Proposed Algorithm for Integrated Management of TB-SARS-CoV-2 Co-Infection in a TB-Endemic Country
Abstract
:1. Introduction
2. Occurrence of TB-SARS-CoV-2 Co-Infection
3. Tuberculosis and COVID-19 Integrated Management
4. Algorithm TB-COVID-19 Design
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Listings of WHO’s Response to COVID-19. 2020. Available online: https://www.who.int/news/item/29-06-2020-covidtimeline (accessed on 29 October 2021).
- World Health Organization (WHO). Global Tuberculosis Report 2021; WHO: Geneva, Switzerland, 2021. Available online: https://www.who.int/publications/i/item/9789240037021 (accessed on 29 October 2021).
- Centers for Disease Control and Prevention (CDC). Tuberculosis. Global Health. 2020. Available online: https://www.cdc.gov/globalhealth/newsroom/topics/tb/index.html (accessed on 7 October 2021).
- Shrinivasan, R.; Rane, S.; Pai, M. India’s syndemic of tuberculosis and COVID-19. BMJ Glob. Health 2020, 5, e003979. [Google Scholar] [CrossRef] [PubMed]
- Togun, T.; Kampmann, B.; Stoker, N.G.; Lipman, M. Anticipating the impact of the COVID-19 pandemic on TB patients and TB control programmes. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 21. [Google Scholar] [CrossRef] [PubMed]
- Song, W.-M.; Zhao, J.-Y.; Zhang, Q.-Y.; Liu, S.-Q.; Zhu, X.-H.; An, Q.-Q.; Xu, T.-T.; Li, S.-J.; Liu, J.-Y.; Tao, N.-N.; et al. COVID-19 and Tuberculosis Coinfection: An Overview of Case Reports/Case Series and Meta-Analysis. Front. Med. 2021, 8, 657006. [Google Scholar] [CrossRef] [PubMed]
- Tadolini, M.; García-García, J.-M.; Blanc, F.-X.; Borisov, S.; Goletti, D.; Motta, I.; Codecasa, L.; Tiberi, S.; Sotgiu, G.; Migliori, G.B. On tuberculosis and COVID-19 co-infection. Eur. Respir. J. 2020, 56, 2002328. [Google Scholar] [CrossRef] [PubMed]
- Sekaran, S.; Jagani, R.P.; Waleed, M.S.; Celi, C.S.V.; Marzban, S. Latent tuberculosis and COVID-19 disease. Discov. Rep. 2021, 4, e26. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control (ECDC). Antimicrobial Resistance–Tuberculosis. An Agency of the European Union. 2022. Available online: https://www.ecdc.europa.eu/en/tuberculosis/antimicrobial-resistance (accessed on 14 June 2022).
- Bardhan, M.; Hasan, M.M.; Ray, I.; Sarkar, A.; Chahal, P.; Rackimuthu, S.; Essar, M.Y. Tuberculosis amidst COVID-19 pandemic in India: Unspoken challenges and the way forward. Trop. Med. Health 2021, 49, 84. [Google Scholar] [CrossRef]
- Bouaddi, O.; Hasan, M.M.; Sahito, A.M.; Shah, P.A.; Mohammed, A.Z.A.; Essar, M.Y. Tuberculosis in the middle of COVID-19 in Morocco: Efforts, challenges and recommendations. Trop. Med. Health 2021, 49, 98. [Google Scholar] [CrossRef]
- Awan, H.A.; Sahito, A.M.; Sukaina, M.; Khatri, G.; Waheed, S.; Sohail, F.; Hasan, M.M. Tuberculosis amidst COVID-19 in Pakistan: A massive threat of overlapping crises for the fragile healthcare systems. Epidemiol. Infect. 2022, 150, e41. [Google Scholar] [CrossRef]
- Dara, M.; Sotgiu, G.; Reichler, M.R.; Chiang, C.-Y.; Chee, C.B.E.; Migliori, G.B. New diseases and old threats: Lessons from tuberculosis for the COVID-19 response. Int. J. Tuberc. Lung Dis. 2020, 24, 544–545. [Google Scholar] [CrossRef]
- Ong, C.W.M.; Goletti, D. Impact of the global COVID-19 outbreak on the management of other communicable diseases. Int. J. Tuberc. Lung Dis. 2020, 24, 547–548. [Google Scholar] [CrossRef]
- Sheerin, D.; Abhimanyu Wang, X.; Johnson, W.E.; Coussens, A. Systematic evaluation of transcriptomic disease risk and diagnostic biomarker overlap between COVID-19 and tuberculosis: A patient-level meta-analysis. medRxiv 2020. [Google Scholar] [CrossRef]
- Zhou, S.; Van Staden, Q.; Toska, E. Resource reprioritisation amid competing health risks for TB and COVID-19. Int. J. Tuberc. Lung Dis. 2020, 24, 1215–1216. [Google Scholar] [CrossRef] [PubMed]
- Echeverría, G.; Espinoza, W.; de Waard, J.H. How TB and COVID-19 compare: An opportunity to integrate both control programmes. Int. J. Tuberc. Lung Dis. 2020, 24, 971–974. [Google Scholar] [CrossRef] [PubMed]
- TB/COVID-19 Global Study Group. Tuberculosis and COVID-19 co-infection: Description of the global cohort. Eur. Respir. J. 2021, 59, 2102538. [Google Scholar]
- Western Cape Department of Health in collaboration with the National Institute for Communicable Diseases, South Africa, Risk Factors for Coronavirus Disease 2019 (COVID-19) Death in a Population Cohort Study from the Western Cape Province, South Africa. Clin. Infect. Dis. 2021, 73, e2005-15. [CrossRef]
- Liu, J.; Zhang, S.; Wu, Z.; Shang, Y.; Dong, X.; Li, G.; Zhang, L.; Chen, Y.; Ye, X.; Du, H.; et al. Clinical outcomes of COVID-19 in Wuhan, China: A large cohort study. Ann. Intensive. Care 2020, 10, 99. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Deng, A.P.; Hu, T.; Chen, X.G.; Zhuang, Y.L.; Tan, X.H.; Zhen, H.Z.; Sun, L.M.; Li, Y.; Zhong, H.J.; et al. Clinical outcomes of COVID-19 cases and influencing factors in Guangdong province. Zhonghua Liu Xing Bing Xue Za Zhi 2020, 41, 1999–2004. [Google Scholar]
- Ding, W.; Li, Y.; Bai, Y.; Li, Y.; Wang, L.; Wang, Y. Estimating the Effects of the COVID-19 Outbreak on the Reductions in Tuberculosis Cases and the Epidemiological Trends in China: A Causal Impact Analysis. Infect. Drug Resist. 2021, 14, 4641–4655. [Google Scholar] [CrossRef]
- Pai, M.; Kasaeva, T.; Swaminathan, S. Covid-19′s Devastating Effect on Tuberculosis Care–A Path to Recovery. N. Engl. J. Med. 2022, 386, 1490–1493. [Google Scholar] [CrossRef]
- Soko, R.N.; Burke, R.M.; Feasey, H.R.; Sibande, W.; Nliwasa, M.; Henrion, M.Y.; Khundi, M.; Dodd, P.J.; Ku, C.C.; Kawalazira, G.; et al. Effects of Coronavirus Disease Pandemic on Tuberculosis Notifications, Malawi. Emerg. Infect. Dis. 2021, 27, 1831–1839. [Google Scholar] [CrossRef]
- Guan, W.-J.; Liang, W.-H.; Zhao, Y.; Liang, H.-R.; Chen, Z.-S.; Li, Y.-M.; Liu, X.-Q.; Chen, R.-C.; Tang, C.-L.; Wang, T.; et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: A nationwide analysis. Eur. Respir. J. 2020, 55, 2000547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borgdorff, M.W.; Nagelkerke, N.J.; Dye, C.; Nunn, P. Gender and tuberculosis: A comparison of prevalence surveys with notification data to explore sex differences in case detection. Int. J. Tuberc. Lung Dis. 2000, 4, 123–132. [Google Scholar] [PubMed]
- Horton, K.C.; MacPherson, P.; Houben, R.M.G.J.; White, R.G.; Corbett, E.L. Sex Differences in Tuberculosis Burden and Notifications in Low- and Middle-Income Countries: A Systematic Review and Meta-analysis. PLoS Med. 2016, 13, e1002119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cilloni, L.; Fu, H.; Vesga, J.F.; Dowdy, D.; Pretorius, C.; Ahmedov, S.; Nair, S.A.; Mosneaga, A.; Masini, E.; Sahu, S.; et al. The potential impact of the COVID-19 pandemic on the tuberculosis epidemic a modelling analysis. EClinicalMedicine 2020, 28, 100603. [Google Scholar] [CrossRef]
- Xu, C.; Li, T.; Hu, D.; Zhang, H.; Zhao, Y.; Liu, J. Predicted Impact of the COVID-19 Responses on Deaths of Tuberculosis–China, 2020. China CDC Wkly 2021, 3, 21–24. [Google Scholar] [CrossRef]
- Visca, D.; Ong, C.; Tiberi, S.; Centis, R.; D’Ambrosio, L.; Chen, B.; Mueller, J.; Duarte, R.; Dalcolmo, M.; Sotgiu, G.; et al. Tuberculosis and COVID-19 interaction: A review of biological, clinical and public health effects. Pulmonology 2020, 27, 151–165. [Google Scholar] [CrossRef]
- O’Leary, T.J. Relative Sensitivity of Saliva and Upper Airway Swabs for Initial Detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in Ambulatory Patients: Rapid Review. J. Mol. Diagn. 2021, 23, 265–273. [Google Scholar] [CrossRef]
- Chapman, H.J.; Veras-Estévez, B.A. Lessons Learned During the COVID-19 Pandemic to Strengthen TB Infection Control: A Rapid Review. Glob. Health Sci. Pract. 2021, 9, 964–977. [Google Scholar] [CrossRef]
- Awasthi, A.K.; Singh, P.K. Tuberculosis management in India during COVID-19 crisis. J. Public Health Policy 2021, 42, 185–189. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Global Tuberculosis Report 2020; WHO: Geneva, Switzerland, 2020.
- Abdool Karim, Q.; Abdool Karim, S.S. COVID-19 affects HIV and tuberculosis care. Science 2020, 369, 366–368. [Google Scholar] [CrossRef]
- Klinton, J.S.; Oga-Omenka, C.; Heitkamp, P. TB and COVID–Public and private health sectors adapt to a new reality. J. Clin. Tuberc. Other Mycobact. Dis. 2020, 21, 100199. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Public Health Surveillance for COVID-19: Interim Guidance. WHO. 2020. Available online: https://www.who.int/publications/i/item/who-2019-nCoV-surveillanceguidance-2020.8 (accessed on 1 December 2021).
- Woodhead, M.; Blasi, F.; Ewig, S.; Garau, J.; Huchon, G.; Ieven, M.; Ortqvist, A.; Schaberg, T.; Torres, A.; van der Heijden, G.; et al. Guidelines for the management of adult lower respiratory tract infections—Full version. Clin. Microbiol. Infect. 2011, 17 (Suppl. 6), E1–E59. [Google Scholar] [CrossRef]
- Ongole, J.J.; Rossouw, T.M.; Fourie, P.B.; Stoltz, A.C.; Hugo, J.; Marcus, T.S. Sustaining essential healthcare in Africa during the COVID-19 pandemic. Int. J. Tuberc. Lung Dis. 2020, 24, 643–645. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; George, A.A.; Sahu, K.K.; Lal, A.; Abraham, G. Tuberculosis and COVID-19 Co-infection: An Updated Review. Acta Biomed. 2020, 92, e2021025. [Google Scholar] [PubMed]
- Kielmann, K.; Karat, A.; Zwama, G.; Colvin, C.; Swartz, A.; Voce, A.S.; Yates, T.A.; MacGregor, H.; McCreesh, N.; Kallon, I.; et al. Tuberculosis infection prevention and control: Why we need a whole systems approach. Infect. Dis. Poverty 2020, 9, 56. [Google Scholar] [CrossRef]
- Ilesanmi, O.S.; Afolabi, A.A.; Akande, A.; Raji, T.; Mohammed, A. Infection prevention and control during COVID-19 pandemic: Realities from health care workers in a north central state in Nigeria. Epidemiol. Infect. 2021, 149, e15. [Google Scholar] [CrossRef]
- USAID. COVID-19 Contact Tracing and TB Contact Investigation: An Integrated Implementation Approach. 2021. Available online: https://www.stoptb.org/file/9146/download (accessed on 19 December 2021).
- Chan, G.; Triasih, R.; Nababan, B.; du Cros, P.; Wilks, N.; Main, S.; Huang, G.K.L.; Lin, D.; Graham, S.M.; Majumdar, S.S.; et al. Adapting active case-finding for TB during the COVID-19 pandemic in Yogyakarta, Indonesia. Public Health Action 2021, 11, 41–49. [Google Scholar] [CrossRef]
- Wingfield, T.; Karmadwala, F.; MacPherson, P.; A Millington, K.; Walker, N.F.; E Cuevas, L.; Squire, S.B. Challenges and opportunities to end tuberculosis in the COVID-19 era. Lancet Respir. Med. 2021, 9, 556–558. [Google Scholar] [CrossRef]
- World Health Organization (WHO). One Health. WHO. 2017. Available online: https://www.who.int/news-room/questions-and-answers/item/one-health (accessed on 14 June 2022).
- Elmahi OK, O.; Uakkas, S.; Olalekan, B.Y.; Damilola, I.A.; Adedeji, O.J.; Hasan, M.M.; Thomson, D.J. Antimicrobial resistance and one health in the post COVID-19 era: What should health students learn? Antimicrob. Resist. Infect. Control 2022, 11, 58. [Google Scholar] [CrossRef]
- Takahashi, H. Role of latent tuberculosis infections in reduced COVID-19 mortality: Evidence from an instrumental variable method analysis. Med. Hypotheses 2020, 144, 110214. [Google Scholar] [CrossRef]
- Madan, M.; Baldwa, B.; Raja, A.; Tyagi, R.; Dwivedi, T.; Mohan, A.; Guleria, R. Impact of Latent Tuberculosis on Severity and Outcomes in Admitted COVID-19 Patients. Cureus 2021, 13, e19882. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Guidelines on the Management of Latent Tuberculosis Infection; WHO: Geneva, Switzerland, 2015.
- Stochino, C.; Villa, S.; Zucchi, P.; Parravicini, P.; Gori, A.; Raviglione, M.C. Clinical characteristics of COVID-19 and active tuberculosis co-infection in an Italian reference hospital. Eur. Respir. J. 2020, 56, 2001708. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). COVID-19: Considerations for Tuberculosis (TB) Care. World Health Organization (WHO) Information Note. 2020. Available online: www.who.int/tb/COVID_19considerations_tuberculosis_services.pdf (accessed on 15 December 2021).
- Lung, T.; Marks, G.; Nhung, N.V.; Anh, N.T.; Hoa, N.L.P.; Anh, L.T.N.; Hoa, N.B.; Britton, W.J.; Bestrashniy, J.; Jan, S.; et al. Household contact investigation for the detection of tuberculosis in Vietnam: Economic evaluation of a cluster-randomised trial. Lancet Glob. Health 2019, 7, e376–e384. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wang, Y.; Fleming, J.; Yu, Y.; Gu, Y.; Liu, C.; Liu, Y. Active or latent tuberculosis increases susceptibility to COVID-19 and disease severity. medRxiv 2020. Available online: https://www.medrxiv.org/content/10.1101/2020.03.10.20033795v1 (accessed on 15 December 2021).
- Khurana, A.K.; Aggarwal, D. The (in)significance of TB and COVID-19 co-infection. Eur. Respir. J. 2020, 56, 2002105. [Google Scholar] [CrossRef] [PubMed]
- Tamuzi, J.L.; Ayele, B.T.; Shumba, C.S.; Adetokunboh, O.O.; Uwimana-Nicol, J.; Haile, Z.T.; Inugu, J.; Nyasulu, P.S. Implications of COVID-19 in high burden countries for HIV/TB: A systematic review of evidence. BMC Infect. Dis. 2020, 20, 744. [Google Scholar] [CrossRef]
- USAID. Simultaneous, Integrated Diagnostic Testing Approach to Detect COVID-19 and TB in High TB Burden Countries. Stop TB Partnership. 2021. Available online: https://www.stoptb.org/file/9145/download (accessed on 14 June 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mertaniasih, N.M.; Soedarsono, S.; Pakasi, T.T.; Nuha, Z.; Ato, M. Proposed Algorithm for Integrated Management of TB-SARS-CoV-2 Co-Infection in a TB-Endemic Country. Trop. Med. Infect. Dis. 2022, 7, 367. https://doi.org/10.3390/tropicalmed7110367
Mertaniasih NM, Soedarsono S, Pakasi TT, Nuha Z, Ato M. Proposed Algorithm for Integrated Management of TB-SARS-CoV-2 Co-Infection in a TB-Endemic Country. Tropical Medicine and Infectious Disease. 2022; 7(11):367. https://doi.org/10.3390/tropicalmed7110367
Chicago/Turabian StyleMertaniasih, Ni Made, Soedarsono Soedarsono, Tiffany Tiara Pakasi, Zakiyathun Nuha, and Manabu Ato. 2022. "Proposed Algorithm for Integrated Management of TB-SARS-CoV-2 Co-Infection in a TB-Endemic Country" Tropical Medicine and Infectious Disease 7, no. 11: 367. https://doi.org/10.3390/tropicalmed7110367
APA StyleMertaniasih, N. M., Soedarsono, S., Pakasi, T. T., Nuha, Z., & Ato, M. (2022). Proposed Algorithm for Integrated Management of TB-SARS-CoV-2 Co-Infection in a TB-Endemic Country. Tropical Medicine and Infectious Disease, 7(11), 367. https://doi.org/10.3390/tropicalmed7110367