the Pacific and Tropical America. Lancet Infect. Dis. 2018, 18, e355–e361. [Google Scholar] [CrossRef]
- Rodriguez-Morales, A.J.; Villamil-Gómez, W.E.; Franco-Paredes, C. The Arboviral Burden of Disease Caused by Co-Circulation and Co-Infection of Dengue, Chikungunya and Zika in the Americas. Travel Med. Infect. Dis. 2016, 14, 177–179. [Google Scholar] [CrossRef]
- Paniz-Mondolfi, A.E.; Rodriguez-Morales, A.J.; Blohm, G.; Marquez, M.; Villamil-Gomez, W.E. ChikDenMaZika Syndrome: The Challenge of Diagnosing Arboviral Infections in the Midst of Concurrent Epidemics. Ann. Clin. Microbiol. Antimicrob. 2016, 15, 42. [Google Scholar] [CrossRef] [Green Version]
- Villamil-Gómez, W.; Alba-Silvera, L.; Menco-Ramos, A.; Gonzalez-Vergara, A.; Molinares-Palacios, T.; Barrios-Corrales, M.; Rodríguez-Morales, A.J. Congenital Chikungunya Virus Infection in Sincelejo, Colombia: A Case Series. J. Trop. Pediatr. 2015, 61, 386–392. [Google Scholar] [CrossRef] [Green Version]
- Nagori, A.; Dhingra, L.S.; Bhatnagar, A.; Lodha, R.; Sethi, T. Predicting Hemodynamic Shock from Thermal Images Using Machine Learning. Sci. Rep. 2019, 9, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardona-Ospina, J.A.; Trujillo, A.M.; Jiménez-Posada, E.V.; Sepúlveda-Arias, J.C.; Tabares-Villa, F.A.; Altieri-Rivera, J.S.; Monsalve, A.; Restrepo-Chica, J.; Osorio, D.; Espinoza, D.; et al. Susceptibility to Endemic Aedes-Borne Viruses among Pregnant Women in Risaralda, Colombia. Int. J. Infect. Dis. 2022, 122, 832–840. [Google Scholar] [CrossRef] [PubMed]
- Marinho, R.A.; Beserra, E.B.; Bezerra-Gusmão, M.A.; Porto, V.d.S.; Olinda, R.A.; dos Santos, C.A.C. Effects of Temperature on the Life Cycle, Expansion, and Dispersion of Aedes Aegypti (Diptera: Culicidae) in Three Cities in Paraiba, Brazil. J. Vector Ecol. 2016, 41, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sippy, R.; Herrera, D.; Gaus, D.; Gangnon, R.E.; Patz, J.A.; Osorio, J.E. Seasonal Patterns of Dengue Fever in Rural Ecuador: 2009–2016. PLOS Negl. Trop. Dis. 2019, 13, e0007360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakhapakorn, K.; Tripathi, N. An Information Value Based Analysis of Physical and Climatic Factors Affecting Dengue Fever and Dengue Haemorrhagic Fever Incidence. Int. J. Health Geogr. 2005, 4, 13. [Google Scholar] [CrossRef] [Green Version]
- Hii, Y.L.; Rocklöv, J.; Ng, N.; Tang, C.S.; Pang, F.Y.; Sauerborn, R. Climate Variability and Increase in Intensity and Magnitude of Dengue Incidence in Singapore. Glob. Health Action 2009, 2, 2036. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.-L.; Yang, S.-J.; Yen, H.-J.; Christakos, G. A Spatio-Temporal Climate-Based Model of Early Dengue Fever Warning in Southern Taiwan. Stoch. Environ. Res. Risk Assess. 2010, 25, 485–494. [Google Scholar] [CrossRef]
- Johansson, M.A.; Dominici, F.; Glass, G.E. Local and Global Effects of Climate on Dengue Transmission in Puerto Rico. PLoS Negl. Trop. Dis. 2009, 3, e382. [Google Scholar] [CrossRef] [Green Version]
- Vicente, C.R.; Herbinger, K.-H.; Fröschl, G.; Romano, C.M.; de Cabidelle, A.S.A.; Junior, C.C. Serotype Influences on Dengue Severity: A Cross-Sectional Study on 485 Confirmed Dengue Cases in Vitória, Brazil. BMC Infect. Dis. 2016, 16, 320. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, M.S.; Rasotgi, V.; Jain, S.; Gupta, V. Discovery of Fifth Serotype of Dengue Virus (DENV-5): A New Public Health Dilemma in Dengue Control. Med. J. Armed Forces India 2015, 71, 67–70. [Google Scholar] [CrossRef] [Green Version]
- Nisalak, A.; Endy, T.P.; Nimmannitya, S.; Kalayanarooj, S.; Thisayakorn, U.; Scott, R.M.; Burke, D.S.; Hoke, C.H.; Innis, B.L.; Vaughn, D.W. Serotype-Specific Dengue Virus Circulation and Dengue Disease in Bangkok, Thailand from 1973 to 1999. Am. J. Trop. Med. Hyg. 2003, 68, 191–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fried, J.R.; Gibbons, R.V.; Kalayanarooj, S.; Thomas, S.J.; Srikiatkhachorn, A.; Yoon, I.-K.; Jarman, R.G.; Green, S.; Rothman, A.L.; Cummings, D.A.T. Serotype-Specific Differences in the Risk of Dengue Hemorrhagic Fever: An Analysis of Data Collected in Bangkok, Thailand from 1994 to 2006. PLoS Negl Trop. Dis. 2010, 4, e617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halsey, E.S.; Marks, M.A.; Gotuzzo, E.; Fiestas, V.; Suarez, L.; Vargas, J.; Aguayo, N.; Madrid, C.; Vimos, C.; Kochel, T.J.; et al. Correlation of Serotype-Specific Dengue Virus Infection with Clinical Manifestations. PLoS Negl. Trop. Dis. 2012, 6, e1638. [Google Scholar] [CrossRef] [PubMed]
- Nadeem Sajjad, R.; Shamala, D. The Incidence of Dengue Disease in a University Teaching Hospital in Malaysia in 2002, 2003 and 2004. Infect. Dis. J. Pak. 2006, 15, 99–102. [Google Scholar]
- de la Sierra, B.C.; Kourí, G.; Guzmán, M.G. Race: A Risk Factor for Dengue Hemorrhagic Fever. Arch. Virol. 2007, 152, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Kongsomboon, K.; Singhasivanon, P.; Kaewkungwal, J.; Nimmannitya, S.; Mammen, M.P., Jr.; Nisalak, A.; Sawanpanyalert, P. Temporal Trends of Dengue Fever/Dengue Hemorrhagic Fever in Bangkok, Thailand from 1981 to 2000: An Age-Period-Cohort Analysis. Age 2004, 35, 913–917. [Google Scholar]
- Morrison, A.C.; Getis, A.; Rigau-Perez, J.G.; Santiago, M.; Reiter, P. Exploratory Space-Time Analysis of Reported Dengue Cases during an Outbreak in Florida, Puerto Rico, 1991–1992. Am. J. Trop. Med. Hyg. 1998, 58, 287–298. [Google Scholar] [CrossRef] [Green Version]
- Guha-Sapir, D.; Schimmer, B. Dengue Fever: New Paradigms for a Changing Epidemiology. Emerg. Themes Epidemiol. 2005, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, G.S.; Schmidt, A.M. Spatial Modelling of the Relative Risk of Dengue Fever in Rio de Janeiro for the Epidemic Period between 2001 and 2002. Braz. J. Probab. Stat. 2006, 20, 29–47. [Google Scholar]
- Mondini, A.; Chiaravalloti-Neto, F. Spatial Correlation of Incidence of Dengue with Socioeconomic, Demographic and Environmental Variables in a Brazilian City. Sci. Total Environ. 2008, 393, 241–248. [Google Scholar] [CrossRef]
- Lowe, R.; Bailey, T.C.; Stephenson, D.B.; Graham, R.J.; Coelho, C.A.S.; Carvalho, M.S.; Barcellos, C. Spatio-Temporal Modelling of Climate-Sensitive Disease Risk: Towards an Early Warning System for Dengue in Brazil. Comput. Geosci. 2011, 37, 371–381. [Google Scholar] [CrossRef] [Green Version]
- Barrera, R.; Delgado, N.; Jiménez, M.; Valero, S. Eco-Epidemiological Factors Associated with Hyperendemic Dengue Haemorrhagic Fever in Maracay City, Venezuela. Dengue Bolletin 2002, 26, 84–94. [Google Scholar]
- Patz, J.A.; Martens, W.J.; Focks, D.A.; Jetten, T.H. Dengue Fever Epidemic Potential as Projected by General Circulation Models of Global Climate Change. Environ. Health Perspect. 1998, 106, 147–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caprara, A.; de Lima, J.W.O.; Marinho, A.C.P.; Calvasina, P.G.; Landim, L.P.; Sommerfeld, J. Irregular Water Supply, Household Usage and Dengue: A Bio-Social Study in the Brazilian Northeast. Cad. De Saúde Pública 2009, 25, S125–S136. [Google Scholar] [CrossRef] [Green Version]
- Brightmer, M.I.; Fantato, M.G. Human and Environmental Factors in the Increasing Incidence of Dengue Fever: A Case Study from Venezuela. GeoJournal 1998, 44, 103–109. [Google Scholar] [CrossRef]
- Cao, Z.; Liu, T.; Li, X.; Wang, J.; Lin, H.; Chen, L.; Wu, Z.; Ma, W. Individual and Interactive Effects of Socio-Ecological Factors on Dengue Fever at Fine Spatial Scale: A Geographical Detector-Based Analysis. Int. J. Environ. Res. Public Health 2017, 14, 795. [Google Scholar] [CrossRef] [Green Version]
- Sandeep, R.K.; Shettigar, D.; Jayappa, S. An Educational Intervention Programme on Dengue and Its Prevention among Rural High School Children, Karnataka, India. J. Health Allied Sci. NU 2014, 4, 109–112. [Google Scholar] [CrossRef]
- Monsalve, N.C.; Rubio-Palis, Y.; Pérez, M.E. Modelaje Bayesiano Espacio-Temporal de Factores Asociados Con La Incidencia Del Dengue En El Área Metropolitana de Maracay, Venezuela. Boletín Malariol. Salud Ambient. 2010, 50, 219–232. [Google Scholar]
- Bohra, A.; Andrianasolo, H. Application of GIS in Modeling Dengue Risk Based on Sociocultural Data: Case of Jalore, Rajasthan, India. Dengue Bull. 2001, 25, 92–102. [Google Scholar]
- Thammapalo, S.; Chongsuvivatwong, V.; Geater, A.; Dueravee, M. Environmental Factors and Incidence of Dengue Fever and Dengue Haemorrhagic Fever in an Urban Area, Southern Thailand. Epidemiol. Infect. 2007, 136, 135–143. [Google Scholar] [CrossRef]
- Jansen, C.C.; Beebe, N.W. The Dengue Vector Aedes Aegypti: What Comes Next. Microbes Infect. 2010, 12, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-C.; Liao, C.-M.; Chio, C.-P.; Chou, H.-H.; You, S.-H.; Cheng, Y.-H. Lagged Temperature Effect with Mosquito Transmission Potential Explains Dengue Variability in Southern Taiwan: Insights from a Statistical Analysis. Sci. Total Environ. 2010, 408, 4069–4075. [Google Scholar] [CrossRef] [PubMed]
- Fuller, D.O.; Troyo, A.; Beier, J.C. El Niño Southern Oscillation and Vegetation Dynamics as Predictors of Dengue Fever Cases in Costa Rica. Environ. Res. Lett. 2009, 4, 014011. [Google Scholar] [CrossRef] [PubMed]
- Kovats, R.S. El Niño and Human Health. Bull. World Health Organ. 2000, 78, 1127–1135. [Google Scholar] [PubMed]
- Githeko, A.K.; Lindsay, S.W.; Confalonieri, U.E.; Patz, J.A. Climate Change and Vector-Borne Diseases: A Regional Analysis. Bull. World Health Organ. 2000, 78, 1136–1147. [Google Scholar]
- Epstein, P.R.; Diaz, H.F.; Elias, S.; Grabherr, G.; Graham, N.E.; Martens, W.J.M.; Mosley-Thompson, E.; Susskind, J. Biological and Physical Signs of Climate Change: Focus on Mosquito-Borne Diseases. Bull. Am. Meteorol. Soc. 1998, 79, 409–417. [Google Scholar] [CrossRef]
- Hu, W.; Clements, A.; Williams, G.; Tong, S. Dengue Fever and El Niño/Southern Oscillation in Queensland, Australia: A Time Series Predictive Model. Occup. Environ. Med. 2010, 67, 307–311. [Google Scholar] [CrossRef]
- Sulekan, A.; Suhaila, J.; Wahid, N.A.A. Assessing the Effect of Climate Factors on Dengue Incidence via a Generalized Linear Model. Open J. Appl. Sci. 2021, 10, 549–563. [Google Scholar] [CrossRef]
- Brunkard, J.M.; Cifuentes, E.; Rothenberg, S.J. Assessing the Roles of Temperature, Precipitation, and Enso in Dengue Re-Emergence on the Texas-Mexico Border Region. Salud Pública México 2008, 50, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Heslop-Thomas, C.; Bailey, W.; Amarakoon, D.; Chen, A.; Rawlins, S.; Chadee, D.D.; Crosbourne, R.; Owino, A.; Polson, K.; Rhoden, C.; et al. Vulnerability to Dengue Fever in Jamaica. In Climate Change and Vulnerability and Adaptation; Routledge: AbKingdon, UK, 2013; pp. 416–434. [Google Scholar]
- Kovats, R.S.; Bouma, M.J.; Hajat, S.; Worrall, E.; Haines, A. El Niño and Health. Lancet 2003, 362, 1481–1489. [Google Scholar] [CrossRef]
- Hopp, M.J.; Foley, J.A. Global-Scale Relationships between Climate and the Dengue Fever Vector, Aedes Aegypti. Clim. Change 2001, 48, 441–463. [Google Scholar] [CrossRef]
- Gagnon, A.S.; Bush, A.B.; Smoyer-Tomic, K.E. Dengue Epidemics and the El Niño Southern Oscillation. Clim. Res. 2001, 19, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Hales, S.; Weinstein, P.; Souares, Y.; Woodward, A. El Niño and the Dynamics of Vectorborne Disease Transmission. Environ. Health Perspect. 1999, 107, 99–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurtado-Díaz, M.; Riojas-Rodríguez, H.; Rothenberg, S.J.; Gomez-Dantés, H.; Cifuentes, E. Short Communication: Impact of Climate Variability on the Incidence of Dengue in Mexico. Trop. Med. Int. Health 2007, 12, 1327–1337. [Google Scholar] [CrossRef]
- Carbajo, A.E.; Cardo, M.V.; Vezzani, D. Is Temperature the Main Cause of Dengue Rise in Non-Endemic Countries? The Case of Argentina. Int. J. Health Geogr. 2012, 11, 26. [Google Scholar] [CrossRef] [Green Version]
- Gürtler, R.E.; Garelli, F.M.; Coto, H.D. Effects of a Five-Year Citywide Intervention Program to Control Aedes Aegypti and Prevent Dengue Outbreaks in Northern Argentina. PLoS Negl. Trop. Dis. 2009, 3, e427. [Google Scholar] [CrossRef] [Green Version]
- Chowell, G.; Cazelles, B.; Broutin, H.; Munayco, C.V. The Influence of Geographic and Climate Factors on the Timing of Dengue Epidemics in Perú, 1994–2008. BMC Infect. Dis. 2011, 11, 164. [Google Scholar] [CrossRef] [Green Version]
- Weier, J.; Herring, D. Measuring Vegetation (Ndvi & Evi). NASA Earth Obs. 2000, 20, 2. [Google Scholar]
- Kyle, J.L.; Harris, E. Global Spread and Persistence of Dengue. Annu. Rev. Microbiol. 2008, 62, 71–92. [Google Scholar] [CrossRef] [Green Version]
- Rosa-Freitas, M.G.; Tsouris, P.; Sibajev, A.; de Souza Weimann, E.T.; Marques, A.U.; Ferreira, R.L.; Luitgards-Moura, J.F. Exploratory Temporal and Spatial Distribution Analysis of Dengue Notifications in Boa Vista, Roraima, Branzilian Amazon, 1999-2001. Dengue Bull. 2003, 27, 63–80. [Google Scholar]
- Falcón-Lezama, J.A.; Martínez-Vega, R.A.; Kuri-Morales, P.A.; Ramos-Castañeda, J.; Adams, B. Day-to-Day Population Movement and the Management of Dengue Epidemics. Bull. Math. Biol. 2016, 78, 2011–2033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, W.; Clements, A.; Williams, G.; Tong, S.; Mengersen, K. Spatial Patterns and Socioecological Drivers of Dengue Fever Transmission in Queensland, Australia. Environ. Health Perspect. 2012, 120, 260–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coppin, B. Artificial Intelligence Illuminated; Jones & Bartlett Learning: Burlington, MA, USA, 2004. [Google Scholar]
- Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2019. [Google Scholar]
- Lindholm, A.; Wahlström, N.; Lindsten, F.; Schön, T.B. Machine Learning: A First Course for Engineers and Scientists; Cambridge University Press: New York, NY, USA, 2022. [Google Scholar]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv 2016, arXiv:1603.04467. [Google Scholar]
- PyTorch. Available online: https://www.pytorch.org (accessed on 2 October 2022).
- MathWorks—MATLAB and Simulink. Available online: https://www.mathworks.com/ (accessed on 2 October 2022).
- Scikit-Learn: Machine Learning in Python—Scikit-Learn 1.1.2. Available online: https://scikit-learn.org/stable/index.html (accessed on 2 October 2022).
- Molnar, C. Interpretable Machine Learning; Leanpub: Victoria, CB, Canada, 2022. [Google Scholar]
- Botchkarev, A. Evaluating Performance of Regression Machine Learning Models Using Multiple Error Metrics in Azure Machine Learning Studio 2018. Available online: https://ssrn.com/abstract=3177507 (accessed on 2 October 2022).
- Xu, Y.; Liu, X.; Cao, X.; Huang, C.; Liu, E.; Qian, S.; Liu, X.; Wu, Y.; Dong, F.; Qiu, C.-W.; et al. Artificial Intelligence: A Powerful Paradigm for Scientific Research. Innovation 2021, 2, 100179. [Google Scholar] [CrossRef]
- Kamarudin, A.N.A.; Zainol, Z.; Kassim, N.F.A. Forecasting the Dengue Outbreak Using Machine Learning Algorithm: A Review. In Proceedings of the 2021 International Conference of Women in Data Science at Taif University (WiDSTaif), Taif, Saudi Arabia, 30–31 March 2021. [Google Scholar]
- Ding, F.; Fu, J.; Jiang, D.; Hao, M.; Lin, G. Mapping the Spatial Distribution of Aedes Aegypti and Aedes Albopictus. Acta Trop. 2018, 178, 155–162. [Google Scholar] [CrossRef]
- Sanchez-Gendriz, I.; de Souza, G.F.; de Andrade, I.G.M.; Neto, A.D.D.; Tavares, A.d.M.; Barros, D.M.S.; de Morais, A.H.F.; Galvão-Lima, L.J.; Valentim, R.A.d.M. Data-Driven Computational Intelligence Applied to Dengue Outbreak Forecasting: A Case Study at the Scale of the City of Natal, RN-Brazil. Sci. Rep. 2022, 12, 6550. [Google Scholar] [CrossRef]
- Mudele, O.; Frery, A.; Zanandrez, L.; Eiras, A.; Gamba, P. Dengue Vector Population Forecasting Using Multisource Earth Observation Products and Recurrent Neural Networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4390–4404. [Google Scholar] [CrossRef]
- Bauxell, J.; Vall-Llossera, M.; Gurgel, H. Machine Learning Techniques Using Enviromental Data from Remote Sensing Applied to Modeling Dengue Risk in Brazil. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021. [Google Scholar]
- Saleh, A.Y.; Baiwei, L. Dengue Prediction Using Deep Learning with Long Short-Term Memory. In Proceedings of the 2021 1st International Conference on Emerging Smart Technologies and Applications (eSmarTA), Sana’a, Yemen, 23 August 2021. [Google Scholar]
- Baker, Q.B.; Faraj, D.; Alguzo, A. Forecasting Dengue Fever Using Machine Learning Regression Techniques. In Proceedings of the 2021 12th International Conference on Information and Communication Systems (ICICS), Valencia, Spain, 24–26 May 2021. [Google Scholar]
- Appice, A.; Gel, Y.R.; Iliev, I.; Lyubchich, V.; Malerba, D. A Multi-Stage Machine Learning Approach to Predict Dengue Incidence: A Case Study in Mexico. IEEE Access 2020, 8, 52713–52725. [Google Scholar] [CrossRef]
- Laureano-Rosario, A.; Duncan, A.; Mendez-Lazaro, P.; Garcia-Rejon, J.; Gomez-Carro, S.; Farfan-Ale, J.; Savic, D.; Muller-Karger, F. Application of Artificial Neural Networks for Dengue Fever Outbreak Predictions in the Northwest Coast of Yucatan, Mexico and San Juan, Puerto Rico. Trop. Med. Infect. Dis. 2018, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Andersson, V.O.; Birck, M.A.F.; Araujo, R.M. Towards Predicting Dengue Fever Rates Using Convolutional Neural Networks and Street-Level Images. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018. [Google Scholar]
- De Abreu, F.V.S.; de Andreazzi, C.S.; Neves, M.S.A.S.; Meneguete, P.S.; Ribeiro, M.S.; Dias, C.M.G.; de Albuquerque Motta, M.; Barcellos, C.; Romão, A.R.; de Magalhães, M.A.F.M.; et al. Ecological and Environmental Factors Affecting Transmission of Sylvatic Yellow Fever in the 2017–2019 Outbreak in the Atlantic Forest, Brazil. Parasites Vectors 2022, 15, 23. [Google Scholar] [CrossRef]
- Bochenek, B.; Ustrnul, Z. Machine Learning in Weather Prediction and Climate Analyses—Applications and Perspectives. Atmosphere 2022, 13, 180. [Google Scholar] [CrossRef]
- Shen, C. A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists. Water Resour. Res. 2018, 54, 8558–8593. [Google Scholar] [CrossRef]
Abbreviation | Name of ML Technique |
---|---|
LoR | Logistic Regression |
RF | Random Forest |
LiR | Linear Regression |
GAM | Generalized Additive Model |
GLM | Generalized Linear Model |
DT | Decision Trees |
SVM | Support Vector Machines |
ANN | Artificial Neural Networks |
GBM | Gradient Boosting Machine |
KNN | K-Nearest Neighbors |
GWR | Geographical Weighted Regression |
BRT | Boosted Regression Trees |
Mosquito Diversity | |
---|---|
Species richness | Total number of species sampled at each sampling point. |
Shannon–Wiener index | Measure of species diversity weighted by the relative abundance. |
Functional richness (FRic) | Represents the quantity of functional space filled by the community, where low FRic implies that some resources are unused or unavailable in the ecosystem. |
Functional evenness (FEve) | Describes the distribution of abundance in a functional space of traits, where low FEve indicates that some parts of the functional niche are underutilized. |
Functional divergence (FDiv) | A measure of the functional similarity among the dominant mosquito species of a community. FDiv is high when the most abundant species have extreme functional trait values. |
Functional dispersion (FDis) | A multivariate measure of the dispersion of mosquito species in the trait space represents the mean distance of species to the centroid of the community, weighted by mosquito species abundance. |
Haemagogus relative abundance | The number of Haemagogus mosquitoes is divided by the number of mosquitoes collected at each sampling point. |
Haemagogus minimum infection rate (MIR) | Represents the minimum number of infected mosquitoes, assuming that only one was infected in each positive mosquito pool. It was calculated for each sampling point using the formula MIR = number of YFV-positive. |
Ecological Indexes | |
Environment of Mosquito sampling, inside the forest | Within dense forests connected to other forests. |
Rural fragment | Within forests smaller than 100 hectares and surrounded by pastures. |
Rural peri-domicile | Around homesteads and country houses. |
Urban fragment | Within forests inside cities. |
Urban intra-domicile | Within human houses inside cities. |
Vertical distribution in the forest | |
Geo-Environmental Indexes | |
Altitude, landcover/land use, forest fragment size. | |
Normalized Difference Vegetation Index (NDVI). | |
Functional Diversity | |
Physiology | Egg resistance to desiccation; larval development speed. |
Habitats | Seasonal distribution; primary habitat. |
Epidemiological importance | Epidemiological importance concerning the disease. |
Behavior | Main hourly biting activity; host preference; oviposition preferences. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabrera, M.; Leake, J.; Naranjo-Torres, J.; Valero, N.; Cabrera, J.C.; Rodríguez-Morales, A.J. Dengue Prediction in Latin America Using Machine Learning and the One Health Perspective: A Literature Review. Trop. Med. Infect. Dis. 2022, 7, 322. https://doi.org/10.3390/tropicalmed7100322
Cabrera M, Leake J, Naranjo-Torres J, Valero N, Cabrera JC, Rodríguez-Morales AJ. Dengue Prediction in Latin America Using Machine Learning and the One Health Perspective: A Literature Review. Tropical Medicine and Infectious Disease. 2022; 7(10):322. https://doi.org/10.3390/tropicalmed7100322
Chicago/Turabian StyleCabrera, Maritza, Jason Leake, José Naranjo-Torres, Nereida Valero, Julio C. Cabrera, and Alfonso J. Rodríguez-Morales. 2022. "Dengue Prediction in Latin America Using Machine Learning and the One Health Perspective: A Literature Review" Tropical Medicine and Infectious Disease 7, no. 10: 322. https://doi.org/10.3390/tropicalmed7100322
APA StyleCabrera, M., Leake, J., Naranjo-Torres, J., Valero, N., Cabrera, J. C., & Rodríguez-Morales, A. J. (2022). Dengue Prediction in Latin America Using Machine Learning and the One Health Perspective: A Literature Review. Tropical Medicine and Infectious Disease, 7(10), 322. https://doi.org/10.3390/tropicalmed7100322