Risk Factors of Infections Due to Multidrug-Resistant Gram-Negative Bacteria in a Community Hospital in Rural Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.1.1. Inclusion Criteria
2.1.2. Exclusion Criteria
2.2. Data Collection and Definition
2.3. Statistical Analysis
2.4. Ethical Considerations
3. Results
3.1. Patient Characteristics
3.2. Characteristic of Patients with Multidrug-Resistant Gram-Negative Bacteria (MDR-GNB) Infections
3.3. Risk Factors for Multidrug-Resistant Gram-Negative Bacteria (MDR-GNB) Infections
3.3.1. Univariate Logistic Regression Analysis
3.3.2. Multivariate Logistic Regression Analysis
3.3.3. Development of a Risk Assessment Tool for MDR-GNB Infections
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Giske, C.G.; Monnet, D.L.; Cars, O.; Carmeli, Y. Clinical and economic impact of common multidrug-resistant gram-negative bacilli. Antimicrob. Agents Chemother. 2008, 52, 813–821. [Google Scholar] [CrossRef] [Green Version]
- Morris, S.; Cerceo, E. Trends, epidemiology, and management of multi-drug resistant gram-negative bacterial infections in the hospitalized setting. Antibiotics 2020, 9, 196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Antimicrobial Resistance: Global Report on Surveillance. Available online: https://apps.who.int/iris/handle/10665/112642 (accessed on 20 December 2021).
- Centers for Disease Control Prevention. Antibiotic Resistance Threats in the United States. 2019. Available online: www.cdc.gov/DrugResistance/Biggest-Threats.html (accessed on 20 December 2021).
- Phodha, T.; Riewpaiboon, A.; Malathum, K.; Coyte, P.C. Excess annual economic burdens from nosocomial infections caused by multi-drug resistant bacteria in Thailand. Expert Rev. Pharmacoecon. Outcomes Res. 2019, 19, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Sumpradit, N.; Wongkongkathep, S.; Malathum, K.; Janejai, N.; Paveenkittiporn, W.; Yingyong, T.; Chuxnum, T.; Vijitleela, A.; Boonyarit, P.; Akaleephan, C.; et al. Thailand’s national strategic plan on antimicrobial resistance: Progress and challenges. Bull. World Health Organ. 2021, 99, 661–673. [Google Scholar] [CrossRef] [PubMed]
- National Antimicrobial Resistance Surveillance Thailand. Global and National Antimicrobial Resistance Situation 2019. Available online: http://narst.dmsc.moph.go.th/ (accessed on 31 May 2021).
- Agarwal, M.; Larson, E.L. Risk of drug resistance in repeat gram-negative infections among patients with multiple hospitalizations. J. Crit. Care 2018, 43, 260–264. [Google Scholar] [CrossRef] [Green Version]
- Chara, C.; Khemla, S.; Pholhemhan, S.; Surin, U.; Prasert, K. Risk factors associated with antibiotic multidrug resistant nosocomial infection among hospitalized patients aged 14 years and older in Nakhon Phanom hospital. Nakhon Phanom Hosp. J. 2016, 6, 6–17. [Google Scholar]
- Cienfuegos-Gallet, A.V.; Ocampo de Los Ríos, A.M.; Sierra Viana, P.; Ramirez Brinez, F.; Restrepo Castro, C.; Roncancio Villamil, G.; Del Corral Londoño, H.; Jiménez, J.N. Risk factors and survival of patients infected with carbapenem-resistant Klebsiella pneumoniae in a KPC endemic setting: A case-control and cohort study. BMC Infect. Dis. 2019, 19, 830. [Google Scholar] [CrossRef] [Green Version]
- Kalluru, S.; Eggers, S.; Barker, A.; Shirley, D.; Sethi, A.K.; Sengupta, S.; Yeptho, K.; Safdar, N. Risk factors for infection with multidrug-resistant organisms in Haryana, India. Am. J. Infect. Control 2018, 46, 341–345. [Google Scholar] [CrossRef]
- Phodha, T.; Riewpaiboon, A.; Malathum, K.; Coyte, P.C. Annual relative increased in inpatient mortality from antimicrobial resistant nosocomial infections in Thailand. Epidemiol. Infect. 2019, 147, e133. [Google Scholar] [CrossRef] [Green Version]
- Baramee, J.; Unahalekhaka, A.; Klunklin, P. Implementation and barriers in prevention of multidrug-resistant organisms transmission among community hospitals. Nurs. J. Chiang Mai Univ. 2021, 48, 95–106. [Google Scholar]
- Alali, W.Q.; AlFouzan, W.; Dhar, R. Prevalence of antimicrobial resistance in Gram-negative clinical isolates from a major secondary hospital in Kuwait: A retrospective descriptive study. Germs 2021, 11, 498–511. [Google Scholar] [CrossRef] [PubMed]
- Andrés Lasheras, S.; Martín Burriel, I.; Aspiroz, C.; Mainar Jaime, R.C.; Robres, P.; Sevilla, E.; Kuijper, E.; Chirino Trejo, M.; Bolea, R. Incidence and characterization of Clostridium difficile in a secondary care hospital in Spain. Rev. Esp. Enferm. Dig. 2019, 111, 338–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falcone, M.; Tiseo, G.; Dentali, F.; La Regina, M.; Foglia, E.; Gambacorta, M.; Garagiola, E.; Bonardi, G.; Clerici, P.; Colombo, F.; et al. Predicting resistant etiology in hospitalized patients with blood cultures positive for Gram-negative bacilli. Eur. J. Int. Med. 2018, 53, 21–28. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muvunyi, V.; Mpirimbanyi, C.; Katabogama, J.B.; Cyuzuzo, T.; Nkubana, T.; Mugema, J.B.; Musoni, E.; Urimubabo, C.; Rickard, J. Community- and hospital-acquired infections in surgical patients at a tertiary referral hospital in Rwanda. World J. Surg. 2020, 44, 3290–3298. [Google Scholar] [CrossRef]
- Boev, C.; Kiss, E. Hospital-acquired infections: Current trends and prevention. Crit. Care Nurs. Clin. N. Am. 2017, 29, 51–65. [Google Scholar] [CrossRef]
- Van Seventer, J.M.; Hochberg, N.S. Principles of Infectious Diseases: Transmission, Diagnosis, Prevention, and Control. In International Encyclopedia of Public Health; Boston University School of Public Health: Boston, MA, USA, 2017; pp. 22–39. [Google Scholar] [CrossRef]
- Burillo, A.; Muñoz, P.; Bouza, E. Risk stratification for multidrug-resistant Gram-negative infections in ICU patients. Curr. Opin. Infect. Dis. 2019, 32, 626–637. [Google Scholar] [CrossRef]
- Fernández-Martínez, N.F.; Cárcel-Fernández, S.; De la Fuente-Martos, C.; Ruiz-Montero, R.; Guzmán-Herrador, B.R.; León-López, R.; Gómez, F.J.; Guzmán-Puche, J.; Martínez-Martínez, L.; Salcedo-Leal, I. Risk factors for multidrug-resistant gram-negative bacteria carriage upon admission to the intensive care unit. Int. J. Environ. Res. Public Health 2022, 19, 1039. [Google Scholar] [CrossRef]
- González Del Castillo, J.; Julián-Jiménez, A.; Gamazo-Del Rio, J.J.; García-Lamberechts, E.J.; Llopis-Roca, F.; Guardiola Tey, J.M.; Martínez-Ortiz de Zarate, M.; Navarro Bustos, C.; Piñera Salmerón, P.; Álvarez-Manzanares, J.; et al. A multidrug-resistant microorganism infection risk prediction model: Development and validation in an emergency medicine population. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 309–323. [Google Scholar] [CrossRef]
- Goodman, K.E.; Lessler, J.; Cosgrove, S.E.; Harris, A.D.; Lautenbach, E.; Han, J.H.; Milstone, A.M.; Massey, C.J.; Tamma, P.D. A Clinical Decision Tree to Predict Whether a Bacteremic Patient Is Infected With an Extended-Spectrum β-Lactamase-Producing Organism. Clin. Infect. Dis. 2016, 63, 896–903. [Google Scholar] [CrossRef] [PubMed]
- Abthaisong, P.; Charerntanyarak, L.; Weerapol, P. Factors associated with extended-spectrum beta-lactamase producing Escherichia coli and Klebsiella pneumoniae bloodstream infection among hospitals in Nakhon Phanom province. J. Office DPC 9 Nakhon Ratchasima 2016, 22, 57–67. [Google Scholar]
- Ponyon, J.; Ungcharoen, R. Incidence of multidrug-resistant gram-negative bacteria in blood specimens in a community hospital in northeast. Thai J. Pharm. Prac. 2023, 15, 1–7. [Google Scholar]
- Gomila, A.; Shaw, E.; Carratalà, J.; Leibovici, L.; Tebé, C.; Wiegand, I.; Vallejo-Torres, L.; Vigo, J.M.; Morris, S.; Stoddart, M.; et al. Predictive factors for multidrug-resistant gram-negative bacteria among hospitalised patients with complicated urinary tract infections. Antimicrob. Resist. Infect. Control 2018, 7, 111. [Google Scholar] [CrossRef]
- Zilberman-Itskovich, S.; Strul, N.; Chedid, K.; Martin, E.T.; Shorbaje, A.; Vitkon-Barkay, I.; Marcus, G.; Michaeli, L.; Broide, M.; Yekutiel, M.; et al. A “resistance calculator”: Simple stewardship intervention for refining empiric practices of antimicrobials in acute-care hospitals. Infect. Control Hosp. Epidemiol. 2021, 42, 1082–1089. [Google Scholar] [CrossRef]
- Patolia, S.; Abate, G.; Patel, N.; Patolia, S.; Frey, S. Risk factors and outcomes for multidrug-resistant Gram-negative bacilli bacteremia. Ther. Adv. Infect. Dis. 2018, 5, 11–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medical Record Audit Top 10 Conditions of Hospitalisation at Thatpanom Crown Prince Hospital; Thatpanom Crown Prince Hospital: Nakhon Phanom, Thailand, 2020.
- Nakonchai, T. Factors associated with multi-drug resistant infections among patients of Udonthani cancer hospital. Nurs. Health Edu. 2018, 1, 23–30. [Google Scholar]
- Viasus, D.; Puerta-Alcalde, P.; Cardozo, C.; Suárez-Lledó, M.; Rodríguez-Núñez, O.; Morata, L.; Fehér, C.; Marco, F.; Chumbita, M.; Moreno-García, E.; et al. Predictors of multidrug-resistant Pseudomonas aeruginosa in neutropenic patients with bloodstream infection. Clin. Microbiol. Infect. 2020, 26, 345–350. [Google Scholar] [CrossRef]
- Juylek, N.; Picheansathian, W.; Kasatpibal, N. Development of risk factor scoring system of multidrug-resistant microorganism infection among in-patients. Nurs. J. Chiang Mai Univ. 2016, 43, 69–80. [Google Scholar]
- Tseng, W.P.; Chen, Y.C.; Yang, B.J.; Chen, S.Y.; Lin, J.J.; Huang, Y.H.; Fu, C.M.; Chang, S.C.; Chen, S.Y. Predicting multidrug-resistant gram-negative bacterial colonization and associated infection on hospital admission. Infect. Control Hosp. Epidemiol. 2017, 38, 1216–1225. [Google Scholar] [CrossRef]
- Bamrasnaradura Infectious Disease Institute Department of Infectious Control. In Guidelines to Infection Prevention and Control; Graphic and Design: Bangkok, Thailand, 2021.
Characteristic | Non-MDR-GNB (Total 432 Patients) n (%) | MDR-GNB (Total 192 Patients) n (%) |
---|---|---|
HOST FACTORS | ||
Age | ||
<60 years | 212 (49.07) | 83 (43.23) |
≥60 years | 220 (50.93) | 109 (56.77) |
Median ± interquartile range (years) | 60 ± 24 | 65 ± 22.5 |
Gender | ||
Male | 214 (49.54) | 85 (44.27) |
Female | 218 (50.46) | 107 (55.73) |
Occupation | ||
Agriculture | 241 (55.79) | 105 (54.69) |
Unemployed | 123 (28.47) | 54 (28.13) |
Employee | 42 (9.72) | 18 (9.38) |
Merchant | 11 (2.55) | 4 (2.08) |
Government officer | 10 (2.31) | 9 (4.69) |
Priest | 5 (1.16) | 2 (1.04) |
Smoking history | 113 (26.16) | 73 (38.02) |
Drinking history | 173 (40.05) | 90 (46.88) |
Underlying disease | ||
Diabetes mellitus | 89 (20.60) | 43 (22.40) |
Hypertension | 65 (15.05) | 31 (16.15) |
Chronic renal failure | 14 (3.24) | 6 (3.13) |
Chronic obstructive pulmonary disease (COPD) | 14 (3.24) | 2 (1.04) |
Cerebrovascular accident (CVA) | 6 (1.39) | 2 (1.04) |
Acquired Immunodeficiency Syndrome (AIDS) | 3 (0.69) | 4 (2.08) |
Past illness | ||
Tuberculosis (TB) | 5 (1.16) | 7 (3.65) |
Site of infection | ||
Urinary system | 57 (13.19) | 48 (25.00) |
Respiratory system | 70 (16.20) | 28 (14.58) |
Wound | 12 (2.78) | 9 (4.69) |
Blood | 187 (43.29) | 68 (35.42) |
Drug factor | ||
Antibiotics usage in past 90 days | 16 (3.70) | 14 (7.29) |
Inappropriate antibiotics usage in past 90 days | 12 (2.78) | 11 (5.73) |
Steroid usage in past 90 days | 44 (10.19) | 36 (18.75) |
AGENT FACTORS | ||
Escherichia coli | 143 (33.10) | 121 (63.02) |
Burkholderia pseudomallei | 89 (20.60) | 12 (6.25) |
Klebsiella pneumoniae | 56 (12.96) | 22 (11.46) |
Acinetobacter baumannii | 18 (4.17) | 4 (2.08) |
ESBL-producing Enterobacteriaceae | 3 (0.69) | 28 (14.58) |
ENVIRONMENT FACTORS | ||
Source of infection | ||
Community-acquired infection | 423 (97.92) | 183 (95.31) |
Hospitalized in past 90 days | 103 (23.84) | 63 (32.81) |
Medical device usage in past 90 days | ||
Heparin lock | 92 (21.30) | 48 (25.00) |
Urinary catheter | 60 (13.89) | 40 (20.83) |
Nasogastric tube | 14 (3.24) | 6 (3.13) |
Suction tube | 3 (0.69) | 7 (3.65) |
Endotracheal tube | 18 (4.17) | 17 (8.85) |
Length of hospitalization | ||
≥7 days | 182 (42.13) | 93 (48.44) |
Ward | ||
Female ward | 157 (36.34) | 84 (43.75) |
Male ward | 154 (35.65) | 73 (38.02) |
Special ward | 67 (15.51) | 24 (12.50) |
Pediatric ward | 30 (6.94) | 4 (2.08) |
Intensive care unit | 24 (5.56) | 7 (3.65) |
Risk Factor | Univariate | Multivariate | ||
---|---|---|---|---|
OR (95% CI) | p-Value | ORAdj. (95% CI) | p-Value | |
HOST FACTORS | ||||
Age | ||||
<60 years | 0.80 (0.56–1.11) | |||
≥60 years | 1.27 (0.90–1.78) | 0.177 | ||
Gender | ||||
Male | 0.81 (0.58–1.14) | 0.225 | ||
Female | 1.24 (0.88–1.74) | |||
Occupation | ||||
Agriculture | 0.96 (0.68–1.35) | 0.799 | ||
Unemployed | 0.98 (0.67–1.43) | 0.929 | ||
Employee | 0.96 (0.54–1.72) | 0.892 | ||
Merchant | 0.81 (0.26–2.59) | 0.728 | ||
Government officer | 2.08 (0.83–5.19) | 0.119 | ||
Priest | 0.90 (0.17–4.67) | 0.899 | ||
Smoking history | 1.73 * (1.21–2.49) a | 0.003 | ||
Drinking history | 1.32 (0.94–1.86) | 0.111 | ||
Underlying disease | ||||
Diabetes Mellitus | 1.11 (0.74–1.68) | 0.613 | ||
Hypertension | 1.09 (0.68–1.73) | 0.725 | ||
Chronic renal failure | 0.96 (0.36–2.55) | 0.940 | ||
Chronic obstructive pulmonary disease (COPD) | 0.31 (0.07–1.40) | 0.128 | ||
Cerebrovascular accident (CVA) | 0.75 (0.15–3.74) | 0.723 | ||
Acquired Immunodeficiency Syndrome (AIDS) | 3.04 (0.67–13.73) | 0.148 | ||
Past illness | ||||
Tuberculosis (TB) | 3.23 * (1.01–10.31) a | 0.048 | ||
Site of infection | ||||
Urinary system | 2.19 ** (1.43–3.37) a | <0.001 | 2.25 ** (1.44–3.53) | <0.001 |
Respiratory system | 0.31 (0.07–1.40) | 0.128 | ||
Wound | 1.72 (0.71–4.16) | 0.227 | ||
Blood | 0.72 (0.51–1.02) | 0.065 | ||
Drug factor | ||||
Antibiotics usage in past 90 days | 2.04 (0.98–4.28) | 0.058 | ||
Inappropriate antibiotics usage in past 90 days | 2.13 (0.92–4.91) | 0.077 | ||
Steroid usage in past 90 days | 2.03 * (1.26–3.28) a | 0.004 | 1.91 * (1.15–3.19) | 0.013 |
AGENT FACTORS | ||||
Escherichia coli | 3.44 ** (2.42–4.91) | <0.001 | ||
Burkholderia pseudomallei | 0.26 ** (0.14–0.48) | <0.001 | ||
Klebsiella pneumoniae | 0.87 (0.51–1.47) | 0.600 | ||
Acinetobacter baumannii | 0.49 (0.16–1.47) | 0.202 | ||
ESBL-producing Enterobacteriaceae | 24.41 ** (7.32–81.40) a | <0.001 | 23.53 ** (7.00–79.09) | <0.001 |
ENVIRONMENT FACTORS | ||||
Source of infection | ||||
Community-acquired infection | 0.43 (0.17–1.11) | 0.081 | ||
Hospitalization in past 90 day | 1.56 * (1.07–2.27) a | 0.020 | ||
Medical devices usage in past 90 day | ||||
Heparin lock | 1.23 (0.83–1.84) | 0.306 | ||
Urinary catheter | 1.63 * (1.05–2.54) a | 0.030 | ||
Nasogastric tube | 0.96 (0.36–2.55) | 0.940 | ||
Suction tube | 5.41 * (1.38–21.15) a | 0.015 | ||
Endotracheal tube | 2.23 * (1.13–4.44) a | 0.022 | ||
Length of hospitalization | ||||
<7 days | 0.77 (0.55–1.09) | 0.143 | ||
≥7 days | 1.29 (0.92–1.82) | |||
Ward | ||||
Female ward | 1.36 (0.96–1.93) | 0.080 | ||
Male ward | 1.11 (0.78–1.57) | 0.570 | ||
Special ward | 0.78 (0.47–1.28) | 0.320 | ||
Pediatric ward | 0.29 * (0.10–0.82) | 0.020 | ||
Intensive care unit | 0.64 (0.27–1.52) | 0.314 |
Risk Factor | Score |
---|---|
ESBL-producing Enterobacteriaceae | 7 |
Urinary tract infection | 2 |
Steroid usage in past 90 days | 1 |
Cut-Off Point | Sensitivity (%) | Specificity (%) | Correctly Classified (%) | LR+ | LR− |
---|---|---|---|---|---|
≥0 | 100.00 | 0.00 | 30.77 | 1.00 | |
≥1 | 48.44 | 77.55 | 68.59 | 2.16 | 0.66 |
≥2 | 35.94 | 86.11 | 70.67 | 2.59 | 0.74 |
≥3 | 16.67 | 97.69 | 72.76 | 7.20 | 0.85 |
≥7 | 14.58 | 99.31 | 73.24 | 21.00 | 0.86 |
≥8 | 6.77 | 100.00 | 71.31 | 0.93 | |
≥9 | 3.65 | 100.00 | 70.35 | 0.96 | |
≥10 | 1.04 | 100.00 | 69.55 | 0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponyon, J.; Kerdsin, A.; Preeprem, T.; Ungcharoen, R. Risk Factors of Infections Due to Multidrug-Resistant Gram-Negative Bacteria in a Community Hospital in Rural Thailand. Trop. Med. Infect. Dis. 2022, 7, 328. https://doi.org/10.3390/tropicalmed7110328
Ponyon J, Kerdsin A, Preeprem T, Ungcharoen R. Risk Factors of Infections Due to Multidrug-Resistant Gram-Negative Bacteria in a Community Hospital in Rural Thailand. Tropical Medicine and Infectious Disease. 2022; 7(11):328. https://doi.org/10.3390/tropicalmed7110328
Chicago/Turabian StylePonyon, Jindanoot, Anusak Kerdsin, Thanawadee Preeprem, and Ratchadaporn Ungcharoen. 2022. "Risk Factors of Infections Due to Multidrug-Resistant Gram-Negative Bacteria in a Community Hospital in Rural Thailand" Tropical Medicine and Infectious Disease 7, no. 11: 328. https://doi.org/10.3390/tropicalmed7110328
APA StylePonyon, J., Kerdsin, A., Preeprem, T., & Ungcharoen, R. (2022). Risk Factors of Infections Due to Multidrug-Resistant Gram-Negative Bacteria in a Community Hospital in Rural Thailand. Tropical Medicine and Infectious Disease, 7(11), 328. https://doi.org/10.3390/tropicalmed7110328